
Cycle classes in overconvergent rigid cohomology and
a semistable Lefschetz (1, 1) theorem

Christopher Lazda and Ambrus Pál

Compositio Math. 155 (2019), 1025–1045.

doi:10.1112/S0010437X19007164

https://doi.org/10.1112/S0010437X19007164 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007164
https://doi.org/10.1112/S0010437X19007164


Compositio Math. 155 (2019) 1025–1045

doi:10.1112/S0010437X19007164

Cycle classes in overconvergent rigid cohomology and
a semistable Lefschetz (1, 1) theorem

Christopher Lazda and Ambrus Pál

Abstract

In this paper we prove a semistable version of the variational Tate conjecture for divisors
in crystalline cohomology, showing that for k a perfect field of characteristic p, a rational
(logarithmic) line bundle on the special fibre of a semistable scheme over kJtK lifts
to the total space if and only if its first Chern class does. The proof is elementary,
using standard properties of the logarithmic de Rham–Witt complex. As a corollary,
we deduce similar algebraicity lifting results for cohomology classes on varieties over
global function fields. Finally, we give a counter-example to show that the variational
Tate conjecture for divisors cannot hold with Qp-coefficients.

Contents

1 Cycle class maps in overconvergent rigid cohomology 1027
2 Preliminaries on the de Rham–Witt complex 1028
3 Morrow’s variational Tate conjecture for divisors 1033
4 A semistable variational Tate conjecture for divisors 1036
5 Global results 1040
6 A counter-example 1041
Acknowledgements 1044
References 1044

Introduction

Many of the deepest conjectures in arithmetic and algebraic geometry concern the existence of
algebraic cycles on varieties with certain properties. For example, the Hodge and Tate conjectures
state, roughly speaking, that on smooth and projective varieties over C (Hodge) or finitely
generated fields (Tate) every cohomology class which ‘looks like’ the class of a cycle is indeed so.
One can also pose variational forms of these conjectures, giving conditions for extending algebraic
classes from one fibre of a smooth, projective morphism f : X → S to the whole space. For
divisors, the Hodge forms of both these conjectures (otherwise known as the Lefschetz (1, 1)
theorem) are relatively straightforward to prove, using the exponential map, but even for divisors
the Tate conjecture remains wide open in general.

Applying the principle that deformation problems in characteristic p should be studied using
p-adic cohomology, Morrow in [Mor14] formulated a crystalline variational Tate conjecture for
smooth and proper families f : X → S of varieties in characteristic p, and proved the conjecture
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for divisors, at least when f is projective. The key step of the proof is a version of this result
over S = Spec(kJt1, . . . , tnK), with k a perfect field of characteristic p. When n = 1 this is a direct
equicharacteristic analogue of Berthelot and Ogus’s theorem [BO83, Theorem 3.8] on lifting line
bundles from characteristic p to characteristic 0.

Morrow’s proof of the local statement uses some fairly heavy machinery from motivic
homotopy theory, in particular a ‘continuity’ result for topological cyclic homology. In this paper
we provide a new proof of the local crystalline variational Tate conjecture for divisors, at least
over the base S = Spec(kJtK), which only uses some fairly basic properties of the de Rham–Witt
complex, and is close in spirit to the approach taken in [Mor15]. The point of giving this proof
is that it adapts essentially verbatim to the case of semistable reduction, once the corresponding
basic properties of the logarithmic de Rham–Witt complex are in place.

So let X be a semistable, projective scheme over kJtK, with special fibre X0 and generic
fibre X. Write K = W (k)[1/p] and let R denote the Robba ring over K. Then there is an
isomorphism

H2
rig(X/R)∇=0 ∼= H2

log-crys(X
×
0 /K

×)N=0

between the horizontal sections of the Robba ring-valued rigid cohomology of X and the part of
the log-crystalline cohomology of X0 killed by the monodromy operator. The former is defined
to be the base change H2

rig(X/E†) ⊗E† R to the Robba ring of the E†-valued rigid cohomology

H2
rig(X/E†) constructed in [LP16]. These groups are (ϕ,∇)-modules over R and E†, respectively.

In particular, if L is a line bundle on X0, we can view its first Chern class c1(L) as an element
of H2

rig(X/R). Our main result is then the following semistable version of the local crystalline
variational Tate conjecture for divisors.

Theorem 4.5. The line bundle L lifts to Pic(X )Q if and only if c1(L) lies in H2
rig(X/E†) ⊂

H2
rig(X/R).

There is also a version for logarithmic line bundles on X0. The general philosophy of p-adic
cohomology over k((t)) is that the E†-structure H i

rig(X/E†) ⊂ H i
rig(X/R) is the equicharacteristic

analogue of the Hodge filtration on the p-adic cohomology of varieties over mixed characteristic
local fields. With this in mind, this is the direct analogue of Yamashita’s semistable Lefschetz
(1, 1) theorem [Yam11]. As a corollary, we can deduce a global result on the algebraicity of
cohomology classes as follows. Let F be a function field of transcendence degree 1 over k, and
X/F a smooth projective variety. Let v be a place of semistable reduction for X, with reduction
Xv. In this situation we can consider the rigid cohomology of X/K (see § 5), and there is a map

spv : H2
rig(X/K)∇=0

→ H2
log-crys(X

×
v /K

×
v )

from the second cohomology of X to the log-crystalline cohomology of Xv.

Theorem 5.2. A class α ∈ H2
rig(X/K)∇=0 is in the image of Pic(X)Q under the Chern class

map if and only if spv(α) is in the image of Pic(Xv)Q.

One might wonder whether the analogue of the crystalline variational Tate conjecture holds
for line bundles with Qp-coefficients (in either the smooth or semistable case). Unfortunately,
the answer is no. Indeed, if it were true, then it follows relatively easily that the analogue of
Tate’s isogeny theorem would hold over k((t)); in other words, for any two abelian varieties A,B
over k((t)), the map

Hom(A,B)⊗Qp→ Hom(A[p∞], B[p∞])⊗Zp Qp
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would be an isomorphism. That this cannot be true is well known, and examples can be easily
provided with both A and B elliptic curves.

Let us now summarise the contents of this paper. In § 1 we show that the cycle class map
in rigid cohomology over k((t)) descends to the bounded Robba ring. In § 2 we recall the relative
logarithmic de Rham–Witt complex, and prove certain basic properties of it that we will need
later on. In § 3 we reprove a special case of the key step in Morrow’s paper [Mor14], showing the
crystalline variational Tate conjecture for smooth and projective schemes over kJtK. The argument
we give is elementary. In § 4 we prove the semistable version of the crystalline variational Tate
conjecture over kJtK, more or less copying word for word the argument in § 3. In § 5 we translate
these results into algebraicity lifting results for varieties over global function fields. Finally, in § 6
we give a counter-example to the analogue of the of crystalline variational Tate conjecture for
line bundles with Qp-coefficients.

Notation and conventions
Throughout we will let k be a perfect field of characteristic p > 0, W its ring of Witt vectors and
K = W [1/p]. In general we will let F = k((t)) be the field of Laurent series over k, and R = kJtK its
ring of integers (although this will not be the case in § 5). We will denote by E†,R, E respectively
the bounded Robba ring, the Robba ring, and the Amice ring over K, and we will also write
E+ = W JtK⊗W K. For any of the rings E+, E†, R, E we will denote by MΦ∇(−) the corresponding

category of (ϕ,∇)-modules, that is, finite free modules with connection and horizontal Frobenius.
A variety over a given Noetherian base scheme will always mean a separated scheme of finite
type. For any abelian group A and any ring S we will let AS denote A⊗Z S.

1. Cycle class maps in overconvergent rigid cohomology

Recall that for varieties X/F over the field of Laurent series F = k((t)) the rigid cohomology
groups H i

rig(X/E) are naturally (ϕ,∇)-modules over the Amice ring E . In the book [LP16]
we showed how to canonically descend these cohomology groups to obtain ‘overconvergent’
(ϕ,∇)-modules H i

rig(X/E†) over the bounded Robba ring E†; these groups satisfy all the
expected properties of an ‘extended’ Weil cohomology theory. In particular, there exist versions
H i
c,rig(X/E), H i

c,rig(X/E†) with compact support.

Definition 1.1. Define the (overconvergent) rigid homology of a variety X/F by

Hrig
i (X/E) := H i

rig(X/E)∨, Hrig
i (X/E†) := H i

rig(X/E†)∨,

and the (overconvergent) Borel–Moore homology by

HBM,rig
i (X/E) := H i

c,rig(X/E)∨, HBM,rig
i (X/E†) := H i

c,rig(X/E†)∨.

In [Pet03] the author constructs cycle class maps in rigid cohomology, which can be viewed
as homomorphisms

Ad(X)→ HBM,rig
2d (X/E)

from the group of d-dimensional cycles modulo rational equivalence. Our goal in this section is
the following entirely straightforward result.

Proposition 1.2. The cycle class map descends to a homomorphism

Ad(X)→ HBM,rig
2d (X/E†)∇=0,ϕ=pd .

1027

https://doi.org/10.1112/S0010437X19007164 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007164


C. Lazda and A. Pál

Proof. Note that since HBM,rig
2d (X/E†)∇=0,ϕ=pd ⊂ HBM,rig

2d (X/E) it suffices to show that for every

integral closed subscheme Z ⊂ X of dimension d, the cycle class η(Z) ∈ HBM,rig
2d (X/E) actually

lies in the subspace HBM,rig
2d (X/E†)∇=0,ϕ=pd .

By construction, η(Z) is the image of the fundamental class of Z (i.e. the trace map
TrZ : H2d

c,rig(Z/E)→ E(−d)) under the map

HBM,rig
2d (Z/E)→ HBM,rig

2d (X/E)

induced by the natural map H2d
c,rig(X/E) → H2d

c,rig(Z/E) in compactly supported cohomology.
Hence it suffices to simply observe that both this map and the trace map descend to horizontal,
Frobenius equivariant maps on the level of E†-valued cohomology. Alternatively, we could observe
that both H2d

c,rig(X/E)→ H2d
c,rig(Z/E) and TrZ are horizontal and Frobenius equivariant at the

level of E-valued cohomology, which gives

Ad(X)→ HBM,rig
2d (X/E)∇=0,ϕ=pd ,

then applying Kedlaya’s full faithfulness theorem [Ked04, Theorem 5.1] gives an isomorphism

HBM,rig
2d (X/E)∇=0,ϕ=pd ∼= HBM,rig

2d (X/E†)∇=0,ϕ=pd . 2

2. Preliminaries on the de Rham–Witt complex

The purpose of this section is to gather together some results we will need on the various
de Rham–Witt complexes that will be used throughout the paper. These are all generalisations
to the logarithmic case of well-known results from [Ill79], and should therefore present no
surprises. The reader will not lose too much by skimming this section on first reading and
referring back to the results as needed.

We will, as throughout, fix a perfect ground field k of characteristic p > 0; all (log) schemes
will be considered over k. Given a morphism (Y,N)→ (S,L) of fine log schemes over k, Matsuue
in [Mat17] constructed a relative logarithmic de Rham–Witt complex W•ω

∗
(Y,N)/(S,L), denoted

W•Λ
∗
(Y,N)/(S,L) in [Mat17]. This is an étale sheaf on Y equipped with operators F, V satisfying all

the usual relations (see, for example, [Mat17, Definition 3.4(v)]) and which specialises to various
previous constructions in particular cases.

(i) When S = Spec(k) and the log structures L and N are trivial, then this gives the (canonical
extension of the) classical de Rham–Witt complex W•Ω

∗
Y (to an étale sheaf on Y ).

(ii) More generally, when the morphism (Y,N) → (S,L) is strict, it recovers the relative
de Rham–Witt complex W•Ω

∗
Y/S of Langer and Zink [LZ04].

(iii) When the base (S,L) is the scheme Spec(k) with the log structure of the punctured point,
and (Y,N) is of semistable type (i.e. étale locally étale over k[x1, . . . , xd+1]/(x1 · · ·xc) with
the canonical log structure) then Matsuue’s complex is isomorphic to the logarithmic de
Rham–Witt complex Wω∗Y studied in [HK94].

(iv) If we take (Y,N) semistable but instead equip Spec(k) with the trivial log structure, the
resulting complex is isomorphic to the one denoted Wω̃∗Y in [HK94].

If we are given a morphism of log schemes (Y,N) → (S,L) over k, then as in [Mat17, § 2.2]
we can lift the log structure N → OY to a log structure WrN → WrOY , where by definition
WrN = N ⊕ ker((WrOY )∗→ O∗Y ) and the map N →WrOY is the Teichmüller lift of N → OY .
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Since Wrω
1
(Y,N)/(S,L) is a quotient of the pd-log de Rham complex ω̆∗(WrY,WrN)/(WrS,WrL) (see

[Mat17, § 3.4]) there is a natural map d log : WrN →Wrω
1
(Y,N)/(S,L) and hence we obtain maps

d log : Ngp
→Wrω

1
(Y,N)/(S,L)

which are compatible as r varies. We let Wrω
1
(Y,N)/(S,L),log denote the image.

When both log structures are trivial, and Y → Spec(k) is smooth, [Ill79, Proposition I.3.23.2]
says that d log induces an exact sequence

1→ (O∗Y )p
r
→ O∗Y →WrΩ

1
Y,log → 0,

and our first task in this section to obtain an analogue of this result for semistable log schemes
over k. In fact, since we will really only be interested in the case when Y arises as the special
fibre of a semistable scheme over kJtK, we will only treat this special case.

We will therefore let X denote a semistable scheme over R = kJtK (not necessarily proper).
We will let L denote the log structure given by the closed point of Spec(R), and write
R× = (R,L). We will denote by Ln the inverse image log structure on Rn = kJtK/(tn+1), and
write R×n = (Rn, Ln). We will also write k× = (k, L0). We will denote by M the log structure on
X given by the special fibre, and write X× = (X ,M). Similarly, we have log structures Mn

on Xn = X ⊗RRn, and we will write X×n = (Xn,Mn). Finally, when considering the logarithmic
de Rham–Witt complex relative to k (with the trivial log structure) we will drop k from the
notation; for example, we will write Wrω

∗
X×0

instead of Wrω
∗
X×0 /k

.

Proposition 2.1. The sequence

0→ prMgp
0 →Mgp

0

d log−→Wrω
1
X×0 ,log

→ 0

is exact.

Proof. The surjectivity of the right-hand map and the injectivity of the left-hand map are by
definition, and since prWrω

1
X×0 ,log

= 0, the sequence is clearly a complex. The key point is then

to show exactness in the middle. So suppose that we are given m ∈Mgp
0 such that d logm = 0.

We will show that m ∈ prMgp
0 by induction on r.

When r = 1 we note that the claim is étale local; we may therefore assume X×0 to be affine,
étale and strict over Spec(k[x1, . . . , xd]/(x1 · · ·xc)), say X0 = Spec(A). We have

ω1
(A,Nc)

∼=
c⊕
i=1

A · d log xi ⊕
d⊕

i=c+1

A · dxi.

Now suppose that we are given a local section m = u
∏c
i=1 x

ni
i of Mgp

0 for u ∈ A∗ and ni ∈ Z.
Write

d log u =

c∑
i=1

aid log xi +

d∑
i=c+1

aidxi

with ai ∈ A; note that since d log u actually comes from an element of Ω1
A it follows that ai ∈ xiA

for 1 6 i 6 c. In particular, we have ni = −xibi for 1 6 i 6 c and some bi ∈ A; passing to A/xiA,
it therefore follows that ni = 0 in k. Hence each ni is divisible by p. It follows that

∏c
i=1 x

ni
i

is in pMgp
0 , and its d log vanishes. By dividing by this element we may therefore assume that
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m = u ∈ A∗. Since semistable schemes are of Cartier type, we may apply [Kat89, Theorem 4.12],
which tells us that (étale locally) u ∈ A(p)∗ (since d log u = 0 ⇒ du = 0). Since k is perfect,
A(p)∗ = (A∗)p and we may conclude.

When r > 1 and d logm = 0 ∈Wrω
1
X×0 ,log

, we have in particular that d logm = 0 ∈Wr−1ω
1
X×0

;

hence by applying the induction hypothesis we obtain m = pr−1m1. But now this implies that
pr−1d logm1 = 0 ∈ Wrω

1
X×0

; we claim that in fact it follows that d logm1 = 0 ∈ ω1
X×0

. Indeed,

since ω1
X×0

is a locally free OX0-module, to prove that a section vanishes it suffices to show that

it does so on a dense open subscheme. In particular, by restricting to the smooth locus of X0

we can assume that X0 is smooth and the log structure is given by O∗X0
⊕ N, (u, n) 7→ u.0n.

We now apply [Ill79, Proposition I.3.4] and [Mat17, Lemma 7.4] to conclude that d logm1 = 0
as required. Thus applying the case r = 1 finishes the proof. 2

The following is analogous to [Ill79, Corollaire I.3.27].

Proposition 2.2. The sequences of pro-sheaves

0→ {Wrω
1
X×,log}r → {Wrω

1
X×}r

1−F
→ {Wrω

1
X×}r → 0,

0→ {Wrω
1
X×0 /k

×,log
}
r
→ {Wrω

1
X×0 /k

×}
r

1−F
→ {Wrω

1
X×0 /k

×}
r
→ 0

are exact.

Proof. Let us consider the first sequence. We will apply Néron–Popescu desingularisation [Pop86,
Theorem 1.8] to write X as a cofiltered limit X = lim

←−α∈AX
α of schemes Xα which are smooth

over k. Moreover, after possibly changing the indexing category A we may assume that there
exist closed subschemes Dα ⊂ Xα such that:

– Dβ = Dα ×Xα Xβ for all β → α;

– X0 = Dα ×Xα X for all α.

Again, after possibly changing the index category A we may assume that each Dα ⊂ Xα is
a normal crossings divisor. Thus, using the fact that the logarithmic de Rham–Witt complex
commutes with filtered colimits, we may reduce to considering the analogous question for Y
smooth over k with log structure N coming from a normal crossings divisor D ⊂ Y . The claim is
étale local; we may therefore assume that Y is étale over k[x1, . . . , xn] with D the inverse image
of {x1 · · ·xc = 0}. Locally, N is generated by O∗Y and xi for 1 6 i 6 c, so in order to see that
the sequence is a complex, or in other words that (1 − F )(d log n) = 0, it suffices to check
that (1−F )(d log xi) = 0. This is a straightforward calculation. For the surjectivity of 1−F we
claim in fact that

1− F : Wr+1ω
1
(Y,N)→Wrω

1
(Y,N)

is surjective. For this we note that by [Mat17, § 9] there exists an exact sequence

0→WrΩ
1
Y →Wrω

1
(Y,N)→

c⊕
i=1

WrODi · d log xi→ 0

for all r, where Di are the irreducible components of D. Denote the induced map Wrω
1
(Y,N) →

WrODi by Resi. (In fact, it is assumed in [Mat17, § 9] that Y is proper over k; however, the proof
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of the exactness in [Mat17, § 8.2] is local, and therefore works equally well in the non-proper
case.) Since (1− F )(d log xi) = 0 it follows that we have the commutative diagram

0 //Wr+1Ω1
Y

//

1−F

��

Wr+1ω
1
(Y,N)

//

1−F

��

c⊕
i=1

Wr+1ODi //

1−F
��

0

0 //WrΩ
1
Y

//Wrω
1
(Y,N)

//
c⊕
i=1

WrODi // 0

where WrΩ
1
Y is the usual (non-logarithmic) de Rham–Witt complex of Y . It therefore suffices

to apply [Ill79, Propositions I.3.26, I.3.28], stating that the left and right vertical maps are
surjective. Finally, to show exactness in the middle, suppose that we are given ω ∈ Wr+1ω

1
(Y,N)

such that (1− F )(ω) = 0. Then, applying [Ill79, Proposition I.3.28], we can see that

Resi(ω) ∈ Z/pr+1Z + ker(Wr+1ODi →WrODi)

for all i. Hence after subtracting off an element of d log(Ngp) we may assume that in fact

ω ∈Wr+1Ω1
Y + ker(Wr+1ω

1
(Y,N)→Wrω

1
(Y,N)).

Now applying [Ill79, Corollaire I.3.27] tells us that

ω ∈ d log(Ngp) + ker(Wr+1ω
1
(Y,N)→Wrω

1
(Y,N))

and hence the given sequence of pro-sheaves is exact in the middle.
For the second sequence, the surjectivity of 1−F follows from the corresponding claim for the

first sequence, since sections of Wrω
1
X×0 /k

× can be lifted locally to Wrω
1
X× . We may also argue

étale locally; assuming that X×0 is étale and strict over Spec(Nc → k[x1, . . . , xd]/(x1 · · ·xc)).
The fact that the claimed sequence is a complex follows again from observing that
(1 − F )(d log xi) = 0 for 1 6 i 6 c. To see exactness in the middle we use the fact that (again
working étale locally) we have an exact sequence

0→
⊕
i

WrΩ
1
Di →Wrω

1
X×0 /k

× →

⊕
ij

WrODij → 0

by [Mat17, Lemma 8.4], where Di are the irreducible components of X×0 and Dij their
intersections. Moreover, this fits into a diagram

0 //
⊕
i

O∗Di //

d log

��

Mgp
0

//

d log

��

⊕
ij

ZDij //

��

0

0 //
⊕
i

WrΩ
1
Di

//

1−F

��

Wrω
1
X×0 /k

×
//

1−F

��

⊕
ij

WrODij //

1−F

��

0

0 //
⊕
i

Wr−1Ω1
Di

//Wr−1ω
1
X×0 /k

×
//
⊕
ij

Wr−1ODij // 0
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with exact rows. Exactness of the middle vertical sequence at Wrω
1
X×0 /k

× now follows from the

classical result [Ill79, Corollaire I.3.27, Proposition I.3.28] and a simple diagram chase. 2

Next, we will need to understand the kernel of Wrω
1
X×0 ,log

→Wrω
1
X×0 /k

×,log
.

Lemma 2.3. For all r > 1 the sequence

0→
Z
prZ
∧ d log t→Wrω

1
X×0 ,log

→Wrω
1
X×0 /k

×,log
→ 0

is exact.

Proof. Note that by [Mat17, Lemma 7.4] it suffices to show that

d log(M0) ∩WrOX0 ∧ d log t =
Z
prZ
∧ d log t

inside Wrω
1
X×0

; the inclusion ⊃ is clear. For the other inclusion, suppose that we are given an

element of the form g ∧ d log t ∈ Wrω
1
X×0

which is in the image of d log. Then we know that

g̃ ∧ d log t = d log n+ c in Wr+1ω
1
X×0

, for some c ∈ ker(Wr+1ω
1
X×0
→ Wrω

1
X×0

) and g̃ ∈ Wr+1OX0

lifting g. Arguing as in Proposition 2.2 above, we can see that (1 − F )(d log n) = 0, and again
applying [Mat17, Lemma 7.4], we can deduce that in fact g = F (g) in WrOX0 . Hence g ∈ Z/prZ
as claimed. 2

Finally, we will need to know that the logarithmic de Rham–Witt complex computes the
log-crystalline cohomology of the semistable scheme X . To do so, we need to construct a suitable
comparison morphism

RuX×/W∗O
crys
X×/W

∼
→Wω∗X× ,

where uX×/W : (X×/W )crys→ Xét is the natural projection from the log-crystalline site of X×/W
to the étale site of X . Unfortunately, we cannot directly appeal to the construction of [Mat17,
§ 6], since X is not of finite type over W . However, we can easily get round this by exploiting the
fact that the log scheme Spec(R×) has an obvious log-p-smooth lift over W , namely the scheme
Spec(W JtK) together with the log structure LW defined by the divisor t = 0. We therefore take
an embedding system

X×•

��

// (Y•, N•)

��
X× // (Spec(W JtK), LW )

for the finite-type morphism of log schemes X× → (Spec(W JtK), LW ) in the sense of [Mat17,
Definition 6.3], and then simply consider X×,X×• and (Y•, N•) instead as (simplicial) log schemes
over Spec(W ), the latter being endowed with the trivial log structure. We now proceed exactly
as in [Mat17, § 6] or [Ill79, § II.1] to produce the required comparison morphism

RuX×/W∗O
crys
X×/W

∼
→Wω∗X× .

Proposition 2.4. The induced map

H i
log-crys(X×/W )→ H i

cont(Xét,Wω∗X×)

on cohomology is an isomorphism, for all i > 0.
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Proof. It suffices to show that H i
log-crys(X×/Wr)

∼
→H i(Xét,Wrω

∗
X×) for all r, where Wr = Wr(k).

Arguing locally on X , we may assume in fact that X is affine, and in particular admits a closed
embedding X ↪→ P into some affine space over WrJtK. Thus if we equip P with the log structure
coming from the (smooth) divisor defined by t= 0, the closed immersion X ↪→ P can be promoted
to an exact closed immersion of log schemes.

Now applying Néron–Popescu desingularisation [Pop86, Theorem 1.8] to Wr[t]→WrJtK, we
may write P = limα P

α as a limit of smooth Wr[t]-schemes, such that:

– there exist compatible closed subschemes Xα ⊂ Pα, each of whose inverse image in P is
precisely X , and each of which is smooth over k;

– the divisors Dα := Xα ∩ {t = 0}, each of whose inverse image in X is precisely the special
fibre X0, have normal crossings.

Both the log de Rham–Witt complex and étale cohomology commute with cofiltered limits
of schemes, thus by using [Mat17, Theorem 7.2] it suffices to show that the same is true of
log-crystalline cohomology, or in other words that we have

H i
log-crys(X×/Wr) = colimαH

i
log-crys(X

×
α /Wr),

where X×α denotes the scheme Xα endowed with the log structure given by Dα. By [Kat89,
Theorem 6.4], H i

log-crys(X
×
α /Wr) is computed as the de Rham cohomology of the log-PD envelope

of X×α inside Pα. Since log-PD envelopes commute with cofiltered limits of schemes (i.e. filtered
colimits of rings), it suffices to show that H i

log-crys(X×/Wr) can be computed as the de Rham

cohomology of the log-PD envelope of X× inside P.
In other words, what we require is a logarithmic analogue of [Kat91, Theorem 1.7], or

equivalently a log-p-basis analogue of [Kat89, Theorem 6.4]. But this follows from [CV15,
Proposition 1.6.6]. 2

3. Morrow’s variational Tate conjecture for divisors

The goal of this section is to offer a simpler proof of a special case of [Mor14, Theorem 3.5]
for smooth and proper schemes X over the power series ring R = kJtK. This result essentially
states that a line bundle on the special fibre of X lifts if and only if its first Chern class in H2

crys

does, and should be viewed as an equicharacteristic analogue of Berthelot and Ogus’s theorem
[BO83, Theorem 3.8] stating that a line bundle on the special fibre of a smooth proper scheme
over a DVR in mixed characteristic lifts if and only if its Chern class lies in the first piece
of the Hodge filtration. We will also give a slightly different interpretation of this result that
emphasises the philosophy that in equicharacteristic the ‘correct’ analogue of a Hodge filtration
is an E†-structure. Our proof is simpler in that it does not depend on any results from topological
cyclic homology, but only on fairly standard properties of the de Rham–Witt complex. As such,
it is more readily adaptable to the semistable case, and we shall adapt it in § 4 below.

Throughout this section, X will be a smooth and proper R = kJtK-scheme. Let Rn denote
kJtK/(tn+1) and set Xn = X ⊗R Rn. Write X for the generic fibre of X and X for its formal
(t-adic) completion. Since all schemes in this section will have trivial log structure, we will use
the notation W•Ω

∗ for the de Rham–Witt complex instead of W•ω
∗. The key technical calculation

we will make is contained in the following lemma.

Lemma 3.1. Fix n > 0, write n = pmn0 with (n0, p) = 1, and let r = m+ 1. Then the map

d log : 1 + tnOXn →WrΩ
1
Xn,log

is injective.
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Proof. It suffices to prove the corresponding statement for sections on some sufficiently small
open affine Spec(An) ⊂ Xn, which we may therefore assume to be étale over Rn[x1, . . . , xd]. In
this case, since deformations of smooth affine schemes are trivial, we have An ∼= A0⊗k Rn. Hence
1 + tnAn = 1 + tnA0, and our problem therefore reduces to showing that if a ∈ A0 is such that
d log[1 + atn] = 0, then in fact a = 0. But vanishing of a may be checked over all closed points of
Spec(A0), so by functoriality of the d log map we may in fact assume that A0 is a finite extension
of k; enlarging k, we may moreover assume that A0 = k. In other words, we need to show that
the map

d log : 1 + tnk→WrΩ
1
Rn

is injective. Since k is perfect, any 1 + atn ∈ 1 + tnk can be written uniquely as (1 + tn0b)p
m

for
some b ∈ k, hence d log[1 + atn] = pmd log(1 + tn0b). It follows that if d log[1 + atn] = 0, then
n0p

mbtn0−1dt = 0 in WrΩ
1
Rn

; note that although b ∈ k, nonetheless pmb still makes sense as an
element of Wm+1(k) = Wr(k). Since any non-zero such b is invertible, the lemma will follow if
we can show that pmtn0−1dt is non-zero in WrΩ

1
Rn

. This can be checked easily using the exact
sequence

Wr((t
n+1))

Wr((tn+1)2)

d
→WrΩ

1
k[t] ⊗Wr(k[t]) WrRn→WrΩ

1
Rn → 0

from [LZ05]. 2

From this we deduce the following proposition.

Proposition 3.2. For r � 0 (depending on n) there is a commutative diagram

1 // 1 + tOXn // O∗Xn //

d log

��

O∗X0

d log

��

// 1

1 // 1 + tOXn
d log //WrΩ

1
Xn,log

//WrΩ
1
X0,log

// 0

with exact rows.

Proof. It is well known that the top row is exact, and the diagram is clearly commutative; it
therefore suffices to show that for all n the sequence

1→ 1 + tOXn →WrΩ
1
Xn,log →WrΩ

1
X0,log → 0

is exact for r � 0. From the definition of WrΩ
1
Xn,log and the exactness of the sequence

1→ 1 + tOXn → O∗Xn → O
∗
X0
→ 1

it is immediate that WrΩ
1
Xn,log → WrΩ

1
X0,log is surjective and the composite 1 + tOXn →

WrΩ
1
X0,log is zero. Given α ∈ O∗Xn mapping to 0 in WrΩ

1
X0,log, it follows from [Ill79, Proposition

I.3.23.2] that there exists β ∈ O∗Xn and γ ∈ 1 + tOXn such that α = βp
r

+ γ, and hence

d logα = d log γ in WrΩ
1
Xn,log. The sequence

1 + tOXn →WrΩ
1
Xn,log →WrΩ

1
X0,log → 0

is therefore exact, and it remains to show that

d log : 1 + tOXn →WrΩ
1
Xn,log

is injective for r � 0. By induction on n this follows from Lemma 3.1 above. 2
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We now set
WrΩ

i
X,log := lim

n
WrΩ

i
Xn,log

as sheaves on Xét and define

Hj
cont(Xét,WΩi

X,log) := Hj(R lim
r

RΓ(Xét,WrΩ
i
X,log)).

As an essentially immediate corollary of Proposition 3.2, we deduce the key step of Morrow’s
proof of the variational Tate conjecture in this case.

Corollary 3.3. Let L ∈ Pic(X0), with first Chern class c1(L) ∈ H1
cont(X0,ét,WΩ1

X0,log). Then

L lifts to Pic(X ) if and only if c1(L) lifts to H1
cont(Xét,WΩ1

X ,log).

Proof. One direction is obvious. For the other direction, assume that the first Chern class c1(L)
lifts to H1

cont(Xét,WΩ1
X ,log); in particular, it therefore lifts to H1

cont(Xét,WΩ1
X,log). Hence by

Proposition 3.2 it follows that L lifts to Pic(X), and we may conclude using Grothendieck’s
algebrisation theorem that it lifts to Pic(X ). 2

From this the (crys-φ) form of the variational Tate conjecture follows as in [Mor14].

Corollary 3.4. Let L ∈ Pic(X0)Q, with first Chern class c1(L) ∈ H2
crys(X0/K)ϕ=p. Then L

lifts to Pic(X )Q if and only if c1(L) lifts to H2
crys(X/K)ϕ=p.

Proof. Let us first assume that k is algebraically closed. By [Mor14, Proposition 3.2] the
inclusions WΩ1

X ,log[−1]→WΩ∗X ,log and WΩ1
X0,log[−1]→WΩ∗X0,log induce an isomorphism

H1
cont(X0,ét,WΩ1

X0,log)Q
∼
→ H2

crys(X0/K)ϕ=p

and a surjection
H1

cont(Xét,WΩ1
X ,log)Q � H2

crys(X/K)ϕ=p.

The claim follows. In general, we argue as in [Mor14, Theorem 1.4]: the claim for k algebraically
closed shows that L lifts to Pic(X )Q after making the base change kJtK → kJtK. Let kJtKsh

denote the strict Henselisation of kJtK inside kJtK; by Néron–Popescu desingularisation there
exists some smooth local kJtKsh-algebra A such that L lifts to Pic(X )Q after making the base
change kJtK → A. But the map kJtKsh

→ A has a section, from which it follows that in fact
L lifts to Pic(X )Q after making some finite field extension k → k′. But now simply taking the
pushforward via X ⊗k k′→ X and dividing by [k′ : k] gives the result. 2

To finish off this section, we wish to give a slightly different formulation of Corollary 3.4. After
[LP16] we can consider the ‘overconvergent’ rigid cohomology H i

rig(X/E†) of the generic fibre X,

which is a (ϕ,∇)-module over the bounded Robba ring E†. Set H i
rig(X/R) := H i

rig(X/E†)⊗E†R.
By combining Dwork’s trick with smooth and proper base change in crystalline cohomology we
have an isomorphism

H i
rig(X/R)∇=0 ∼= H i

rig(X0/K)

for all i. Thus, for any L ∈ Pic(X0)Q we can view c1(L) as an element of H i
rig(X/R)∇=0 ⊂

H i
rig(X/R). One of the general philosophies of p-adic cohomology in equicharacteristic is that

while the cohomology groups H i
rig(X/R) in some sense only depend on the special fibre X0, the

‘lift’ X of X0 is seen in the E†-lattice H i
rig(X/E†) ⊂ H i

rig(X/R). The correct equicharacteristic

analogue of a Hodge filtration, therefore, is an E†-structure. With this in mind, then, the following
theorem is a statement of the variational Tate conjecture for divisors which is perhaps slightly
more transparently analogous to that in mixed characteristic.
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Theorem 3.5. Assume that X is projective over R. Then a line bundle L ∈ Pic(X0)Q lifts to
Pic(X )Q if and only if c1(L) ∈ H2

rig(X/R) lies in H2
rig(X/E†).

Proof. This is simply another way of stating the condition (flat) in [Mor14, Theorem 3.5]. 2

Remark 3.6. It seems entirely plausible that the methods of this section can be easily adapted
to give a proof of [Mor14, Theorem 3.5] in general, that is, over kJt1, . . . , tnK rather than just
kJtK.

4. A semistable variational Tate conjecture for divisors

In this section we will prove a semistable version of Theorem 3.5, or equivalently an
equicharacteristic analogue of [Yam11, Theorem 0.1]. The basic set-up will be to take a proper,
semistable scheme X/R; as before, we will consider the semistable schemes Xn/Rn as well as
the smooth generic fibre X/F . We will also let X denote the formal completion of X .

The special fibre of X defines a log structure M , and pulling back via the immersion Xn→ X
defines a log structure Mn on each Xn. For each n we will put a log structure Ln on Rn via
N→ Rn, 1 7→ t; note that for n = 0 this is the log structure of the punctured point on k. We
will let L denote the log structure on R defined by the same formula. As before, we will write
R× = (R,L), R×n = (Rn, Ln), X× = (X ,M), X×n = (Xn,Mn) and k× = (k, L0). The logarithmic
version of Proposition 3.2 is then given by the following proposition.

Proposition 4.1. For r � 0 (depending on n) there is a commutative diagram

1 // 1 + tOXn // O∗Xn //

��

O∗X0

��

// 1

1 // 1 + tOXn //

��

Mgp
n

//

d log

��

Mgp
0

d log

��

// 0

1 // Kn,r //Wrω
1
X×n ,log

//Wrω
1
X×0 /k

×,log
// 0

with exact rows. Moreover, each Kn,r fits into an exact sequence of pro-sheaves on Xn,ét,

1→ 1 + tOXn → {Kn,r}r → {Z/prZ}r → 0,

which is split compatibly with varying n.

Proof. We first claim that if we replace Wrω
1
X×0 /k

×,log
by Wrω

1
X×0 ,log

then we obtain an exact
sequence

1→ 1 + tOXn →Wrω
1
X×n ,log

→Wrω
1
X×0 ,log

→ 0

for r � 0. Using Proposition 2.1, the proof of the exactness of

1 + tOXn →Wrω
1
X×n ,log

→Wrω
1
X×0 ,log

→ 0

is exactly as in Proposition 3.2. In fact, to check exactness on the left we can even apply
Proposition 3.2: to check that a section of 1 + tOXn vanishes it suffices to do so on a dense open
subscheme of Xn; we may therefore étale locally replace Xn by the canonical thickening of the

1036

https://doi.org/10.1112/S0010437X19007164 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007164


Cycle classes and Lefschetz (1, 1)

smooth locus of the special fibre. But now we are in the smooth case, so we apply Proposition 3.2
(which holds locally).

Applying Lemma 2.3, we know that the kernel of

Wrω
1
X×0 ,log

→Wrω
1
X×0 /k

×,log

is isomorphic to Z/prZ, generated by d log t. The snake lemma then shows that, defining Kn,r to
be the kernel of Wrω

1
X×n ,log

→Wrω
1
X×0 /k

×,log
, we have the exact sequence

1→ 1 + tOXn → Kn,r → Z/prZ→ 0

for r� 0. To see that it splits compatibly with varying r and n it therefore suffices to show that
there exist compatible classes ωr ∈ Wrω

1
X×n

whose image in Wrω
1
X×0 ,log

generates the kernel of

Wrω
1
X×0 ,log

→Wrω
1
X×0 /k

×,log
; as we have already observed, the classes of d log t will suffice. 2

Let Pic(X×0 ) = H1(X0,ét,M
gp
0 ) and Pic(X×) = H1(Xét,M

gp). As before, we therefore obtain
the following corollary.

Corollary 4.2. Let L ∈ Pic(X×0 ) (respectively, Pic(X0)). Then L lifts to Pic(X×) (respectively,
Pic(X )) if and only if c1(L) ∈ H1

cont(X0,ét,Wω1
X×0 /k

×,log
) lifts to H1

cont(Xét,Wω1
X×,log).

Proof. This is similar to the proof of Corollary 3.3, although a little more care is needed in
taking the limits in n and r. Again, one direction is clear, so we assume that we are given a
(logarithmic) line bundle whose Chern class lifts. First we note that we have isomorphisms

Pic(X) ∼= H1
cont(X0,ét, {O∗Xn}n), Pic(X×) ∼= H1

cont(X0,ét, {Mgp
n }n).

This enable us to view the obstruction to lifting (in either case) as an element of
H2

cont(X0,ét, {1 + tOXn}n). The fact that the Chern class lifts implies that this obstruction
vanishes in

H2
cont(X0,ét, {Kn,r}n,r) := H2

(
R lim

n
R lim

r
RΓ(X0,ét,Kn,r)

)
and hence the fact that the exact sequence of pro-sheaves

1→ 1 + tOXn → {Kn,r}r → {Z/prZ}r → 0

splits, compatibly with varying n, shows that the obstruction must itself vanish in

H2
cont(X0,ét, {1 + tOXn}n).

Finally, we need to see that we have isomorphisms Pic(X) ∼= Pic(X ) and Pic(X×) ∼= Pic(X×). The
first is Grothendieck’s algebrisation theorem; to see the second we note that Pic(X×) ∼= Pic(X),
the Picard group of the generic fibre of X , and similarly Pic(X×) ∼= Pic(Xan), the Picard group
of its analytification. The two are isomorphic by rigid analytic GAGA. 2

To relate this to log-crystalline cohomology, we use the following lemma.

Lemma 4.3. The inclusions Wrω
1
X×,log[−1] → Wrω

∗
X× and Wrω

1
X×0 /k

×,log
[−1] → Wrω

∗
X×0 /k

×

induce surjections

H1
cont(Xét,Wω1

X×,log)Q � H2
log-crys(X×/K)ϕ=p,

H1
cont(X0ét,Wω1

X×0 /k
×,log

)Q � H2
log-crys(X

×
0 /K

×)ϕ=p,

where ϕ is the semilinear Frobenius operator. If k is algebraically closed, then the latter is in
fact an isomorphism.
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Proof. Let us first consider X×. Define the map F : {Wrω
>1
X×}r → {Wrω

>1
X×}r to be pi−1F in

degree i; note that in degrees greater than 1 it is a contracting operator, and hence 1 − F is
invertible on Wrω

>1
X× . Similarly, the map 1−V : {WrOX }r→ {WrOX }r is an isomorphism. From

this and Proposition 2.2 it follows that the triangle

0→ {Wrω
1
X×,log}r → {Wrω

>1
X×}r

1−F
→ {Wrω

>1
X×}r → 0

of complexes of pro-sheaves is exact. Since pF = ϕ on Wrω
>1
X× , we deduce an exact sequence

0→
H1

cont(Xét,Wω>1
X×)Q

im(ϕ− p)
→ H1

cont(Xét,Wω1
X×,log)Q→ H2

cont(Xét,Wω>1
X×)ϕ=p

Q → 0.

For a complex ofK-modules C∗ with semilinear Frobenius, let us write Rϕ=p(C
∗) for the mapping

cone Cone(C∗
ϕ−p
→ C∗), and Hn

ϕ=p(C
∗) for its cohomology groups. Then since 1−V = ‘1− pϕ−1’

is invertible on {WrOX }r we deduce that

Rϕ=p(RΓcont(Xét,Wω>1
X×)Q) ∼= Rϕ=p(RΓcont(Xét,Wω∗X×)Q).

From this we extract the diagram

0 // H
1
cont(Xét,Wω>1

X×
)Q

im(ϕ−p)
//

��

H2
ϕ=p(RΓcont(Xét,Wω>1

X×)Q) //

��

H2
cont(Xét,Wω>1

X×)ϕ=p
Q

//

��

0

0 // H
1
cont(Xét,Wω∗

X×
)Q

im(ϕ−p)
// H2

ϕ=p(RΓcont(Xét,Wω∗X×)Q) // H2
cont(Xét,Wω∗X×)ϕ=p

Q
// 0

with exact rows, such that the middle vertical arrow is an isomorphism. In particular, the right
vertical arrow is a surjection and, applying Proposition 2.4, we see that the map

H1
cont(Xét,Wω1

X×,log)Q � H2
log-crys(X×/K)ϕ=p

is surjective as claimed. An entirely similar argument works for X×0 , replacing Proposition 2.4
with [Mat17, Theorem 7.9], and in fact shows that

H1
cont(X0ét,Wω1

X×0 /k
×,log

)Q � H2
log-crys(X

×
0 /K

×)ϕ=p

is an isomorphism if and only if (ϕ− p) is surjective on H1
log-crys(X

×
0 /K

×). If k is algebraically
closed, this follows from semisimplicity of the category of ϕ-modules over K. 2

This enables us to deduce the following corollary.

Corollary 4.4. Let L ∈ Pic(X×0 )Q (respectively, Pic(X0)Q). Then L lifts to Pic(X×)Q
(respectively, Pic(X )Q) if and only if c1(L) ∈ H2

log-crys(X
×
0 /K

×)ϕ=p lifts to H2
log-crys(X×/K)ϕ=p.

Proof. Exactly as in the proof of Corollary 3.4. 2

Let us now rephrase this criterion, which is more closely analogous to Yamashita’s criterion
in [Yam11]. Note that, thanks to [LP16, Corollary 5.8], we have an isomorphism

H i
rig(X/R) ∼= H i

log-crys(X
×
0 /K

×)⊗R
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of (ϕ,∇)-modules over R, which induces an isomorphism

H i
rig(X/R)∇=0 ∼= H i

log-crys(X
×
0 /K

×)N=0.

By [Yam11, Proposition 2.2] (the proof of which does not use the existence of a lift to
characteristic 0), the first Chern class c1(L) of any L in Pic(X×0 )Q or Pic(X0)Q satisfies
N(c1(L)) = 0. Hence we may view c1(L) as an element of H2

rig(X/R).

Theorem 4.5. Assume that X is projective over R. Then L lifts to Pic(X×)Q (respectively,
Pic(X )Q) if and only if c1(L) ∈ H2

rig(X/E†) ⊂ H2
rig(X/R).

Proof. Note that if c1(L) ∈ H2
rig(X/E†), it is automatically in the subspace H2

rig(X/E†)∇=0,ϕ=p.
Now consider the Leray spectral sequence for log-crystalline cohomology

Ep,q2 = Hq
log-crys(Spec(R×),Rpf∗Ocrys

X×/K)⇒ Hp+q
log-crys(X

×/K),

where f : X×→ Spec(R×) denotes the structure map. Since X is projective we obtain maps

ui : Rd−if∗Ocrys
X×/K → Rd+if∗Ocrys

X×/K

of log-F -isocrystals over R× by cupping with the class of a hyperplane section; we claim that ui

is an isomorphism. To check this, we note that we can identify the category of log-F -isocrystals
over R× with the category MΦ∇,log

E+ of log-(ϕ,∇)-modules over the ring E+ := W JtK ⊗W K
as considered in [LP16, § 5.3]. We now note that the functor of ‘passing to the generic fibre’
(i.e. tensoring with E := E+〈t−1〉) is fully faithful, by [Ked04, Theorem 5.1] (together with a
simple application of the 5 lemma), and hence by the hard Lefschetz theorem in rigid cohomology
[Car16] (together with standard comparison theorems in crystalline cohomology) the isomorphy
of ui follows. Hence applying the formalism of [Mor14, § 2] we obtain surjective maps

H2
log-crys(X×/K)→ H0

log-crys(Spec(R×),R2f∗Ocrys
X×/K),

H2
log-crys(X×/K)ϕ=p

→ H0
log-crys(Spec(R×),R2f∗Ocrys

X×/K)ϕ=p

as the edge maps of degenerate Leray spectral sequences (see, in particular, [Mor14, Lemma 2.4,
Theorem 2.5]). Finally, we note that again applying Kedlaya’s full faithfulness theorem, together
with the proof of [LP16, Proposition 5.45], we can see that

H0
log-crys(Spec(R×),R2f∗Ocrys

X×/K)ϕ=p ∼= H2
rig(X/E†)∇=0,ϕ=p,

and the claim follows. 2

We will now give one final reformulation of this result.

Definition 4.6. (i) We say that a cohomology class in H2
rig(X/E†) is algebraic if it is in the

image of Pic(X)Q under the Chern class map.

(ii) We say that a cohomology class in H2
log-crys(X

×
0 /K) is log-algebraic if it is in the image of

Pic(X×0 )Q under the Chern class map.

(iii) We say that a cohomology class in H2
log-crys(X

×
0 /K) is algebraic if it is in the image of

Pic(X0)Q under the Chern class map.
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Let

sp : H2
rig(X/E†)∇=0 ↪→ H2

rig(X/R)∇=0 ∼
→ H2

log-crys(X
×
0 /K)N=0 ↪→ H2

log-crys(X
×
0 /K)

denote the composite homomorphism.

Theorem 4.7. Assume that X is projective, and let α ∈ H2
rig(X/E†). The following statements

are equivalent:

(i) α is algebraic;

(ii) ∇(α) = 0 and sp(α) is log-algebraic;

(iii) ∇(α) = 0 and sp(α) is algebraic.

Proof. Note that since sp is injective, the hypotheses in both (ii) and (iii) imply that ϕ(α) = pα.
Since X is flat, its special fibre is a principal Cartier divisor, therefore the restriction map
Pic(X )Q→ Pic(X)Q is an isomorphism. The claim then follows from Theorem 4.5. 2

5. Global results

In this section we will deduce some global algebraicity results more closely analogous to the
main results of [Mor14]. We will therefore change notation and let F denote a function field
of transcendence degree 1 over our perfect field k of characteristic p. We will let v denote a
place of F with completion Fv and residue field kv. Let C denote the unique smooth, proper,
geometrically connected curve over k with function field F . Let F sep denote a fixed separable
closure of F with Galois group GF .

Definition 5.1. Define F -Isoc(F/K) := 2-colimUF -Isoc(U/K), the colimit being taken over all
non-empty open subschemes U ⊂ C.

Note that, by [Ked07, Theorem 5.2.1], for any E ∈ F -Isoc(F/K), defined on some U ⊂ C,
the zeroth cohomology group

E∇=0 = H0
rig(U/K,E)

is a well-defined (i.e. independent of U) F -isocrystal over K. For any smooth and projective
variety X/F we have cohomology groups Hirig(X/K) ∈ F -Isoc(F/K) obtained by choosing a
smooth projective model over some U ⊂ C, taking the higher direct images and applying [MT04,
Corollaire 3]. As constructed in [Pál15, § 6] (see, in particular Propositions, 6.17 and 7.2) there
is a p-adic Chern class map

c1 : Pic(X)Q→ H2
rig(X/K)∇=0

and we will call elements in the image algebraic.
Assume now that X has semistable reduction at v, and denote the associated log smooth

scheme over k×v by X×v . Let E†v denote a copy of the bounded Robba ring ‘at v’, so that by
[Tsu98, § 6.1] there is a functor

i∗v : F -Isoc(F/K)→MΦ∇E†v
.

Thanks to the proof of [LP16, Proposition 5.52] this functor sends H2
rig(X/K) to H2

rig(XFv/E
†
v).

In particular, we obtain a map

rv : H2
rig(X/K)∇=0

→ H2
rig(XFv/E†v)∇=0
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and, composing with the specialisation map considered at the end of § 4, we obtain a
homomorphism

spv : H2
rig(X/K)∇=0

→ H2
log-crys(X

×
v /K

×
v )

where Kv = W (kv)[1/p].

Theorem 5.2. Assume that X is projective, and let α ∈ H2
rig(X/K)∇=0. The following

statements are equivalent:

(i) α is algebraic;

(ii) spv(α) is algebraic;

(iii) spv(α) is log-algebraic.

Proof. As before the hypotheses in (ii) and (iii) imply that ϕ(α) = pα. By Theorem 4.7 we clearly
have (i) ⇒ (ii) ⇔ (iii), and if (ii) or (iii) hold then there exists a line bundle L ∈ Pic(XFv)Q
such that rv(α) = c1(L) in H2

rig(XFv/E
†
v)∇=0. To descend L to Pic(X)Q we follow the proof of

Corollary 3.4. Specifically, applying Néron–Popescu desingularisation to the extension F hv → Fv
from the Henselisation to the completion at v and arguing exactly as before, we can in fact
assume that L descends to XFhv

, and hence to XF ′ for some finite, separable extension F ′/F .
Again taking the pushforward and dividing by the degree gives the result. 2

6. A counter-example

A natural question to ask is whether or not the analogue of Corollary 3.4 or Corollary 4.4 holds
with Pic(−)Q replaced by Pic(−)Qp . We will show in the section that when k is a finite field this
cannot be the case, since it would imply Tate’s isogeny theorem for elliptic curves over kJtK. Let
us return to the previous notation, writing F = k((t)) and R = kJtK for its ring of integers.

We first need to quickly recall some material on Dieudonné modules of abelian varieties over
k,R and F . As before, we will let W denote the ring of Witt vectors of k, set Ω = W JtK and let Γ
be the p-adic completion of Ω[t−1], so that we have E+ = Ω[1/p] and E = Γ[1/p]. Fix compatible
lifts σ of absolute Frobenius to W ⊂ Ω ⊂ Γ. By [deJ95, Main Theorem 1] there are covariant
equivalences of categories

D : BTk
∼
→ DMW , D : BTR

∼
→ DMΩ, D : BTF

∼
→ DMΓ

between p-divisible groups over k (respectively, R, F ) and finite free Dieudonné modules over
W (respectively, Ω, Γ). In particular, if A is an abelian variety over any of these rings, we
will let D(A) denote the (covariant) Dieudonné module of its p-divisible group A[p∞]. It follows
essentially from the construction (see [BBM82]) together with the comparison between crystalline
and rigid cohomology that when A/F is an abelian variety we have D(A)⊗ΓE ∼= H1

rig(A/E)∨(−1)
as (ϕ,∇)-modules over E , and from [Ked00, Theorem 7.0.1] that D(A)⊗ΓE canonically descends
to a (ϕ,∇)-module D†(A) ∼= H1

rig(A/E†)∨(−1) over E†. The results of [BBM82, § 5.1] give a

canonical isomorphism D†(A∨) ∼= D†(A)∨(−1) of (ϕ,∇)-modules over E†. In particular, if E
is an elliptic curve then we have a canonical isomorphism E ∼= E∨ and hence an isomorphism
D†(E) ∼= D†(E)∨(−1).

We can now proceed to the construction of our counter-example. It will be a smooth projective
relative surface X over R, obtained as a product E1×RE∨2 (= E1×RE2) where Ei are elliptic curves
over R (to be specified later on). Let X denote the generic fibre of X and X0 the special fibre.
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As a product of elliptic curves, we know that the Tate conjecture for divisors holds for X0, that
is, the map

c1 : Pic(X0)Qp → H2
rig(X0/K)ϕ=p

is surjective. Functoriality of Dieudonné modules induces a homomorphism

D†E1,E2
: Hom(E1, E2)⊗Z Qp→ HomMΦ∇

E†
(D†(E1),D†(E2))

which is injective by standard results.

Theorem 6.1. Assume that any L ∈ Pic(X0)Qp whose first Chern class c1(L) ∈ H2
rig(X/R) lies

in the subspace H2
rig(X/E†) ⊂ H2

rig(X/R) lifts to Pic(X )Qp ; in other words, assume that the

Qp-analogue of Corollary 3.4 holds. Then the map D†E1,E2
is an isomorphism.

Proof. This is essentially well known. To start with, we note that we have a commutative diagram

Pic(X)Qp
c1 //

� _

��

H2
rig(X/E†)∇=0,ϕ=p

� _

��
Pic(X0)Q

c1 // H2
rig(X0/K)ϕ=p

with bottom horizontal map surjective. Under the given assumptions the top horizontal map is
also surjective, and induces an isomorphism NS(X)Qp

∼
→ H2

rig(X/E†)∇=0,ϕ=p. It follows from the
Künneth formula [LP16, Corollary 3.78] that

H2
rig(X/E†) ∼= E†(−1)⊕H1

rig(E1/E†)⊗H1
rig(E∨2 /E†)⊕ E†(−1),

where the terms at either end are H0⊗H2 and H2⊗H0, respectively. Since H1
rig(E1/E†) ∼=

D†(E1) and H1
rig(E∨2 /E†) ∼= D†(E2)∨(−1) we have that

H2
rig(X/E†)∇=0,ϕ=p = Qp ⊕ (D†(E1)⊗E† D†(E2)∨)∇=0,ϕ=id ⊕Qp

= Qp ⊕HomMΦ∇
E†

(D†(E1),D†(E2))⊕Qp.

Next, let DCalg(E1, E
∨
2 ) denote the group of divisorial correspondences from E1 to E∨2 modulo

algebraic equivalence; in other words, line bundles on E1×E∨2 whose restriction to both E1×{0}
and {0} × E∨2 is trivial. Then we have shown that the map

DCalg(E1, E
∨
2 )Qp → HomMΦ∇

E†
(D†(E1),D†(E2))

is an isomorphism, and since DCalg(E1, E
∨
2 )Q ∼= Hom(E1, E2)Q, it follows that the map

Hom(E1, E2)Qp → HomMΦ∇
E†

(D†(E1),D†(E2))

is also an isomorphism. This completes the proof. 2

In other words, to produce our required counter-example X we need to produce elliptic
curves E1 and E2 as above such that D†E1,E2

is not surjective. So let k = Fp2 and let E0/k
be a supersingular elliptic curve such that Frobp2 = [p] ∈ End(E0) (such elliptic curves exist
by Honda–Tate theory). It easily follows that any k̄-endomorphism of E0 has to commute with
Frobp2 , and is hence defined over k. By the p-adic version of Tate’s isogeny theorem the p-divisible
group functor induces an isomorphism:

End(E0)⊗ Zp −→ End(E0[p∞]).
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Lemma 6.2. There exists an isomorphism φ : E0[p∞] → E0[p∞] whose Qp-linear span in
End(E0[p∞])⊗Zp Qp cannot be spanned by an element in

End(E0)⊗Q ⊂ End(E0)⊗Qp = End(E0[p∞])⊗Zp Qp.

Proof. Since End(E0[p∞]) is an order in a quaternion algebra over Qp by [Sil86, ch. V,
Theorem 3.1], its group of invertible elements is a p-adic Lie group of dimension at least 3.
Therefore the Qp-linear spans of elements of End(E0[p∞])∗ are uncountable. As End(E0)⊗Q is
countable, there is a φ ∈ End(E0[p∞])∗ whose Qp-linear span cannot be spanned by the left-hand
side of the inclusion above. 2

Let E1 be an elliptic curve over R whose special fibre is E0 and whose generic fibre E1

over F = k((t)) is ordinary. Via the isomorphism φ in the lemma above we can consider E1[p∞]
as a deformation of E0[p∞]. By the Serre–Tate theorem [Mes72, V. Theorem 2.3] there is a
deformation E2 of E0 over R corresponding to this deformation of p-divisible groups. Let E2

denote the generic fibre of E2 over F .

Proposition 6.3. The map

D†E1,E2
: Hom(E1, E2)⊗Qp −→ HomMΦ∇

E†
(D†(E1),D†(E2))

is not surjective.

Proof. Assume for contradiction that in fact D†E1,E2
is an isomorphism. By construction

E1[p∞] ∼= E2[p∞], so by the functoriality of Dieudonné modules Hom(D(E1),D(E2)) is non-zero.
Hence Hom(D(E1),D(E2)) is also non-zero. As

D†(Ei)⊗E† E = D(Ei)⊗Γ E ,

we get that Hom(D†(E1),D†(E2)) is also non-zero, by Kedlaya’s full faithfulness theorem [Ked04,
Theorem 5.1]. So by our assumptions Hom(E1, E2) is also non-zero, and the elliptic curves E1

and E2 are isogeneous.
As E1 is generically ordinary but has a supersingular special fibre, it is not constant, that

is, the j-invariant of its generic fibre j(E1) 6∈ Fp. Therefore End(E1) = Z, so by the above
Hom(E1, E2)⊗Qp is one-dimensional. Therefore the same holds for Hom(D†(E1),D†(E2)), too.
We have a commutative diagram

Hom(E1, E2)⊗Qp
//

��

Hom(E1, E2)⊗Qp

��
Hom(D(E1),D(E2))⊗Zp Qp

// Hom(D†(E1),D†(E2))

The lower horizontal map is an isomorphism by de Jong’s full faithfulness theorem [deJ98], the
upper horizontal map is an isomorphism since any abelian scheme is the Néron model of its
generic fibre, and the right vertical map is an isomorphism by assumption. So the left vertical
map is an isomorphism, too. Specialisation furnishes us with another commutative diagram:

Hom(E1, E2)⊗Qp
//

��

End(E0)⊗Qp

��
Hom(D(E1),D(E2))⊗Zp Qp

// End(D(E0))⊗Zp Qp
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By construction the image of the lower horizontal map in

End(D(E0))⊗Zp Qp = End(E0[p∞])⊗Zp Qp

contains the span of φ. Since the domain of this map is one-dimensional, we get that its image is
the span of φ. Since the left vertical map is an isomorphism by the above, we get that the span of
φ is spanned by the specialisation of any non-zero isogeny E1→ E2. This is a contradiction. 2

We therefore arrive at the following result.

Corollary 6.4. There exist a smooth, projective relative surface X/R with generic fibre X
and special fibre X0, and a class L ∈ Pic(X0)Qp whose Chern class c1(L) ∈ H2

rig(X/R) lies inside

H2
rig(X/E†) but which does not lift to Pic(X )Qp .
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