
SEPARATION AND APPROXIMATION IN 
TOPOLOGICAL VECTOR LATTICES 

SOLOMON LEADER 

1. Introduction. Spectral theory in its lattice-theoretic setting proves 
abstractly that the indicators of measurable sets generate the space L of 
Lebesgue-integrable functions on an interval. We are concerned here with 
abstractions suggested by the fact that indicators of intervals suffice to generate 
L. Our results show that the approximation of arbitrary elements of a topo­
logical vector lattice rests upon the ability to separate disjoint elements/ and 
g by an operation that behaves in the limit like a projection annihilating/ and 
leaving g invariant. 

The introduction of this concept of separation together with the notion of 
limit unit leads (via the Fundamental Lemma) to abstract generalizations 
of the Radon-Nikodym Theorem (Theorem 1) and the Stone-Weierstrass 
Theorem (Theorem 3). Even for lattices which have representations as 
function spaces our abstract approach has several advantages: (i) the domain 
plays no explicit role in the theory, (ii) we are not restricted to the topology 
of uniform convergence, and (iii) the functions under consideration need not 
be bounded, although they must be limits of bounded functions. Thus, Theorem 
3 is actually stronger than Stone's theorem (12). We do not assume con­
ditional cr-completeness (1) in our lattices, so countable-additivity plays no 
role in the Boolean ring of Theorem 1. 

The author is indebted to the referees for clarifying the general setting of 
the theory. 

2. Positive operators on a vector lattice. Let 8 be a vector lattice 
with real scalars. The following lattice-group properties will prove useful 
(1, 4, 9): 
(2.1) f+g=fVg+fAg 
(2.2) (f-fAg) A (g-f Ag) = 0 
(2.3) 1/ A h - g A h\< | / - g\ 
(2.4) \fVh-g V A| < \f-g\. 

An operator on 8 is a linear mapping of 8 into itself. The operators on 8 are 
partially ordered by defining P < Q whenever Pf < Qf for all / > 0 in 8. 
Thus, positive operators are order-preserving: 

(2.5) If P > 0 and / < g, then Pf < Pg. 
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A contractor is an operator P such that 

(2.6) 0 < P < I 

where / is the identity operator. We shall use the abbreviation P' for I — P. 
Thus, P is a contractor if, and only if, both P and P' are positive operators. 
Note that P' is a contractor whenever P is a contractor, and PQ is a con­
tractor whenever P and Q are contractors. 

Contractors interest us because they commute with the lattice operations: 

(2.7) P(fAg)=PfA Pg 
(2.8) P(fV g) =PfV Pg 

and 
(2.9) P\f\ = \Pf\. 

To prove (2.7) let h = Pf A Pg. Since / A g < / a n d / A g < g, (2.5) gives 
P(fA g) < Pf and P(jAg) < Pg. Hence P(fAg)<h. To reverse this 
inequality we have h K Pf and P'(J A g) < P ' / . Adding these gives h -\- Pf 

( M g) < / . Similarly, & + P ' ( f A g) < g. Hence A + P ' ( / A g) < / A g. 
Transposing the second term on the left gives h < P ( / A g). Hence (2.7). 
The dual statement (2.8) follows from (2.7) and the identity (2.1). To obtain 
(2.9) s e t g = -fin (2.8). 

We call an idempotent contractor a projector. HA and B are projectors 
and / > 0, then 
(2.10) ABf = AfA Bf. 

To derive (2.10) let g = AfA Bf. Now ABf < 5 / < / by (2.6). Applying 
yl to the latter inequality gives ABf < ^4/. Hence ABf ^ g. To reverse this 
inequality note that 0 < g < 4 / and 0 < g < 5 / . Since A2 = A, A'A = 0, 
so^4'g = Oby (2.5). Thus Ag = g and similarly Bg = g. Hence ABg = 4̂g = g. 
Since 4/" < / and Bf < / , g < / . So ,4£g < 4 B / . That is, g < ^45/. Hence 
(2.10). 

From (2.10) it follows that projectors commute: AB = BA. Moreover, in 
terms of the operator ordering, (2.10) gives A C\B — AB and hence A \J B 
= A + B — AB, which are easily seen to be projectors. Thus, the projectors 
on 8 form a Boolean algebra with / as unit. 

We remark that if 8 is non-Archimedean, contractors need not commute. 

3. Topological vector lattices. I is a topological vector lattice if it is a 
vector lattice with a topology making it a topological vector space possessing 
a local base of neighbourhoods 5ft of 0 such that 

(3.1) / is in ^1 whenever |/| < \g\ for some g in $ft. 

(In (10) 2 is called a locally-solid lattice-ordered linear topological space.) 
The lattice operations as well as the vector operations are continuous in 8. 
Every Banach lattice (1) is clearly a topological vector lattice. 
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Given an arb i t ra ry set U of elements in a topological vector space 23, we 
say U generates 2S if 935 is the smallest closed linear subspace of 93 which 
contains U. 

A positive element u in a topological vector lattice is a limit bound of / if 

(3.2) l/l A nu —» l/l as n —> oo. 

/ is bounded relative to u if | / | < nu for some n. Now, w is a limit bound of 
/ if, and only if, / is a limit of elements bounded relative to u. For, given (3.2) 
and \h\ < j/j we have, using (2.3), 0 < | / | A nu — h A nu < |/ | — h. Hence 
0 < h — h A nu < l/| — |/ | A nu. F rom (3.2) and (3.1) we have h A nu-^h. 
Taking first h = / + and then h =f~ gives / + A nu — f~A nu —»/ as 
n—•> oo. Conversely, given a net (8) of bounded elements converging to / , 
ft —>f, we have \ft\ = | / 4 A nu for n sufficiently large. So using (2.3), 

0 < l/l - l/l Anu< |l/l - | / , | | + \\ft\ - (/I A nu\ < 2| l / | - | / j | < 2\f-ft\. 

Hence (3.2) follows from (3.1). 

We say u is a ZiraiJ WTU£ in 8 if ft is a limit bound for every / in 8, t h a t is, 
if the bounded elements relative to u are dense in 8. A limit uni t is always a 
weak unit (1) if the topology in 8 is Pi , t h a t is, if finite sets are closed. T o 
prove this let / A u = 0. Then we have 1/n ( / A nu) < / and 1/n ( / A nu) 
< w. S o / A wft = 0. Hence (3.2) i m p l i e s / = 0. We remark t h a t a weak uni t 
need not be a limit unit . 

A set S of operators on a topological vector latt ice 8 is said to separate 
f from g if for every neighbourhood 5ft of 0 in 8 there exists P in 6 such 
t h a t both / — Pf and Pg are in 9Î, t h a t is, if there exists a net P t in 6 such 
t h a t P / —>/ and P^g —> 0. We say S separates f and g if it separates / from 
g and g from / . 

4. A p p r o x i m a t i o n by c o n t r a c t o r s o n a l i m i t u n i t . Our approxima­
tion theorems all depend upon the following lemma: 

F U N D A M E N T A L LEMMA. Let u be a limit unit in a topological vector lattice 8 
and 6 a set of contractors on 8 such that S separates every pair f and g in 8 
for which f A g — 0. P/^ew £Ae set of all PQ'u with P and Q in 6 generates 8. 

Proof. Since u is a limit uni t we need only show t h a t for | / | < \u and 91 
any neighbourhood of 0 satisfying (3.1) there exists g of the form Y,^kPkQk'u 
with Pk and Qk in S such t h a t / — g is in %l. 

Consider an a rb i t ra ry e > 0. We may assume e is small enough to ensure 
t h a t eu is interior to 5ft, using the cont inui ty of scalar multiplication. Choose 
Xo, Xi, . . . , \N with Xfc — Xfc_i = e for k = 1, . . . , N and \QU < / < X ^ . For 
notat ional simplicity let fk=f — Xfcw. By the hypothesis of separat ion there 
exists for each k a net Pk(t) in S such t h a t 

(4.1) P*tf->0 and P ( f* - ->0 , 
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the limits being taken with respect to t. (We hereafter abbreviate P(t) to P.) 
Since / 0 " = 0 we may assume P 0 = 0. Also, since fN

+ — 0 we may take the 
net PN such that 
(4.2) PNu -> u 

applying the separation hypothesis to u and 0. Now, 

(4.3) 0 < ePk^P'ku = P ^ P ^ - i - fk) < P*_iPJ(|/^i | + IAD 

< Pk-lfk-l + Pkfk-1 + Pk-lfk + P*L/AT < 2Pk_ifk-i + 2Pi/7 

since /&_]" < /*"" and /*+ < /&-1+. Since the right side of (4.3) converges to 0 
by (4.1), we have via (3.1) 
(4.4) P M P i « - > 0 . 

Since P*P*_i' = (P* - P*_i) + P*_iP*' and P 0 = 0, 

(4.5) £ PkPLi = P * + £ P*-iP* 

with summation over & = 1, . . . , N. Applying (4.5) to u and taking limits 
with respect to t, we obtain via (4.4) and (4.2) 

(4.6) £ PkPLiU-+u. 

Recalling that |/| < \u and Pk^\Pk is a contractor, we have 

|P*_iP*'/| < \Pk-iPk'u 

by (2.5) and (2.9). Hence (4.4) gives 

(4.7) P*-!Ptf->0. 

Similarly, since PN'u->0 by (4.2), PN'f->0. So (4.5) and (4.7) give 

(4.8) £ PkPUf->f. 

Now since /*" < /*_i~ + eu, 

(4.9) |P*PJ-i/*l < P*ft + P*PLifk < Pkfk + PLifk~-i + ePkPUu. 

Thus, 

(4.10) / - Z \tiWiwl < I / - Z i V W + 2~t PkPk-lfk 

< f - £ P*P*-I/| + £ P*# 

+ £ PU/T- i + e £ p*Pi_ iw. 

By (4.8), (4.1), and (4.6) the right side of (4.10) converges to eu, which is 
interior to 51. Hence, the right side of (4.10) is eventually in <Sl. By (3.1), the 
left side of (4.10) is likewise eventually in 31, which proves the lemma. 

5. Approximation by projectors on a l imit unit . 

THEOREM 1. Let 3? be a Boolean ring of projectors on a topological vector 
lattice 2 and u be a limit unit in 2. Then SRu, the set of all Eu for E in 9Î, gener­
ates S if, and only if, di separates every pair f and g in 2 for which f A g = 0. 
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Proof. Let $lu generate 8. Then, g iven/A g = 0, there exists a n e t / , con­
verging to / and a corresponding net g t converging to g of the form : 

(5.1) ft = ]C a*£jfctt, g« = YJ PkEku 

where £* is in 9? and E J3,- = 0 for i j£ j . Since ft —>/, |/J —» |/| by (3.1). 
Moreover / > 0, so we may assume /« > 0, and similarly g* > 0. That is, 
«A; > 0 and ftc > 0 in (5.1). Let A t be the sum of those Ek in (5.1) for which 
ak < f$k. Since ftAgt = HLhEtfi where bk is the smaller of ak and ]3fc, we 
have 0 < Atft <ftA gt and 0 < A/gt <ftA gt. Therefore 

(5.2) AJ<\AJ-AJt\+A<ft 

<\f-ft\ +ftAgt. 

Since f A g = 0, 

/«A gi < l/A g - / A g,| + l/A gt - / , A g,| < |g - g*| + 1/ - / J 

by (2.3). Hence (5.2) gives \Atf\ < \g - gt\ + 2f-ft\. Since ft - > / and 
g«—>g, ^t/"—»0 by (3.1). Similarly 

M'«g|< l/-/«l + 2|g-gi | . 
Hence, A /g -* 0. 

The converse follows directly from the fundamental lemma, since PQ' is 
in $ for P and Q in $R. 

6. Topological lattice algebras. Let 21 be a 7\ topological vector lattice 
in which an associative, distributive multiplication is defined making 21 a 
topological algebra with a multiplicative unit 1 which is also a limit unit. 
Moreover, letfg > 0 whenever b o t h / > 0 and g > 0. We call 21 a topological 
lattice algebra. From (2) it follows that multiplication is commutative in 21. 

We shall apply the results of the preceding sections by viewing the elements 
of 21 as operators on 2Ï via multiplication. This is effective because the operator 
ordering for elements of 21 is just the ordering in 21. A few simple lemmas 
serve to establish the basic properties of 21. 

LEMMA 1. If fA g = 0, then fg = 0. 

Proof. Let fn = / A n\ and gn = g A n\. Since 1 is a limit unit fn —»/ and 
gn —* g- Since multiplication is c o n t i n u o u s / ^ —>fg. Thus, it suffices to show 
fngn = 0. Since 0 < /„ < / and 0 < gn < g we have 0 <fnA gn < / A g. So 
fnA gn = 0, since / A g = 0. Moreover, 0 < fn < n\ and since gn > 0, 
0 < fngn < »g». Similarly /ngn < nfn. Hence 

0 < Zfn£n <fn A gn, 

and so fngn = 0. 
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LEMMA 2. p = | / |2 . Hence, f2 > 0. 

Proof. By Lemma 1, f*f- = 0. So f2 = (/+ - / ~ ) 2 = /+2 + /~2 = l/|2. 

LEMMA 3. Iff2 = 0, thenf = 0. 

Proof. By Lemma 2 we may assume without loss of generality that / > 0. 
Consider any e > 0. Now (/ — el)2 = •— 2ef + e2l, which is positive by 
Lemma 2. So 2ef < e2l. Dividing by e we get 0 < 2/ < el. Letting e —» 0 
gives / = 0. 

LEMMA 4. J / / > 0, g > 0, and /g = 0, then f A g = 0. 

P/Wjf. Let h = / A g. Then 0 < h <f and 0 < h < g. Therefore 0 < h2 

<fh <fg <0. So h2 = 0. By Lemma 3, h = 0. 

LEMMA 5. \fg\ = | / | |g|. 

P r ^ / . /g = (f+ -t)(g+ - g~) = (f+g++f-g~) - (f+r+f-t), a differ-
ence of two positive terms. That the product of these two terms is 0 follows 
from Lemma 1, using the commutative, distributive, and associative laws. 
Hence, by Lemma 4, the two terms are disjoint. Thus, 

(fg)+ = f+g++f-g-
and 

(fg)-= f+g-+ f-g+-

Therefore, 

\fg\ = (fg)+ + (fg)~ = Cf+ +t)(g+ + r) = l/l DI­

LEMMA 6. fg = 0 ify and only if, \f\ A \g\ = 0. 

Proof. By Lemma 5, /g = 0 if, and only if, |/| \g\ = 0. By Lemmas 1 and 
4, l/l |g| = 0 if, and only if, |/| A \g\ = 0. 

7. Projectors on a topological lattice algebra. 

LEMMA 7. The identity 

(7.1) (Ef)g = f(Eg) = (Ef)(Eg) 

holds for every projector E on 21. 

Proof. (Ef)g -f(Eg) = (Ef)(Efg) - (Eg)(Ef), an identity which can be 
verified by setting E' = / — E on the right and expanding. We shall show 
that each of the terms on the right side of this identity is 0, in order to derive 
the first equation in (7.1). Now by (2.9), (2.5), and (2.10), 

IE/1 A \E'g\ = E\f\AE'\g\ < E( | / | + \g\)AE'(\f\ + \g\) = EE'(\f\ + \g\)=0. 

Thus, by Lemma 6, (£/) (E'g) = 0. Similarly (Eg) (E'f) = 0. The second equa­
tion in (7.1) follows if we replace/ in the first equation by Ef. 

https://doi.org/10.4153/CJM-1959-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-031-6


292 SOLOMON LEADER 

LEMMA 8. The projectors E on 21 are isomorphic to the idempotent elements 
e of 21 via the correspondence E ~ e induced by 

(7.2) El = e 

and 

(7.3) ef = Ef. 

Proof. Given any idempotent e = e2 in 21, Lemma 2 implies e > 0. Since 
1 — e is also idempotent we have 0 < e < 1. Thus E defined by (7.3) is a 
projector. Conversely, every projector E defines an idempotent e via (7.2) 
which, by Lemma 7, satisfies (7.3). Clearly, I ^ 1 and for A ~ a and B ~ b, 
AB ~ ab. 

The next theorem follows directly from Theorem 1 via Lemmas 6 and 8. 

THEOREM 2. Let 91 be a Boolean ring of idempotents in a topological lattice 
algebra 9Î. Then 9Î generates 21 if, and only if, 9Î separates every pair f and g 
in 2t for which fg = 0. 

8. Subalgebras dense in 2Ï. A subalgebra of 21 is a linear subspace which 
is closed under multiplication. 

THEOREM 3. Let 9? be a subalgebra of a topological lattice algebra 21. Then 9? 
is dense in 21 if, and only if, 9? separates every pair f and g in 21 for which 
fg = o. 

To prove this theorem we need another lemma. 

LEMMA 9. The following conditions are equivalent: 

(i) 9Î separates f and g whenever fg = 0. 
(ii) The set of all contractors in the closure of 9î separates f and g whenever 

M g = o. 

Proof. We first show that (i) implies that the closure of 9? is a lattice and 
contains the unit 1. Now the trivial identity/ — g = (f — f A g) — (g — f Ag) 
gives, in view of (2.2), 

(8.1) ( / - g ) + = / - / A g . 

Thus, to show that the closure of 9Ï is a lattice we need only show that it 
contains / + whenever it contains / . Since /+ /~ = 0, (i) implies the existence 
of a net ht in 9î such that htf

+ —>/+ and htf~ —» 0. Hence htf -*f+. Since htf is 
in the closure of 9?, so is /+. That 1 is in the closure of 9? follows from (i), 
since 9? must separate 1 from 0. 

Given / A g = 0, (i) gives a net ht in 9? with htf—>0 and htg-*g. Let 
pt — \ht\ A 1 which is in the closure of 9Î by the preceding arguments. Clearly, 
pt is a net of contractors: 0 < pt < 1. Moreover, since 0 K Pt K \ht\, 0 *C ptf 
< \hf\ using Lemma 5. So by (3.1), ptf—>0. From the identity (8.1) we 
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have 1 - pt = (1 - 14,1)+. So (1 - pt)g < |(1 - \ht\)g\ < \g - htg\. Hence, 
Ptg-+g> Thus (i) implies (ii). 

Given (ii) and fg = 0, |/| A \g\ = 0 by Lemma 6. So there exists a net of 
contractors pt in the closure of 9Î separating |g| from \f\'pt\f\ —*0 and £*|g|—Hg| 
with 0 < pt < 1. Using Lemma 5 we have p J —> 0 and (1 — £*)g —> 0. Since 
pt is in the closure of 9î there exists ht in 9? such that ^ — ht—>0. Hence 
l*<fl < l*i - £,l l/l + £, | / | and |(1 - ht)g\ < (1 - £,)|g| + !£< - Ail l*|. So 
htf-^0 and htg-^g, giving (i). 

Proof of Theorem 3. Given (i) we have (ii) by Lemma 9. By the Fundamental 
Lemma, (ii) implies 9î is dense in 21. Conversely, we shall show that if the 
closure of 9î is 21, then (ii), and hence (i) holds. 

Given / A g = 0 let 

pn = n{g^ll). 

We contend that £„ is a sequence of contractors separating g from / . Clearly, 
0 < pn < 1. Since 0 < £„ < ng, 0 < ^ / < w/g. Now fg = 0 by Lemma 6, 
SO pnf = 0. 

Noting that 

l - ^ = i j l - g A ; l ) , 

apply (2.2) to l/n 1 and g to obtain, via Lemma 6, 

( l - A 0 ( g - ^ « ) = 0 . 

So 

(1 -Pn)g = \pn(\ ~Pn). 

Hence, 

0 < (1 - Pn)g <\l. 

SO (1 -Pn)g~*0. 

9. Absolutely continuous set functions. Let u be a bounded, non-
negative, finitely additive measure on a Boolean algebra 33 with unit / . The 
Banach lattice 93 dealt with in (3) and (6) consists of all finitely additive, 
real valued functions / on 93 which are absolutely continuous with respect 
to u: 
(9.1) / ( £ ) - > 0 as « ( £ ) - > 0. 

The norm in 93 is defined by 

(9.2) |l/l | = sup/(£) -f(E') 
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where the supremum is taken over all E in 33. The partial ordering is induced 
by denning / > 0 whenever f(E) > 0 for all E in 33. With this ordering 

(9.3) fAg(A) = Mf(EA)+g(E'A) 

and 
(9.4) / V g(A) = sup f(EA) + g(E'A) 

taken over all E in 58 (1, 3, 4, 6). Since | / | = / V - / , (9.2) and (9.4) give 

(9.5) 11/11 = l/l (7). 

Every E in S3 defines a projector E given by 

(9.6) Ef(A) = f(EA) 

for all 4̂ in 33. Thus 33, modulo the ideal of all E with u(E) = 0, is isomorphic 
to a subalgebra of the Boolean algebra of all projectors on 23. 

Now (9.1) implies that u is a limit unit. To prove this le t / > 0 and/n = / A nu. 
The sequence (/ — fn) (I) is decreasing, hence converges to some limit X. In 
view of (9.5) we need only show X = 0. By (9.3), /„(/) = inf f(E') + nu(E). 
Hence we may choose a sequence En such that 

/»(/) < f(E'n) + n u(En) < MI) + \ • 

Multiplying by — 1 and adding / ( / ) we obtain 

(/ ~ /.) (/) - \ < /OU - n u(En) < (/ - /n) (/). 

Hence / (EJ — n u(En) converges to X. Now 0 < / ( £ „ ) < / ( / ) and 0 < X < / ( / ) 
while w increases without bound. Hence w(£w) must converge to 0. By (9.1), 
f(En) does likewise. So X = — lim ^ u(En). Thus X < 0. But X > 0. So X = 0. 

Given / A g = 0 there exists, via (9.3) with 4̂ = I, a sequence £ n in 33 
such that 

(9.7) f(En)+g(K)^0. 

By (9.6) and (9.5), | |£„/ | | = f(En) and \\En'g\\ = g(£„'). So (9.7) implies 
that 33 separates/ and g. By Theorem 1, 33w generates 33. That is, the "step 
functions" are dense in 33. (See (3) and (6).) As was pointed out by Bochner 
(3), this gives the Radon-Nikodym theorem (11). 

10. The finitely additive integral. Let 33 be a Boolean algebra of sub­
sets £ of a set / with I as unit. Let u be a bounded, non-negative, finitely 
additive measure on 33. A partition A is a finite class of disjoint sets in 33 
whose union is / . The partitions are ordered by defining A' > A whenever 
A' is a refinement of A. For f(x) real-valued on the domain I and A = {Eu 
. . . , En} any partition, let 

(10.1) 5(A) = £/(**)«(£*) 
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where xk is any point in Ek and k ranges through 1, . . . , n. In general, s (A) 
is a many-valued function of À, a particular value depending on the choice 
of xk in Ek. If lim s (A) exists (in the Moore-Smith sense (8)) uniformly for 
all such choices, then / is said to be integrable. 

Introducing the upper and lower Darboux sums 

(10.2) 5(A) = L sup/(x*M£*) 

and 
S (A) = £ inî f(xk)u(Ek), 

let S(A,f) = s (A) — s(A). In (10.2) we assume °° . 0 = 0. Since lim sup s (A) 
= lim s (A) and lim inf s(A) = lim s (A), / is integrable if, and only if, 
l im5(A,/) = 0. Note that for any / , S(A,/) is a decreasing function of A. 
Since 5(A, af + fig) < \a\ S(A,f) + \fi\ 5(A, g) the integrable functions form 
a vector space. Since 5(A, 1) = 0 the constant functions are integrable. That 
products of integrable functions are integrable follows from the inequality 
S(A,fg) < M(f)S(A, g) + M(g)S(A,f) where M(f) is the supremum of 
|/(x)| for x restricted to those sets in A which are not of measure zero. That 
l/l is integrable whenever/ is integrable follows from the inequality S(A, |/|) 
< 5 ( A , / ) . Given \f(x) - g(x)\ < e for all x we have S(AJ) < S(A, g) 
+ S(A,f — g) < S (A, g) + 2eu(I). So a uniform limit of integrable func­
tions is integrable. Since an integrable function is bounded except on a set 
of measure zero, we shall consider only bounded integrable functions. These 
form a topological lattice algebra under uniform convergence with the usual 
ordering and algebraic operations. Using Theorem 2, we shall show that this 
algebra is generated by its idempotents. Thus, it suffices to show that for 
/ any bounded integrable function, /~ can be separated from /+ by integrable 
idempotents. 

Consider any e > 0. Choose a sequence An of partitions such that Aw+i > An 

and S(An,f) —» 0, which is possible because/is integrable. Let Cn be the union 
of those sets E, belonging to the partition An, for which there exist x and y 
in E with/+(x) > e and/~(y) > e. By induction, starting with A0 = B0 = <j> 
and Co = / , let An be the union of ^4n-i and those sets E in An which are 
contained in Cn~i and have f+(x) < e for all x in E. Let Bn be the union of 
Bn-\ and those sets E in An which are contained in Cw_i, have f~(x) < e for 
all x in E, and have f+(y) > e for some y in E. Then An^i is a subset of 4̂W, 
2?ra_i of Bn, and Cw of Cn_i. Since 2e^(Cw) < 5(An , / ) , we have w(Cn) —> 0. Let 
4̂ = lim i4n and C = lim Cn. Let E be the union of A with the set of all 

points x in C for which/+(x) = 0. Let e be the indicator of E: 

(10.3) «(*) = 
1 for x in E 
0 for x in £ ' . 

Since yln is contained in E and Bn is contained in E', e(x) equals 1 for x in 
An and 0 for x in £„. Hence, 5(An, e) < w(Cw) which converges to 0. So e 
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is integrable. For x in E either x is in C with f+(x) = 0 or x belongs to some 
An, implying f+(x) < e. Clearly then ef+ < el. For x in £ ' , either x is in C 
with/ + (#) > 0, hence f~{x) = 0, or x is in some Bni implying f~~(x) < e. So 
(1 - e)f~ < el. 

Thus, by Theorem 2, the algebra of bounded integrable functions is gener­
ated under uniform convergence by its idempotents. 

A similar result can be obtained for the almost everywhere continuous 
functions on a closed interval, using Theorem 2. Combining these two results, 
we get Lebesgue's characterization of the Riemann integrable functions (7). 
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