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1. Introduction

All our rings will be commutative with identity not equal to zero. Also R will always
denote a ring. J5" is a filter of ideals of R if J* is a nonempty set of ideals of R satisfying:
if / e i* and J is an ideal of R with laJ, then JeJ^, and if /, ./eJ* then In JeJ*. A
Gabriel topology of R is a filter of ideals !F of R satisfying: if J e !F and / is an ideal of
R with (l:x)e&r for all xeJ, then Ie^. See the B. Stenstrom text [6]. We say that a
ring R is an FGC ring if every finitely generated /^-module is a direct sum of cyclic
R-modules. Use mspec R for the set of all maximal ideals of R.

We shall use the following type of definition. Let !F be a filter of ideals and let & be
a ring property. Then R is an !F-& ring if R/I is a ^ ring for all Ie^ — {R}. The ring
properties 2? that we shall use are FGC ring, Bezout ring, maximal ring and almost
maximal ring. These are described in [2].

FGC rings have been characterized as a finite product of rings consisting of almost
maximal Bezout domains, maximal valuation rings, and torch rings [2, Theorem 9.1].
Although we do not deal with torch rings, the principal goal of this paper is to
characterize J^-FGC rings for certain filters of ideals, &. We start with the classical case
where R is a domain and the filter of ideals is the set of all nonzero ideals, Theorem 1.
We extend this to rings and certain filters of ideals in Theorem 2. Several examples are
also included.

2. Preliminaries

Let & be a filter of ideals of R. Note that R is an J^-FGC ring if and only if every
finitely generated J^-pretorsion /{-module decomposes into a direct sum of cyclic R-
submodules. If S is a multiplicatively closed subset of R and J* is a filter of ideals of R,
then Ĵ s denotes {ls:Ie^}. Then J2^ is a filter of ideals of Rs. If Pespeci? and
S = R — P, then we follow the common practice of denoting Rs by RP. Similarly use &P

for 3FS when PespecR and S = R — P. Beware that this is not the notation used in the
B. Stenstrom text [6, p. 151].

Definition. Let J* be a filter of ideals of R and 3? a ring property. Then R is a
locally tF-S? ring if RM is as ^M-^ ring for all Me mspec/?.
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In particular, we will use this definition for a locally J^-almost maximal ring, and a
locally ^-valuation ring. If / is an ideal of/?, use mspec(7) for {Memspec/?:/<=M}.

Definition. Let SF be a filter of ideals of R. Then R is an #-local ring if

(1) |mspec(/)|<oo for all Ie^, and

(2) |mspec(P)| = l for all Pe^ nspecR.

Our definition of #"-local is inconsistent with the previously defined 3F-& property.
We allow this inconsistency because of our earlier use of J*-local as a generalization of
/i-local in [3], [4] and [5]. If T is an R-module and MemspecR, then use the notation

T(M) = {xeT:mspec(AnnR(x))c{M}} = {0} u{xeT:mspec (AnnR(x)) = {M}}.

By [5, Theorem 1], if J* is a filter of ideals of R, then R is an ^-local ring if and only if
^=0M6mSpec« T(M) for all J^-pretorsion modules T if and only if r = 0 M e m s p e c i { T(M)
for all cyclic #"-pretorsion modules T. There are a number of results relating to ^-local
that have been proved for Gabriel topologies, which are in fact true for filters of ideals.
Those that we shall be needing are [4, Lemma 1.1], [3, Theorem 1], and [2, Corollary
2.7 (3)].

Proposition 1. Let !F be a filter of ideals of R.

(1) Suppose iJ^nmspecRl^l. Then R is an &-FGC ring if and only if R is an #"-
valuation ring and R is an ^-almost maximal ring.

(2) IfR is an &-FGC ring, then R is an ̂ -Bezout ring.

Proof. [2, Theorem 4.5] and [2, Proposition 4.6]. •

The following is comparable to [2, Theorem 2.9], which is stated for integral domains
with the classical torsion theory.

Proposition 2. Let J* be a filter of ideals of R. Then R is an ^-maximal ring if and
only if R is an &-local ring and R is a locally ^-maximal ring.

Proof. Suppose R is an ^-maximal ring. We verify that R is an ^-local ring. Let
I e J*, / # R. Since R is an J^-maximal ring, R/I is a linearly compact i?//-module. Using
[2, Theorem 1.6], |mspec(/)| = |mspecK//|<oo. Suppose Pe^nspec/?. Then R/P is a
linearly compact R/P-modn\e. By [2, Corollary 1.7], |mspec(P)| = |mspec/?/P| = 1.

Now we verify that R is a locally & -maximal ring. Let Memspec/? and
There exists / e J^ with J = IM. By [5, Theorem 1] and [3, Theorem 1], R/I
(0Memspecjj-(M)(^)M)- Also (R/I)M^RM/J, and RJJ is a linearly compact K-rnodule
by [2, Proposition 1.2 (2)], hence a linearly compact /?M-module.

Conversely, suppose R is an #"-local ring and R is a locally ^-maximal ring. Let
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Ie!F. Since R is an J*-local ring, |mspec(/)|<oo, and by [5, Theorem 1] and [3,
Theorem 1], R/I^@MemspccRRJIM. If MemspecR-mspec(/), then RJIM^{0}.
Since R is a locally ^"-maximal ring, RM/IM is a linearly compact /?M-module. By [2,
Corollary 2.7 (3)], RM/IM is a linearly compact R-module. Combining, we see that R/I is
a finite direct sum of linearly compact R-modules. By [2, Proposition 1.2 (4)], R/I is a
linearly compact R-module. Hence R is an ^-maximal ring. •

Let S be a multiplicatively closed subset of R and let 3F be a filter of ideals of R. If R
is an ^"-FGC ring then Rs is an #s-FGC ring and if R is an ^"-Bezout ring then Rs is
an #s-Bezout ring. Also if R is an J*-Bezout ring, then R is a locally ^-valuation ring.

3. The domain case

Let R be a domain. Use the notation JfR for the set of all nonzero ideals of R. Then
JfK is a Gabriel topology of R, and the classical torsion theory of R is ./^-torsion. Note
that if R is not a domain, we shall not use the notion Jr

R because in that case the set of
all nonzero ideals of R is not necessarily a filter of ideals of R.

Suppose that R is a domain and S a multiplicatively closed subset of R. Note that if
R is an J^-FGC ring, then Rs is an J^^-FGC ring.

Lemma 1. Let R be a domain. If R is an JVR-FGC ring, then R is an jVR-local ring.

Proof. We have |mspec(P)| = l for all P e J ^ n spec R. This follows by an argument
similar to that of S. Wiegand [2, proof of Theorem 5.6].

Suppose lsJfK. We want to show that |mspec(/)|<oo. Suppose 7#R. Then R/I is an
FGC ring. By [2, Theorem 8.5], minspecR/7 is finite (where minspeci? denotes the set
of all minimal prime ideals of R). By the preceding paragraph, |mspec(/)|^
|minspec/ty/|<oo. By definition, R is an J^-local ring. •

Lemma 2. Let R be a domain. Then R is an J/~R-almost maximal ring if and only if R
is an J^n-maximal ring.

Proof. If R is an ^{-maximal ring, then R is an ^-almost maximal ring by [2,
Proposition 1.2 (2)]. Conversely, suppose R is an J^-almost maximal ring. If R is a
field, then we are done. If R is not a field, then for all Ie^VR there exists J&JfR with

/, and it follows that R is an ^,-maximal ring. •

Theorem 1. Let R be a domain. The following statements are equivalent.

(1) Risan J/~R-FGC ring.

(2) R is an JfR-local ring, R is a locally ^H-maximal ring, and R is an jVR-Bezout
ring.

(3) R is an JfR-local ring, R is a locally jVR-almost maximal ring, and R is an
JfR-Bezout ring.
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(4) R is an JfR-maximal ring and R is an ^VR-Bezout ring.

(5) R is an jVR-almost maximal ring and R is an J/~R-Bezout ring.

Proof. (1)=>(3). Suppose R is an ^TR-FGC ring. By Proposition 1, R is an J^-Bezout
ring. By Lemma 1, R is an >Vlocal "ng- Let JVf emspecfl. Then RM is an >"fiM-FGC
ring. By proposition 1, RM is an >^M-almost maximal ring. This means that R is a
locally ./f^-almost maximal ring.

(3)=>(2). Lemma 2.

(2)=>(1). Suppose R is an ./K^-local ring, R is a locally ./^-maximal "ng> and R is an
./iV Bezout ring. Let A be a finitely generated ^-torsion ^-module. Since R is an
^j-local ring, A = ®MemspecRA(M). Since A is a finitely generated i?-module, there exist
M1,...,MmEmspecK with A = ©?= j A(Mf). Let S = RMl, and use [4, Lemma 1.1], to
show that A(Mt) is a finitely generated J^-torsion S-module. Let MemspecR. Then RM

is an ^KRM-valuation ring. Also RM is an >"RM-maximal ring. By [2, Theorem 4.2], RM is
an FGC ring. Then each A(M?) decomposes into a direct sum of cyclic J?M.-submodules.
Use [2, Corollary 2.7 (3)], to show that <4(M,) decomposes into a direct sum of cyclic
J?-submodules. It follows that R is an ./^-FGC ring.

(2)«>(4). Proposition 2.
(4)^(5). Lemma 2. •

The reader might suspect that if J5" is a filter of ideals of R, then R is an J^-maximal
ring if and only if R is an J^-almost maximal ring. This is not the case, for let R be the
ring of integers and let J^ be the set of all ideals of R.

As a special case of the above theorem, we have that if R is an ^R-FGC domain,
then R is an J^-maximal ring. However, R is an J*-FGC ring in general does not
imply that R is an J^-maximal ring. For a counterexample take the example of the
preceding paragraph. We just had two statements which have trivial counterexamples,
involving a filter of ideals J* with the property that there is a minimal element in !F
which is a prime ideal. We have encountered this situation several times in the past, and
we are uncertain as to why such primes cause difficulties.

Of course an FGC domain is an XR-FGC ring. Besides the well known FGC
domains, there is another class of ^ , -FGC domains. Namely, if R is a Dedekind
domain that is not a PID, then R is an J^-FGC ring and R is not an FGC ring. Note
also that such a Dedekind domain is not a Bezout domain, yet it is an ^l^-Bezout ring.

A domain R is said to be a Priifer domain if RM is a valuation domain for all
MemspecR. It is well known that a Bezout domain is a Prufer domain. E. Matlis [2,
Theorem 5.1] has proved that if R is an J^-local locally ./^-maximal Prufer domain,
then R is J^-FGC ring. This is closely related to Theorem 1 part (2)=>(1). A Prufer
domain need not be an >VBezout ring. It is not difficult to show that an >>local
Prufer domain is an ^R-Bezout ring (use [2, Proposition 3.8]). Thus in Theorem 1
statements (2), (3), (4) and (5) we could replace ">^-Bezout" by "Prufer".
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4. Generalizing the domain case

Let PespecR. Use the notation J*(P) for the filter, {/:/ is an ideal of R and I^P}, of
ideals of R. This should not be confused with a similar notation of the B. Stenstrom text
[6, p. 151] which denotes {/:/ is an ideal of R and IcP}. The filter, 2F(P) need not be a
Gabriel topology as the following example shows.

Example. Let I: be a field with X and Y indeterminates over k. Let R be the
polynomial ring k[_X, Y]. Let P = RArespecR and J = RX + RY. Then JeJ^p, , and

). Hence #"(P) is not a Gabriel topology of R.

Note that Theorem 1 still remains true if we replace JfR by J*(P) for P e spec R, in a
ring R. Before presenting the main generalization of Theorem 1, we need a few
preliminaries.

Proposition 3. The following statements are equivalent.

(1) R is an almost maximal Bezout ring.

(2) Either R is an almost maximal Bezout domain or R is a finite product of rings each
of which is a maximal valuation ring.

Proof. (1)=>(2). Suppose R is an almost maximal Bezout ring and R is not a domain.
Then there exist nonzero x,yeR with xy = 0. Since R/Rx and R/Ry are maximal rings,
they are a finite product of local rings by [2, Theorem 1.6]. Recall that a local Bezout
ring is a valuation ring [2, Lemma 3.6]. It follows that R has only finitely many
maximal ideals, R has the same finite number of minimal prime ideals, and each
minimal prime ideal of R is a subset of only one maximal ideal of R. Suppose
{Pi,...,Pn} is the set of minimal prime ideals of R. The minimal prime ideals are
pairwise comaximal and R / P ) s p e c R s © " = 1 R/P,-. Idempotents modulo the prime
radical can be lifted to R. Thus R = Qfj=iRj, where each Rj is a ring with a unique
maximal ideal. Hence each Rj must be a maximal valuation ring.

(2)=>(1). Straightforward. •

Corollary. If R is an almost maximal Bezout ring, then R is an FGC ring.

Proof. Proposition 3 and [2, Theorem 9.1]. •

Definitions. Let #" be a filter of ideals of R. Then R is an intersection ^-almost
maximal ring if for all 1&3F there exists a finite set {Il,...,In} of pairwise comaximal
ideals of R with I = f}n

j=lIj and every proper R-homomorphic image of R/Ij is a
linearly compact R-module for all7= l , . . . ,n. Also R is an intersection &-maximal ring if
for all / e J * there exists a finite set {/,,...,/„} of pairwise comaximal ideals of R with
/ = f]"j=, Ij and R/Ij is a linearly compact R-module for all j = 1,..., n.
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Definition. Let {Pi,...,Pn} be a finite set of pairwise comaximal prime ideals of R.
Then the product of &(Pl) JF(Pn) is {Iy . . . / „ : / , e J ^ , for a l l ; = l , . . . , n } .

Let & be the product of 3?(Pl) &(Pn). If Iu...,Ine& with l}e&(Pj), then {Iu...,/„}
is a pairwise comaximal set of ideals of R, and /j ...In = f]"=l Ij. In other words,
&r = {f)'}=1Ij:Ije&r

iPj) for all 7= 1,...,«}. It follows that J5" is a filter of ideals of K. We
also have that #" is the smallest filter of ideals of R that has (J"= 1 J

5 ^ , as a subset.

Theorem 2. Let {/Ji,...,Pn} be a finite set of pairwise comaximal prime ideals of R,
and let ^ be the product oflF(Pl),...,^{Pn). The following statements are equivalent.

(1) R is an &-FGC ring.

(2) R is an ^{Pj)-FGC ring for all j=\,..., n.

(3) R is an intersection ^-almost maximal ring and R is an &-Bezout ring.

(4) R is an intersection &-maximal ring and R is an ̂ -Bezout ring.

Proof. (1)=>(2). Suppose R is an J^-FGC ring. Since J ^ J y , , , R is an ^
ring for all7= \,...,n.

(2)=>(3). Suppose R is an J^p^-FGC ring for all j=\,...,n. Let le2F and assume
Then I = f]"=lIj for some lje^Pj). By Theorem 1, R is an J ^ - a l m o s t maximal ring
and R is an ^"(Pj)-Bezout ring. Thus every proper /?-homomorphic image of R/Ij is a
linearly compact /^-module. This verifies that R is an intersection SF-almost maximal
ring. Also R/Ij is a Bezout ring for all I^R. So R/I = R/f)n

j=1Ij^Qfj=1R/Ij is also a
Bezout ring.

(3)=>(4). This follows from Lemma 2.

(4)=>(1). Suppose R is an intersection &-maximal ring and R is an ^-Bezout ring. Let
A be a finitely generated J^-pretorsion /^-module. If 2F = {R\, then 4 = {0} and A
decomposes into a direct sum of cyclic R-submodules. Suppose ^ " / { i ? } . Then there
exists Ie^ — {R} with IA = {0}. There exists a finite set {/!,...,/„} of pairwise
comaximal proper ideals of R with / = f]f= x Ij and /?// , a linearly compact /^-module
for all j=\,...,m. Also R/I = R/f]J=i lj^<§f?=lR/Ij. But Ij=>Ie& implies / ; eJ*\
Hence each /?//y is a maximal Bezout ring and an FGC ring. Therefore R/I is a finite
direct sum of FGC rings, and R/l is an FGC ring. View A as a finitely generated R/I-
module. Then A decomposes into a direct sum of cyclic i?//-submodules. Hence A
decomposes into a direct sum of cyclic R-submodules. By definition R is an ^"-FGC
ring. •

We present three examples of J^-FGC rings related to the generalization of
Theorem 1.

Example. Let Rl,...,Rn be indecomposable FGC rings. Then each R, has a unique
minimal prime ideal /, by [2, Theorem 9.1]. Let R = Qyj=1 Rj and let
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Then {P1,...,Pn} is a finite set of pairwise comaximal prime ideals of R and this is also
the set of all minimal prime ideals of R. Let 8F be the product of ^Pl),...,&&„)• Each
Rj is an ^(Pi)-FGC ring. By Theorem 2, R is an J^-FGC ring and R is an intersection
^"-maximal ring.

Example. All groups of this example are assumed abelian, and we follow the
terminology and notation of [1]. Let Z be the set of integers viewed as an additive
group with the usual total ordering. Let Hl,...,Hn be totally ordered groups. For
i=l,...,n define Gi = Hi@Z ordered lexicographically. Then each G, is a totally ordered
group. Define Ii = {geGi:g=(h,k),heHhkeZ, and h>0}. Then 7(€specG(. Define
G = ©?= i G, with the product ordering. Then G is a lattice ordered group. Define

Then J.especG. By the Krull-Kaplansky-Jaffard-Ohm construction [1, Theorem 1.9],
there exists a Bezout domain R with divisibility group lattice isomorphic to G. Let
P.espec/? with P, corresponding to J, [1, Proposition 1.2]. Then {P1;...,Pn} is a finite
set of pairwise comaximal prime ideals of R, and i?/P, is a discrete valuation domain.
Let J* be the product of ^Pl),...,^{Pn). Then R is an ^jp.j-FGC ring for all i=\,...,n.
By Theorem 2, R is an J^-FGC ring and R is an intersection ^-maximal ring.

Example. Let N be the set of positive integers and let F be a field. Define R to be
the ring FN and write elements of R as infinite tuples <xn> where xneF for all neN.
Define Mt = {<xn>e R:xk = 0} for keN. Then {Mk}k£N<=mspecR. Define J? =
{f}kexMk:X is a finite subset of N}. Then R is an ,^-FGC ring and R is an intersection
J*-maximal ring. However, & is not a product of 3F(PxY...,fF(Pn) for any P,.

If R is an ^-FGC ring, then it does not follow that R is an intersection ^-almost
maximal ring. For example, if R is a torch ring [2] and J*o is t n e set of all ideals of R,
then R is an J v F G C ring, but R is not an intersection J^-almost maximal ring. This
example illustrates our emphasis on the two types of indecomposable FGC rings: almost
maximal Bezout domains and maximal valuation rings. We have not yet dealt with the
third type of indecomposable FGC ring: torch rings. This could be the topic of future
research.
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