
J. Functional Programming 3 (2): 171-190, April 1993 © 1993 Cambridge University Press 171

Pattern matching with abstract data types1

F. WARREN BURTON AND ROBERT D.CAMERON
School of Computing Science, Simon Fraser University, Bumaby, British Columbia, Canada V5A 1S6

(e-mail: burton@cs.sfu.ca)

Abstract

Pattern matching in modern functional programming languages is tied to the representation of
data. Unfortunately, this is incompatible with the philosophy of abstract data types.

Two proposals have been made to generalize pattern matching to a broader class of types.
The laws mechanism of Miranda allows pattern matching with non-free algebraic data types.
More recently, Wadler proposed the concept of views as a more general solution, making it
possible to define arbitrary mappings between a physical implementation and a view
supporting pattern matching. Originally, it was intended to include views in the new standard
lazy functional programming language Haskell.

Laws and views each offer important advantages, particularly with respect to data
abstraction. However, if not used with great care, they also introduce serious problems in
equational reasoning. As a result, laws have been removed from Miranda and views were not
included in the final version of Haskell.

We propose a third approach which unifies the laws and views mechanisms while avoiding
their problems. Philosophically, we view pattern matching as a bundling of case recognition
and component selection functions instead of a method for inverting data construction. This
can be achieved by removing the implied equivalence between data constructors and pattern
constructors. In practice, we allow automatic mapping into a view but not out of the view. We
show that equational reasoning can still be used with the resulting system. In fact, equational
reasoning is easier, since there are fewer hidden traps.

Capsule review

The tension between abstract datatypes and the syntactic sugar of pattern matching has long
been recognized, and has led to two proposed solutions: laws and views. Unfortunately, these
solutions cause problems for equational reasoning, so they have been rejected from current
language designs. This paper shows that just a small modification to the earlier ideas allows us
to have pattern matching and abstract data types along with safe equational reasoning. After
explaining the idea, the authors give an extended example showing how to use it in practice.

1 Introduction

Pattern matching helps in writing simple and concise function definitions in modern
functional programming languages. For example, with the Haskell algebraic data
type

data List alpha = Nil | Cons alpha (List alpha)
1 This work was supported in part by the Natural Science and Engineering Research Council of Canada.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

172 F. Warren Burton and R. D. Cameron

we can write an append function as

append Nil ys = ys

append {Cons x xs) ys = Cons x (append xs ys).

There are two ways to think about pattern matching. We can think of pattern
matching as inverting constructor functions. For example, when we evaluate append
(Cons 1 Nil) Nil, then the Cons on the left hand side of the second equation defining
append inverts the Cons in the expression Cons 1 Nil, extracting 1 into x and Nil into
xs. This fits well with equational reasoning and allows us to argue

append (Cons 1 Nil) Nil

= Cons 1 (append Nil Nil)

= Cons 1 Nil.

The other way is to think of patterns as a bundling of case recognition and
component selection functions. The append function can be rewritten to exhibit these
operations explicitly

append xs ys =

if is-nil xs then ys

else Cons (hd xs) (append (tl xs) ys).

This is approximately what a compiler will produce as an intermediate form when
compiling append. However, this form of append would be significantly more tedious
to use in equational reasoning, even given suitable axioms such as

is-tiil nil = True

is-nil (Cons x xs) = False

hd (Cons x xs) = x

tl (Cons x xs) = xs.

With algebraic data types, either of these two views of pattern matching may be used.
It should be noted that pattern matching often forces some evaluation of

arguments to a function, which has consequences for both semantics and efficiency.
For example, given the function definition

/True True = True

fx False = False

/False y = False

exp will be evaluated when (fexp False) is evaluated, even though the second equation
appears to be the appropriate equation and use of the second equation does not
require the value of exp. In fact, if exp is 1 then (fexp False) also will be 1 . In this
case, the first equation must be held responsible for the result. We will not consider
these issues in this paper, but will note that they remain essentially unchanged with
the addition of the language features for pattern matching considered here.

Two proposals have been made to generalize pattern matching to a broader class
of types. Miranda laws (Turner, 1985) allow pattern matching to be used with non-
free algebraic data types. Simon Thompson (1988, 1990) has discussed ways of

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 173

reasoning about algebraic data types with laws. More recently, the use of views
(Wadler, 1987) has been proposed as a more general solution that makes it possible
to define arbitrary mappings between a physical implementation and a view
supporting pattern matching. Originally, it was intended to include views in the new
standard lazy functional programming language Haskell (Hudak et ai, 1988). Both
of these approaches are based on the correspondence between data constructors and
patterns.

Laws and views each offer important advantages, particularly with respect to data
abstraction. However they also introduce serious problems, particularly if they are
not used with great care. As a result, laws have been removed from Miranda and
views were not included in the revised version of Haskell (Hudak et al., 1990). By
thinking of patterns as a bundling of case recognition and component selection
functions, we can keep the advantages of views while avoiding the problems, for the
most part.

As a simple example, with either views or laws, it is possible to define a constructor
Ratio that will eliminate common factors from its two arguments. For example,
Ratio 10 5 = Ratio 2 7. In Miranda with laws, this could be done as follows

rational ::= Ratio Num Num

Ratio mn => Ratio (m 'div1 q) (n 'div' q), if q + 1

where

q = normalize m n.

Here normalize is a suitable version of the gcd function that handles all the special
cases.

One can easily define a function

size {Ratio ab) = a + b.

It is tempting to argue, using equational reasoning, that

size (Ratio 10 5) = 70 + 5 = 75

when size (Ratio 10 5) should be 3.
With the approach we propose, Ratio may be used in patterns only. A function

ratio may be used to construct data objects and the equation

ratio mn =

Ratio (m 'div' q) (n 'div' q)

where

q = normalize m n

may be used in reasoning about a program. Thus, we do not require that Ratio invert
the construction operation performed by ratio, but merely be useful for matching and
selecting components of rational objects.

The remainder of this paper presents and analyses our specific proposals in the
context of an early version of the Haskell programming language (Hudak et al.,
1990). However, the fundamental ideas do not depend on the choice of any particular
language. In section 2 we propose a feature for the restricted export of data

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

174 F. Warren Burton and R. D. Cameron

constructors and show how it can be used to provide pattern matching on non-free
algebraic data types. This essentially provides a way of implementing Miranda laws
in Haskell. Section 3 then considers how to reason about functions defined by
pattern-matching on such non-free algebraic types. A restricted views mechanism is
then described in section 4 to allow pattern matching using multiple views on
arbitrary user-defined data abstractions. Several examples are considered in section
5. Section 6 concludes the paper.

2 Pattern matching for non-free abstract data types

Haskell's module facility allows abstract data types (ADTs) to be defined by
exporting the name of an algebraic data type without its representation (i.e. its data
constructors). For example, an ADT for rational numbers providing selector
functions numerator and denominator and a constructor function ratio may be
implemented as follows

module Ratio-Module {Rational, numerator, denominator, ratio)

where
data Rational = Ratio Int Int
numerator :: Rational'-*• Int

numerator {Ratio a b) = a
denominator :: Rationale Int
denominator {Ratio a b) = b
ratio :: Int-*• Int -^Rational

ratio mn =

Ratio {m 'div' q) {n 'div' q)
where
q = normalize m n
normalize :: Int ->• Int-* Int
normalize m n

| n == 0 = error "Zero denominator in ratio"
|w==0 = n

\n<0 = —{gcd{absm){-ri))
| n > 0 = gcd {abs m) n

gcd :: Int ->• Int -* Int
gcd a b

\a== b = b

\a<b = gcd a {b—a)

\a>b = gcd{a-b)b.

This ADT provides the desired semantics for our Rational data type, but requires that
analysis be performed using the explicit selection operations numerator and
denominator rather than pattern matching.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 175

Suppose we allow the restricted export of data constructors for the purpose of
pattern matching only. In this paper, we use the name of the data constructor prefixed
by a ? mark to indicate such restricted export; some other syntax may be ultimately
preferable. Using this extension, our Rational ADT may be reimplemented as follows

module Ratio-Module (Rational(?Ratio), ratio) where
data Rational = Ratio Int Int

ratio :: Int -*• Int -> Rational

ratio mn =

Ratio (m ldiv' q) (n ldiv' q)

where

q = normalize m n

as before.

Within the module, the constructor Ratio may be used as an ordinary algebraic type
constructor, i.e. both for pattern matching and construction of objects. Outside of the
module, Ratio may only be used for pattern matching, the actual construction of
Rational values requires the use of ratio instead.

One may argue that exporting the data constructors of an ADT destroys its
representation independence and information hiding properties, even if the
constructors are made available only for pattern matching. This is a valid criticism.
We will address it in section 4 with our proposal for resurrecting the views
mechanism.

We can now write functions on the Rational data type using both Ratio and ratio,
as appropriate. For example, addition of rational numbers requires conversion to a
common denominator:

radd :: Rational -> Rational -»• Rational

radd (Ratio nl dl) (Ratio n2 d2)

= ratio (nl *d2 + n2* dl) (dl * d2).

Construction of Rational numbers using ratio ensures that they are always represented
in canonical form; pattern matching such values with Ratio thus selects the canonical
components.

Given the function definition

size (Ratio a b) = a + b

it is still valid to reason that size (Ratio 10 5) = 15. However, we cannot infer that
Ratio 10 5 = Ratio 2 1, so no contradiction arises. Indeed, Ratio 10 5 is not even a
valid object of type Rational. Such objects must be constructed using ratio. Thus we
may specify an object ratio 10 5 and equational reasoning gives us ratio 10 5 = Ratio
2 1, so size (ratio 10 5) = 3 as desired.

Although we have described our extension to Haskell as a syntactic device to
support pattern matching on ADTs, we can use proof techniques similar to those used
by Thompson (1986, 1990). In essence, we think of the ADT as a Miranda 'lawful'
type (Turner, 1985), i.e. a non-free algebraic data type. The corresponding free
algebraic type is called the associated free type (AFT) of the ADT. We interpret the

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

176 F. Warren Burton and R. D. Cameron

exported pattern constructors as the constructors of the AFT. For example, outside
the Rational ADT, we interpret Ratio as the constructor of a free type, Rational',
associated with Rational, where

data Rational' = Ratio Int Int.

In fact, Rational is a subtype of Rational' consisting of all those Ratio values which
represent ratios in canonical form. Thus Ratio 2 7 is a value of type Rational' and of
type Rational, while Ratio 10 5 is only of type Rational'.

To specify objects of a non-free ADT such as Rational, we must provide
constructors for the ADT corresponding to the constructors of the AFT. In the case
of the Rational data type, the ADT constructor is ratio. The values constructed by
ratio are of type Rational and just those values of type Rational' that are in canonical
form.

Equations defining functions on type Rational using pattern matching with Ratio
thus may be more properly thought of as defining functions on type Rational'. Note,
however, that such functions cannot construct and return arbitrary Rational' objects,
since their defining equations may only use ratio on their right-hand sides. When
applied to objects of type Rational, then, they will always return objects of type
Rational.

In describing the semantics and proof techniques for lawful functions, Thompson
(1986, 1990) makes heavy use of the distinction between the constructor for a lawful
type and the constructor of the AFT. In the case of Miranda laws, however, this
distinction must be made at the metalanguage level; our proposal has the virtue of
clarifying the distinction by introducing it into the source code. For example, ratio is
a constructor for the ADT Rational and Ratio is a constructor for the AFT Rational'.
We have also found this distinction to be useful in providing a proof technique not
described by Thompson, namely induction over the constructors of the ADT. We
present a detailed example of this technique in the next section.

3 Inductive proofs for non-free ADTs

To illustrate techniques for reasoning about non-free ADTs, we consider the example
of ordered sets of numbers denned using the following (extended) Haskell module

module OrderedSetModule {Or deredSet{?Empty, ?Add), empty, add)

where

data OrderedSet = Empty \ Add Int OrderedSet

empty :: OrderedSet
empty = Empty
add :: Int -*• OrderedSet -> OrderedSet
add m Empty = Add m Empty

add m {Add n x)
| m < n = Add m (Add n x)

\m==n = Addn x
| m > n = Add n {add m x).

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 177

If a value m greater than the current first element of the ordered set is to be added,
the last equation recursively ensures that it is placed after this first element and all
other elements that are less than m. Thus values such as Add 2 {Add 3 Empty) are
proper values of type OrderedSet as well as the associated free type OrderedSet'', while
Add 3 (Add 2 Empty) is only a value of type OrderedSet'. Following our conventions,
empty and add are the constructors of the ADT OrderedSet to be used outside the
ADT for constructing ordered sets, while Empty and Add are the constructors of the
AFT to be used outside the ADT only for pattern matching.

Thompson (1990) recommends that functions on a non-free ADT be implemented
in a ' faithful' manner, i.e. so that they work independently of whether objects are in
canonical form or not. This allows proofs about properties of such functions on the
AFT to be immediately carried over to the corresponding functions of the ADT.
However, one reason for using a canonical representation for a data type is so that
you can take advantage of it in implementing functions on the data type. (Consider,
for example, the implementation of an intersect function to perform set intersection.
Using'faithful' functions is likely to result in a 0(«2) implementation, whereas a &(ri)
implementation is possible making use of the orderedness of the representation.) We
will show how induction can be used to establish properties of unfaithful functions.

Two useful functions on ordered sets test for set membership and remove an
element, respectively. We provide implementations which make use of the canonical
property for ordered sets

member :: num^- OrderedSet^- Bool

member a Empty = False

member a {Add b x)

\a == b = True

| a < b — False

| a > b = member a x

remove :: num -*• OrderedSet -> OrderedSet

remove a Empty = Empty

remove a (Add b x)

\a==b = x

| a < b = add b x

| a > b = add b (remove a x).

We design and write these functions to apply to objects of type OrderedSet. However,
the equations also define functions on the AFT OrderedSet'. For example, remove 2
(Add 3 (Add 2 Empty)) = Add 3 (Add 2 Empty). Of course, one should not expect the
action of such functions on the AFT to necessarily obey properties that hold only for
ordered sets.

The dichotomous view of these functions as being defined either over type
OrderedSet' or type OrderedSet is useful because it provides two inductive bases for
proving properties about them. We can show that a property P(x) holds for all finitely
generated, well defined x in OrderedSet' by induction on its constructors Empty and

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

178 F. Warren Burton and R. D. Cameron

Add, i.e. by showing P(Empty) and for any a, P(Add a x), assuming that P(x) is true.
Since OrderedSet is a subtype of OrderedSet', this also establishes P(x) for all x in
OrderedSet. Alternatively, we can directly show that P(x) holds for finitely generated,
well defined x in OrderedSet by induction over its constructors empty and add. Of
course, such a property may not hold for arbitrary x in OrderedSet'.

Technically, we prove that a property P(x) holds for all finitely generated, well
defined x by using induction over the number of steps (i.e. uses of empty or add)
required to generate an object. The approach can be extended to partial or infinite
objects using the methods given in Bird and Wadler (1988).

In the case of an arbitrary ADT, it is not always clear which functions should be
regarded as generators. For example, consider OrderedSet extended to include the
operations union (merge two ordered sets), min (select the minimum value) and
deletemin (remove the minimum value). Clearly, min is not a constructor because it
does not return an OrderedSet. One solution is to treat all of the remaining functions
as constructors in a proof. Alternatively, if it can be shown that any value generated
by a function can be generated by other generators, then it can be removed from the
set of generators. This is most easily done if the implementation of the function is in
terms of other generators. For example, if union is defined in terms of add then union
may be excluded from the set of generators that must be used in an induction proof.
Removing deletemin from the list of constructors is not so easy. In fact, deletemin
empty is a finitely generated object 1 that cannot be generated using empty and add
alone. Hence, deletemin normally cannot be excluded from the set of generators.
However, if proofs include partial, and perhaps infinite, objects (see Bird and Wadler,
1988) then 1 will be included as a generator along with empty and add, in which case
deletemin can be excluded from the set of generators. Finally, a minimal set of
constructors may not be unique. If we also add a function to generate a singleton
OrderedSet, then that function and union could be used in the set of generators instead
of add, which might simplify some proofs.

Induction over the ADT and over the AFT each are useful in verifying properties
on type OrderedSet. Recall that functions on type OrderedSet are written using
equations whose L.H.S. patterns are expressed in terms of the constructors of type
OrderedSet''. Thus it is often easiest to use induction over OrderedSet' to establish
basic properties of these functions. Once such properties have been established,
further properties that hold only for type OrderedSet, but not in general for
OrderedSet', may be established by induction over OrderedSet.

Consider, for example, the proof of the following theorem:

Theorem 1
If x is a well defined OrderedSet and a is a well defined num, then member a (remove
a x) = False.

This property holds for any well defined object in OrderedSet, but not for arbitrary
values in OrderedSet' or if x = _L or x = Add _L Empty or x = Add my, where y is not
well defined. Note that any infinite set would be of type OrderedSet' but not
OrderedSet.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 179

We will verify Theorem 1 by induction over OrderedSet. To do so we establish a
number of subsidiary properties as lemmas using induction over OrderedSet'. In these
lemmas we will assume that all values are well defined.

Lemma I
add a (add ax) = add a x.

Base step: show add a (add a Empty) = add a Empty. By equational reasoning:

add a (add a Empty)

= add a (Add a Empty)

= Add a Empty

= add a Empty.

This establishes the base case.
Induction step: Assume add a (add a y) = add a y and show add a (add a (Add b

y)) = add a (Add b y). The various cases can be broken down depending on the
relative ordering of a and b. Table 1 shows the steps of equational reasoning that
complete the proof. •

Lemma 2
add a (add b x) = add b (add a x).

There are three cases: (a) a = b, (2) a < b, and (3) a> b. Case 1 is established
easily: add a (add b x) = add a (add a x) = add b (add a x). Case 3 is the same as case
2 with the two sides of the equation interchanged. Therefore, we assume a < b and
prove the lemma by induction on OrderedSet'.

Base step: Show add a (add b Empty) = add b (add a Empty). By equational
reasoning

add a (add a Empty)

= add a (Add b Empty)

= Add a (Add b Empty)

add b (add a Empty) = add b (Add a Empty)

= Add a (add b Empty)

= Add a (Add b Empty).

This establishes the base case.
Induction step: Assume add a (add b y) = add b (add a y) and show add a (add b

(Addcy)) = addb (add a (Addcy)). The various cases can be broken down depending
on the relative ordering of a, b and c, (recalling also that a < b by assumption). Table
2 shows the steps of equational reasoning that complete the proof. •

Lemma 3
member a (add b x) = member ax, if a + b.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

180 F. Warren Burton and R. D. Cameron

Table 1. Inductive case for Lemma 1

Case

a = b

a < b

a> b

add a (add a (Add b y)) =

add a (Add b y)

add a (Add a(Addb y)) =
Add a (Add by)

add a (Add b (add a y)) =
Add b (add a (add a y)) =

Add b (add a y)
(by induction hypothesis)

add a (Add b y)) =

—

Add a (Add by)

Add b (add a y)

Table 2. Inductive case for Lemma 2

Case add a (add b (Add c y)) = add b (add a (Add c y)) =

b = c add a (Add c y) = add b (Add a (Add c y)) =
Add a (Add c y) Add a (add b (Add c y)) =

Add a (Add c y)

b<c add a (Add b (Add c y)) = add b (Add a (Add c y)) =
Add a (Add b (Add c y)) Add a (add b (Add c y)) =

Add a (Add b (Add c y))

b > c, a = c add a (Add c (add b y)) = add b (Add c y) =
Add c (add b y) Add c (add b y)

b>c,a<c add a (Add c (add b y)) = add b (Add a (Add c y)) =
Add a (Add c (add b y)) Add a (add b (Add c yj) =

Add a (Add c (add by))

b > c,a > c add a (Add c (add b y)) = add b (Add c (add a y)) =
Add c (add a (add b y)) = Add c (add b (add a y))
Addc (addb (adday))
(by induction hypothesis)

This can be established by induction on OrderedSet' as follows.
Base step: x = Empty. By equational reasoning

member a {add b Empty)

= member a (Add b Empty)

= False, if a < b

= member a Empty, if a > b.

Since member a Empty = False, the base case is established.
Induction step: Assume that member a (add b y) = member a y, if a # b and show

that member a (add b (Add c y)) = member a (Add c y), if a =f= b. It is established in
Table 3. •

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 181

Table 3. Inductive case for Lemma 3

Case member a (add b(Addc y)) = member a (Add c y)) =

b = c member a (Add c y) —
b <c,a> b member a (Add b (Add c y)) = —

member a(Addc y)

b < c,a < b member a(Addb (Add c y)) = False False

b > c, a = c member a (Add c (add b yj) = True True

b > c,a< c member a (Add c (add b y)) — False False
b > c,a> c member a(Addc (add b y)) = member a y

member a (add b y) =
member a y
(by induction hypothesis)

Lemma 4
remove a (add b x) = add b (remove a x), if a =t= b.

We prove the lemma by induction on OrderedSet''.
Base step: Show remove a (add b Empty) = add b (remove a Empty). By equational

reasoning

remove a (add b Empty)

= remove a (Add b Empty)

= Add b Empty, if a < b

= Add b (remove a Empty) = Add b Empty, if a > b

add b (remove a Empty)

= add b Empty

= Add b Empty.
This establishes the base case.

Induction step: Assume remove a (add b y) = add b (remove a y) and show remove
a (add b (Add c y)) = add b (remove a (Add c y)). The various cases can be broken
down depending on the relative ordering of a, b and c. Table 4 shows the steps of
equational reasoning that complete the proof. •

Lemma 5
remove a (add a x) = remove a x.

We prove the lemma by induction on OrderedSet'.
Base step: show remove a (add a Empty) = remove a Empty. By equational

reasoning

remove a (add a Empty) = remove a (Add a Empty) = Empty

remove a Empty = Empty.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

182 F. Warren Burton and R. D. Cameron

Table 4. Inductive case for Lemma 4

Case remove a (add b (Add c y)) = add b (remove a (Add c y)) =

b < c, a < b remove a (Add b (Add c y)) = abb b (Add cy) =
Add b (Add c y) Add b (Add c y)

b < c, a> b remove a (Add b (Add c y)) = —
add b (remove a (Add c y))

b = c, a < b remove a (Add c y) = add b (Add c y) =
Add c y Add c y

b = c, a> b remove a (Add c y) = add b (add c (remove a y)) =
add c (remove a y) add c (remove a y)

(by Lemma 1)

b> c, a = c remove a(Addc (add b y)) = add b y
add b y

b > c, a < c remove a (Add c (add b y)) = add b (Add c y) =
Add c (add by) Add c (add b y)

b > c, a> c remove a (Add c (add b y)) = add b (add c (remove a y)) =
add c (remove a (add b y)) = add c (add b (remove a y))
add c (add b (remove a y)) (by Lemma 2)
(by induction hypothesis)

Table 5. Inductive case for Lemma 5

Case remove a (add a (Add b y)) = remove a (Add b y) =

a < b remove a (Add a (Add b y)) = Add b y
Add by

a = b remove a (Addby) —
a > b remove a (Add b (add a y)) add b (remove a y)

add b (remove a (add a y)) =
add b (remove a y)
(by induction hypothesis)

This establishes the base case.
Induction step: Assume remove a {add a y) = remove a y and show remove a (add

a (Add b yj) = remove a {Add b y). The various cases can be broken down depending
on the relative ordering of a and b. Table 5 shows the various steps of equational
reasoning that complete the proof. •

Now we consider the proof of Theorem 1:

member a (remove ax) = False.

We use Lemmas 3-5 and induction on OrderedSet.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 183

Base step: we verify the theorem for x = empty

member a {remove a empty)

= member a {remove a Empty)

= member a Empty

= False.

Induction step: Assume that member a {remove ay) = False and verify that member
a {remove a {add b y)) = False holds inductively. First suppose a 4= b

member a {remove a {add b y))

= member a {add b {remove a y)) Lemma 4

= member a {remove a y) Lemma 3

= False Hypothesis.

Now suppose a = b

member a {remove a {add b y))

= member a {remove a y) Lemma 5

= False Hypothesis.

This completes the proof of Theorem 1. •

Note that the final inductive proof over the ADT OrderedSet is supported by
several lemmas established over the AFT OrderedSet'. These lemmas are of two
kinds. Lemmas 1 and 2 establish basic properties of the ADT function add. In general,
the primitive functions of a non-free ADT are always defined in terms of the AFT
constructors, so their properties are naturally established over the AFT. Lemmas 3-5
establish properties of member and remove, which are client functions of the ADT.
These properties hold, however, over the entire AFT, and their proofs take frequent
advantage of the fact that the argument patterns for remove are defined in terms of
the AFT constructors Add and Empty.

Induction over the AFT is not appropriate for Theorem 1, as it does not hold for
arbitrary x in OrderedSet'. For example

member 3 {remove 3 {Add 3 {Add 3 Empty))) = True.

Theorem 1 states a property that holds only if we have an ordered set in canonical
form, i.e. one that can be finitely constructed using empty and add only. Using the
previously established lemmas, however, its proof is relatively straightforward by
induction over the ADT.

4 Views revisited

As mentioned in section 2, the export of the data constructors for pattern matching
compromises the representation independence of the ADT. However, this may be
alleviated by merely exporting a view of the type which does not necessarily reflect its
implementation. We thus propose to resurrect the views construct as described in an

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

184 F. Warren Burton and R. D. Cameron

early draft of the proposed Haskell standard (Hudak et al., 1988) and later removed
(Hudak et al., 1990), except we will require that the toView transformation be
provided and the from View transformation not be used. In terms of Wadler's (1987)
original proposal for views, we propose that the in transformation be required and the
out transformation be prohibited. The provided to View or in transformation maps the
implementation type of the ADT to an algebraic view type, allowing the data
constructors of the view type to be used for pattern matching. The fromView or out
transformation would provide the inverse mapping and allow the view constructors
to be used on the R.H.S. of equations for object construction. We prohibit this to
avoid pitfalls in equational reasoning when the mappings are not complete inverses.

Following Hudak et al. (1988), the syntax of a view declaration is the same as that
of an algebraic data type declaration except that

1. The keyword view is used in place of data.
2. The declaration contains a where part in which the toView transformation is

defined.

In our proposal, the data constructors of a view declaration may only be exported for
use in pattern matching, indicated using the prefix ? mark notation.

A good example is an ADT for complex numbers providing views for both
cartesian and polar coordinates

module Complex-Module (Complex(?Cart), Complex(?Pole), cart, pole)

where

data Complex = Cart Float Float

cart = Cart

view Complex = Pole Float Float

where

to View (Cart x y) = Pole (sqrt(x~~2+y~~2)) (atan2 x y)

pole r t = cart (r* cos f)(r* sin t).

Functions on complex numbers may be defined using either view. For example

cadd (Cart xl yl) (Cart x2 y2) = cart (xl + x2) (yl+ y2)

cmult (Pole rl tl) (Pole r2 t2) = pole (rl * r2) (tl + tl).

However, we do not allow mixing of views; for example, the following definition is
not allowed

— illegal

/(Pole Ot) = 0

f(Cartxy) = x+y.
Notice that we export Cart and Pole for use in patterns only, and export cart and pole
for producing Complex values. From the client's point of view, it does not matter that
we represent complex numbers using rectangular coordinates; we could easily change
to a different representation without changing our client programs.

This example is similar to that presented in section 4 of Wadler's paper (1987).

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 185

However, in Wadler's example, the names Pole and pole were not distinguished. In
section 10, Wadler states that for all angles tl and t2, the equation

Pole Otl = Pole 012

must be consistent with the rest of the program.2 With our distinction between Pole
and pole we can derive the equation:

to View(pole r t) = Pole (sqrt ((r * cos i)~~2 + (r * sin tf~2))

(atan2 (r * cos t) (r * sin t)).

We can simplify the mathematics and deal with the toView transformation as
described below. However, we are never led to believe that pole = Pole, so avoid the
problems experienced by Wadler.

Although one may think of a view as simply a different representation for the
values of a given type, it is semantically modelled as a distinct type. The pattern
constructors of a view are interpreted as the constructors of a free view type (FVT)
that can be defined by replacing the keyword view by data and renaming the type. This
is essentially the same as the approach taken by Wadler and used in the Haskell draft
report.

A function / defined using the pattern constructors of a view has a direct
interpretation as a function/' over the FVT. We also interpret/, in an overloaded
sense, as a function/* over the ADT, denned by the equation/* —f .toView. Since
the FVT and the ADT are disjoint types, the value o f / x is uniquely defined for all
x. This approach is somewhat different than the translational approach taken by
Wadler.

We support equational reasoning on views with the following ' toView elimination
rule'. Given a = toView p, one may infer that /a = / P , if / i s an overloaded function
defined on both the ADT and the FVT. This follows from/' {toView p) = / * P, giving
/ ' a = / * P when a = toView p. Since this rule may be used in either direction, it may
also be referred to as the 'toView introduction rule'.

Consider the following view for type Int, which provides for the convenient
definition of the power function using the standard divide-and-conquer algorithm

view Int = ZERO | DOUBLE Int | INC Int
where

toView n

\n==0 = ZERO

\n>0&& even n = DOUBLE(n ldivl 2)

\n>0&&oddn = INC(n-l)

power x ZERO = 1

power x (DOUBLEn) = y*y wherey = power xn

power x (INC n) = x* power x n.
2 That is, the program may contain no equations that would result in anomalies of equational reasoning.

For example, the equation angle (Pole r t) = t would not be permitted because it would allow reasoning
such as

1 = angle (Pole 01) = angle (Pole 0 2) = 2.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

186 F. Warren Burton and R. D. Cameron

We model the view by introducing a FVT DblView and functions power' and power*
as follows

data DblView = ZERO \ DOUBLE Int \ INC Int

power' :: Int ->• DblView -> Int

power' x ZERO = I

power' x (DO UBLE n) = y * y where y = power* x n

power' x (INC n) = x* power* n

power* :: Int -»• Int -*• Int

power* x n = power' x (toView ri).

Note that the components stored in the DblView are objects of type Int, not of type
DblView. Correspondingly, the toView transformation is not recursive.

It is interesting to compare our FVT model with the following alternative model
specifying a recursive view type (RVT) Dbl

data Dbl = ZERO \ DOUBLE Dbl \ INC Dbl

where

to View n

n==0 = ZERO

\n>0&& even n = DO UBLE (to View (n ' div' 2))

| n > 0 && odd n = INC (to View (n -1))

power' :: Int -*• Dbl'-> Int

power' x ZERO = 1

power' x (DOUBLEn) = y*y where y = power'x n

power' x (INC n) = x* power' x n.

This model directly specifies the ZERO-DOUBLE-INC representation of integers as
a stand-alone data type. Arguably, it more clearly illustrates the concept of denning
exponentiation via divide-and-conquer on an appropriate data type.

However, the goal for our views mechanism is to provide pattern matching
capabilities for different views of an ADT. From this viewpoint, application of the
DOUBLE pattern to an Int should recognize if that Int can be characterized as the
double of some other Int, and if so, determine that second Int. The DblView
interpretation is more appropriate to this task. For example, it allows the selected
object to be returned directly as a value of the ADT, as in the following definition of
the function halve

halve :: Int->Int

halve ZERO = 0

halve (DOUBLE ri) = n

halve (INC ri) = halve n.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 187

Modelled over the FVT DblView, these equations may be interpreted as follows

halve' :: Dbl View -> Int

halve' ZERO = 0

halve' (DOUBLE n) = n

halve' (INC ri) = halve* n

halve* n = halve'(toView n).

To model these equations using the recursive type Dbl would require that a from View
transformation be provided to convert the R.H.S. n in the second equation from a Dbl
back to an Int.

Caution must be employed when using induction on views. One may be tempted
to argue that power is well and correctly defined over the RVT constructors ZERO,
DOUBLE and INC, and hence that it is correct for any Int which may be transformed
to the view. However, such an argument only holds for values of the ADT which map
to finite values of the RVT. In the example, finite mappings are defined for all non-
negative integers, and power is correct over that domain.

If we changed the view slightly, as follows

view Int = ZERO \ DOUBLE Int \ INC Int

where

to View n

\n==0 = ZERO

| even n = DO UBLE (n ' div' 2)

\oddn = INC(n-l)

then the view can be used with any integer, positive, negative or zero. However, we
cannot construct objects of the RVT for negative integers. An attempt to compute a
negative power will result in non-termination.

Rather than using structural induction over the RVT, we can use mathematical
induction on the FVT. We may demonstrate that a property holds for all elements
that are visible with the view, provided it is possible to associate a non-negative
integer size with each value and to insure that components of a value in the view
always have smaller sizes than the value itself. For example, if we take size i = i, then
we can use induction to prove that power is correct for non-negative integers.
However, if we consider the domain of all integers, we cannot define a suitable size
function, and hence induction cannot be used. If we take size i = abs i then size n >
size (INC n) for negative n, which is not permitted. Similarly, if we take size i = i we
have problems with DOUBLE.

Problems like this are more obvious if we think in terms of generation rather than
reduction. Clearly, we cannot generate negative numbers with zero, addition by one
and doubling.

Our mechanism supports reasoning about more general views than either Wadler's
original proposal or the combined fromView and toView functions of the draft

9 FPR 3

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

188 F. Warren Burton and R. D. Cameron

Haskell proposal. In Wadler's proposal, the in and out functions must be inverses
defining an isomorphism between a subset of the ADT and a subset of the FVT. In
the Haskell proposal, the constructors of the FVT were defined only for those cases
in which the toView transformation inverts the fromView transformation. Our
approach allows any functional relationship from the ADT to the view type. In
particular, this includes non-invertible views such as projections.

5 Backward lists

We will reconsider an example examined by Wadler (1987). In his example in section
6, Wadler presents a backwards view of lists. In Wadler's notation, modified to
resemble Haskell, backward lists are defined as follows

view [list] = Nil \ [alpha]'Snoc' alpha

in (x:Nil) = Nil'Snoc' x

in (x: (xs ' Snoc' y)) = (JC : xs) ' Snoc' y

out (Nil' Snoc' x) = JC : Nil

out ((x:xs) 'Snoc' y) = x:(xs' Snoc' y).

This can be restated in our proposed notation

\\evi [alpha] = NIL | [alpha]'SNOC alpha

where

toView [] = NIL

toView[x] = []'SNOC'x

to View (x: (xs ' SNOC y)) = (x: xs) ' SNOC y

nil = []

[]'snoc'x = [x]

(x:xs) 'snoc'y = x:(xs'snoc' y).

Wadler did not need the equations

toView [] = NIL

nil = [],

since his Nil is used for both our NIL and []. Both of these equations reduce to
Nil = Nil which does not need to be stated.

It appears that the recursive use of SNOC on the left hand side of the third equation
defining toView was not allowed in the preliminary Haskell standard. We will leave
the example as it stands, noting that this equation could be replaced with

to View xs = (init xs)' SNOC (last xs).

Wadler uses the same name, Snoc, for both the object constructor, which we call
snoc, and the pattern constructor, which we call SNOC. In Wadler's paper, the in and

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

Pattern matching with abstract data types 189

out equations are mirror images, so it appears that they are inverse transformations.
Using Wadler's notation, it is tempting to define

last (xs ' Snoc' x) = x
and reason that

last ([1,2,..]'Snoc'0) = 0.

This is not the case, since evaluation of last ([1,2,..] 'Snoc' 0) fails to terminate.
When we attempt to prove that

to View (xs 'snoc' x) = xs' SNOC x

we quickly find that the result holds only for finite lists. Having different names for
snoc and SNOC prevents us from carelessly writing

last (xs'SNOC x) = x
and reasoning that

last ([1,2,..]'snoc'0) = 0.

We can easily show that

to View (xs ' snoc' x) = xs' SNOC x
for any well defined, finite list xs, by structural induction on the list constructors, as
follows.

Base step: Show toView ([] 'snoc' x) = [] 'SNOC x. By equational reasoning,
toView ([] 'snoc' x) = to View [x] = [] 'SNOC x.

Induction step: Assume toView (xs 'snoc' x) = xs'SNOC x and show that toView
((y.xs) 'snoc' x) = (y.xs) 'SNOC x. By equational reasoning

to View ((y: xs)' snoc' x)

= to View(y: (xs ' snoc' x)) Def snoc

= to View (y: to View (xs ' snoc' x)) to View introduction

= toView(y:(xs'SNOC x)) Hypothesis

= (O: xs) ' SNOC x) Def SNOC.

We could use induction on the view constructors if preferred. In this case the base
step would be toView (nil 'snoc' x) = NIL 'SNOC x and the induction step would
be to show that toView ((xs 'snoc' x) 'snoc' y) = (xs'SNOC x) 'SNOC y assuming
toView (xs 'snoc' x) = xs 'SNOC x.

Of course, the corresponding rule for NIL

to View nil = NIL

follows directly from the defining equations.

6 Conclusion

Pattern matching is such a useful technique that it is worth supporting for other than
algebraic data types.

9-2

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

190 F. Warren Burton and R. D. Cameron

Pattern matching is commonly viewed as a process of inverting data construction.
However, if a data type does not form a free algebra, inverses do not exist. This leads
to problems in these cases.

We have proposed an alternative view, in which patterns are considered to be
bundled data recognition and component selection functions. We have shown that
this avoids many of the pitfalls of the other approach while supporting data
abstraction and equational reasoning.

Only straightforward changes to previous proposals are necessary to support this
approach.

Acknowledgement

We would like to thank Simon Thompson for helpful comments on an earlier draft
of this paper.

References
Bird, R. and Wadler, P. 1988. Introduction to Functional Programming. Prentice Hall.
Hudak, P., Wadler, P., Arvind, Boutel, B., Fairburn, J., Fasel, J., Hammond, K., Hughes,

J., Johnsson, T., Kieburtz, D., Nikhil, R., Peyton Jones, S., Reeve, M., Wise, D. and Young,
J. 1990. Report on the programming language Haskell: A non-strict purely functional
language (Version 1.0). Technical Report YALEU/DCS/RR777, Yale University, De-
partment of Computer Science.

Hudak, P., Peyton Jones, S. and Wadler, P., editors. 1988. Report on the Functional
Programming Language Haskell: SIGPLAN Notices, 27 (5), May 1992.

Thompson, S. 1986. Laws in Miranda. Proc. ACM Conference on LISP and Functional
Programming, 1-12.

Thompson, S. 1990. Lawful functions and program verification in Miranda. Science of
Computer Programming, 13 (2-3): 181-218, May.

Turner, D. A. 1985. Miranda: A non-strict functional language with polymorphic types.
In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer
Architecture, Volume 201 of Lecture Notes in Computer Science, Springer-Verlag, 1-16.

Wadler, P. 1987. Views: A way for pattern matching to cohabit with data abstraction.
Principles of Programming Languages 14, 307—313.

https://doi.org/10.1017/S095679680000068X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680000068X

