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A miscible horizontal interface separating two solutions of different solutes in the
gravity field can deform into convective finger structures due to the Rayleigh–Taylor
(RT) instability, or the double-diffusive (DD) and diffusive-layer-convection (DLC)
instabilities, triggered by differential diffusion of the solutes. We analyse here numerically
the nonlinear dynamics of these buoyancy-driven instabilities in porous medium flows
by an integration of Darcy’s law coupled to advection–diffusion equations for the
concentrations of the two solutes. After a diffusive growth, the mixing length L, defined as
the vertical extent of the mixing zone, starts to grow linearly when convection sets in. We
compute the mixing velocity U as the slope of this linear growth. In the one-species RT
regime, U is proportional to Δρ0, the initial density difference between the two layers. In
the two-species problem, differential diffusion effects can induce non-monotonic density
profiles characterised by an adverse density difference, defined as the density jump across
the spatial domain where the density decreases along the direction of gravity. We find
that, in the parameter space spanned by the buoyancy ratio R, and the ratio δ of diffusion
coefficients of the two species, the mixing velocity scales linearly with this dynamic
density difference. It is computed analytically from the diffusive base-state density profile
and can be significantly larger than Δρ0. Our results evidence the possibility of controlling
the mixing of RT, DD and DLC instabilities in two-species stratifications by a careful
choice of the nature and thus diffusivity of the species involved.
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1. Introduction

Buoyancy-driven flows are among the most common flows encountered in nature as
well as in engineering applications. G. K. Batchelor already long ago pointed to
the genericity of free convection, i.e. convective motions due to buoyancy forces,
among the fundamental problems in fluid dynamics (Batchelor 1954). We analyse here
buoyancy-driven instabilities for porous medium flows, focusing on the case of two-species
stratifications. Free convection deformation of an initially horizontal miscible interface
separating two solutions in a porous medium occurs in a variety of contexts. Examples
range from carbon dioxide sequestration (Huppert & Neufeld 2014; De Wit 2016) to
geological flows (Scott & Stevenson 1986), reaction-driven flows (Almarcha et al. 2010;
De Wit 2020), ground water sedimentation (Menand & Woods 2005), refining techniques
(Hill 1952) as well as biological flows (Dullien 2012) to name a few. In these scenarios,
the convective motion arises as a result of different instability mechanisms.

The Rayleigh–Taylor (RT) instability develops at the interface when a denser solution
overlies a less dense one in the gravity field, deforming it into finger-like structures
(Manickam & Homsy 1995; Fernandez et al. 2001; Martin, Rakotomalala & Salin 2002;
Trevelyan, Almarcha & De Wit 2011; Gopalakrishnan et al. 2017; De Paoli, Zonta &
Soldati 2019). In the case of one-species stratifications, the RT instability develops when
a solution of a given solute overlies a less concentrated solution of the same solute.
For porous medium flows, the first experimental studies carried out by Hill (1952) and
Wooding (1969) considered the stratification of a sugar or salt aqueous solution above
water in a Hele-Shaw cell (two glass plates separated by a thin gap) (Batchelor 1967). In
the presence of an unstable stratification (denser on top of less dense), the interface was
seen to rapidly deform into fingers. A mixing zone starts to develop, which is defined
as the region where the two miscible fluids mix and the density, averaged along the
transverse direction, departs from that of the two fluids. After a transient diffusive growth,
the mean vertical amplitude of the mixing zone enters a nonlinear regime in which it
grows linearly in time, while the mean wavelength of the fingers increases as t1/2. Several
numerical (Jenny et al. 2014; Slim 2014; Gopalakrishnan et al. 2017; De Paoli et al. 2019)
or experimental works either in Hele-Shaw cells (Fernandez et al. 2002; Menand & Woods
2005) or real three-dimensional porous media (Nakanishi et al. 2016; Teng et al. 2017) have
shown that the vertical mixing zone between the two solutions scales proportionally to the
initial density difference Δρ0 between the two solutions.

When two different solutes are involved, differential diffusion effects can also
destabilise an initially statically stable stratification (less dense on top of denser) if the
two solutes making opposing contributions to the vertical density gradient have different
molecular diffusivities (Huppert & Turner 1981). The densities of the layers are controlled
by the concentrations of each solute while their nature fixes the ratio of diffusivities. Two
cases can be encountered depending on whether the fast diffusing species is dissolved in
the upper or the lower layer.

When the solute of the denser lower solution diffuses faster than the solute present
in the upper less dense layer, a double-diffusive (DD) instability can induce a fingered
deformation of the interface (Turner 1979; Green 1984; Huppert & Sparks 1984; Cooper,
Glass & Tyler 1997; Pringle & Glass 2002; Trevelyan et al. 2011; Radko 2013). Such a DD
instability has been extensively studied in the context of salt fingers that form in oceans
where thermohaline convection is triggered by the differential diffusion of salt and heat
(Schmitt 1994; Schmitt et al. 2005). DD fingering has been analysed experimentally in
Hele-Shaw cells by Pringle & Glass (2002) starting from a less dense sucrose solution
overlying a denser salt solution. At a fixed buoyancy ratio, they observed that the vertical
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finger length scales linearly with time. Although a scaling law was not investigated in their
work, their data show that the velocity with which the fingers move vertically remains
almost the same, even when concentrations are varied, provided the ratio between these
concentrations is kept constant.

When the solute in the upper less dense solution is the one that diffuses faster, a so-called
diffusive-layer-convection (DLC) instability can arise (Turner & Stommel 1964; Turner
1979; Griffiths 1981; Huppert & Turner 1981; Trevelyan et al. 2011). It is due to the fact
that, when the upper solute diffuses faster downwards, it creates a depletion zone above
the initial contact line while it accumulates below the interface. Locally unstable density
stratifications, i.e. zones where the density decreases along the direction of gravity, develop
then on either side of the interface. They drive locally convective motions that propagate
independently through the solutions. The DLC mechanism, which features convection rolls
on either side of the interface, was investigated experimentally by Stamp et al. (1998)
using solutions of salt above sucrose. Scaling laws for the convective velocities have been
obtained as a function of the buoyancy flux.

The RT, DD and DLC instabilities have been shown recently to arise genuinely in
stratifications of reactive solutions as they involve different solutes with different diffusion
coefficients (Lemaigre et al. 2013; De Wit 2020). This has motivated us to revisit the
scalings of the RT instability in two-species stratifications of non-reactive fluids, as well
as its possible interaction with the DD and DLC differential diffusion modes (Trevelyan
et al. 2011; Carballido-Landeira et al. 2013; Donev et al. 2015; Gopalakrishnan et al. 2018).

In that spirit, the interplay between RT and DLC modes has been analysed for initially
unstable interfaces of a denser solution of a fast-diffusing solute above a less dense
solution of a slow-diffusing solute (Carballido-Landeira et al. 2013; Donev et al. 2015;
Gopalakrishnan et al. 2018). An RT–DLC ‘mixed-mode’ regime has been identified with a
deformation of the miscible interface having features from both RT and DLC instabilities.
The interface deforms in a sinusoidal shape thanks to the RT mode. The fact that the
upper solute diffuses faster downwards induces, however, also a depletion zone above and
an accumulation below the caps of the RT deformation. As a result, local convective rolls,
signature of the DLC mode, deform the head of the RT fingers into ‘Y-shaped’ antennae at
the location of the local DLC-driven adverse density gradients (Carballido-Landeira et al.
2013).

Similarly, the influence of DD modes on the RT instability has been recently investigated
both experimentally and numerically (Gopalakrishnan et al. 2018). Because of DD effects,
the RT density profiles are non-monotonic and feature a dynamic density difference
Δρm which is larger than the unstable initial density stratification Δρ0 because of the
faster upwards diffusion of the solute in the lower layer. In the nonlinear regime, the
mixing length (defined as the distance between the top and bottom of the fingered zone)
grows linearly with time. The slope of this linear growth defines the mixing velocity U
characterising how fast the two solutions mix. It was found that the mixing velocity U
scales with Δρm calculated from the base flow configuration. The scaling law measured
experimentally was in excellent agreement with the one obtained in numerical simulations.
Of particular interest is that this dynamic density difference Δρm can be computed
analytically from the base-state density profiles when the two species in the stratification
are known.

These results confirm the fact that non-monotonic density profiles can trigger new
effects on the RT instability, as shown also in stratified RT turbulence (Lawrie & Dalziel
2011; Davies Wykes & Dalziel 2014), and for porous medium flows with density profiles
that are a linear combination of step profiles (Gandhi & Trevelyan 2014). In particular,
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analysis of the RT–DD regime shows that two-species stratifications feature interesting
new dynamics and scalings (Gopalakrishnan et al. 2018) but a large part of the parameter
space remains unaddressed. In particular, it is of interest to analyse whether DLC modes
can have a similar impact on RT scalings. In addition, as pure DD and DLC regimes also
feature in some cases non-monotonic density profiles, the question arises to what extent
the specificities of these profiles control the mixing velocity.

In this context, the aim of the present study is to obtain the scaling laws governing
the mixing velocity of buoyancy-driven fingering dynamics for two-species stratification
in porous media. We explore numerically the scalings of the mixing velocity for porous
medium flows in the whole parameter space spanned by the buoyancy ratio R, which is
a measure of the initial density difference between the two solutions, and the ratio δ

of diffusion coefficients of the two species. Specifically, we extend previously obtained
results for the RT–DD flows (Gopalakrishnan et al. 2018) to the regime of RT–DLC
interplay, and to the pure DD and DLC regimes. We find that, in all regimes, the mixing
velocity scales linearly with the adverse dynamic density difference which can simply be
computed analytically using the values of R and δ. These results enlighten some previously
obtained experimental results (Pringle & Glass 2002).

To this end, after introducing the geometry of the system and the governing equations
in § 2, the base-state density profiles and flow features in the (R, δ) parameter space
are presented in § 3. The scaling laws obtained for RT flows influenced by DD modes
(Gopalakrishnan et al. 2018) are summarised in § 4. The findings are extended to the
regimes where only DD effects are present in § 5. The scenarios where RT effects are
coupled with the DLC mechanism are investigated in § 6. The transition to the RT–DLC
mixed-mode regime, and eventually to the case where only DLC is present, complements
the study. The paper finishes with a summary and a comparison with previous experiments
in § 7 before giving the main conclusions in § 8.

2. Geometry and governing equations

Let us consider two different miscible solutions that are in contact along a horizontal
interface in a two-dimensional porous medium or a Hele-Shaw cell with gravity pointing
downwards. The horizontal interface is chosen as the x-axis while the y-axis is the
vertical direction increasing downwards. The upper solution contains a solute A while
the lower solution contains a solute B, with initial concentrations A0 and B0 respectively.
The solutions are assumed to be dilute such that the diffusion coefficients DA and DB
of species A and B respectively can be assumed constant. The density is taken to vary
linearly with the concentrations as ρ(A, B) = ρ0[1 + αAA + αBB], where ρ0 is the density
of the solvent, A and B are the concentration of the respective species and αA, αB are the
solutal expansion coefficients defined as αA = (1/ρ0)(∂ρ/∂A) and αB = (1/ρ0)(∂ρ/∂B).
The flow dynamics around this miscible interface is described by Darcy’s equation
coupled to advection–diffusion equations for the concentrations A and B. The set of
equations governing the system are non-dimensionalised by the characteristic velocity
U = gKαAA0/μ, length L = DA/U and time T = L/U , where g is the magnitude of
the acceleration due to gravity, K is the permeability and μ is the dynamic viscosity.
The concentrations are non-dimensionalised using A0 while the density is scaled as
(ρ/ρ0 − 1)/αAA0. The resulting non-dimensional equations read (Trevelyan et al. 2011;
Gopalakrishnan et al. 2018)

∇p = −u + (A + RB)ŷ, (2.1)

∇ · u = 0, (2.2)
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At + u · ∇A = ∇2A, (2.3)

Bt + u · ∇B = δ∇2B, (2.4)

where p is the pressure, u is the Darcy flow velocity, ŷ is the unit vector in the direction
of gravity, R = αBB0/αAA0 the dimensionless buoyancy ratio and δ = DB/DA the ratio of
the diffusion coefficients. Note that the buoyancy ratio R can be seen as the ratio of the
Rayleigh number of the lower species B with respect to that of the upper species A. The
system is closed by the following initial conditions:

A = 1, B = 0, u = 0 for y < 0,

A = 0, B = 1, u = 0 for y > 0.

}
(2.5)

The boundary conditions are A = 1, B = 0, u = 0 for y → −∞, and A = 0, B = 1, u = 0
for y → ∞.

The nonlinear dynamics is analysed by numerical simulations performed using the
finite-volume code YALES2 (Moureau, Domingo & Vervisch 2011; Gopalakrishnan et al.
2017, 2018). The simulations were run in a large square box domain (102 400 × 102 400
non-dimensional units) with periodic boundary conditions along the horizontal direction,
while we impose no flux for the concentrations of the species in the vertical direction
and vanishing normal velocity (un = 0) on the upper and lower walls. This box is large
enough for the dynamics not to be influenced by the upper and lower boundaries, with
around 100 fingers developing across the interface and simulations running for up to
5 × 106 time units. The instability is triggered by adding a small amount of noise with an
amplitude of 0.1 % on the initial concentration fields (2.5) throughout the entire domain.
The numerical averages presented in this work represent an average over 20 simulations
with each simulation starting with a different random noise. Typical fingering patterns of
the density fields for RT, DD, and DLC scenarios are shown in figure 1 and are discussed
in more detail in the subsequent sections.

3. Base-state density profiles and flow features

In the absence of convection, the dimensionless base-state concentration profiles are
analytical solutions of the diffusion equations (2.3) and (2.4) with u = 0. Assuming a
domain of infinite height, they are given by

Ā( y, t) = 1
2

erfc
(

y
2
√

t

)
, B̄( y, t) = 1

2
erfc

(
− y

2
√

δt

)
. (3.1a,b)

The corresponding non-dimensional base-state density profile can be constructed as

ρ̄( y, t) = Ā( y, t) + RB̄( y, t). (3.2)

At t = 0, when the initial dimensionless concentration profiles follow a step function,
the density in the upper layer ρ̄A = 1 as Ā = 1 and B̄ = 0. In the lower layer where Ā = 0
and B̄ = 1, ρ̄B = R. The dimensionless initial density jump Δρ0 between the two layers,
defined as the difference between the initial upper and lower densities, is thus Δρ0 =
ρ̄A − ρ̄B = 1 − R. It is fixed by the buoyancy ratio R and is independent of the diffusivity
ratio δ as the two species have not started mixing by diffusion yet. Note that, as ρ̄( y, t) +
ρ̄(−y, t) = 1 + R, the convective patterns in buoyancy-driven flows evolve the same way
on both sides of the initial interface (Trevelyan et al. 2011).
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Figure 1. Typical analytical diffusive base-state density profiles ρ̄( y, t) in the (R, δ) parameter space.
Representative spatial distributions of the density field in the nonlinear regime illustrate the fingering patterns.
The shaded blue region corresponds to the parameter space where the RT instability is influenced by DD effects
(RT–DD regime for R < 1, δ > 1) and where pure DD develops (R > 1 and 1 < R2 < δ). The green region is
the zone where the RT instability dominates for Rc < δ < 1. The pink region corresponds to the RT–DLC
mixed-mode regime (δ < Rc < 1), and the pure DLC zone (R > 1, δ < 1). The yellow and white regions
correspond to base-state density profiles which are monotonically increasing (R > 1, 1 ≤ δ ≤ R2). The mixing
velocity U scales as U = 0.8Δρm (blue region), U = 0.8Δρ0 (green region) and U = 0.8Δρ∗

m = 0.4Δρ′
m

(pink region).

For R < 1, we have a RT unstable configuration (denser above less dense) with an
interface that deforms into fingers developing similarly above and below the interface.
In particular, the one-species RT instability occurs when R < 1 and δ = 1 denoted by
the red full line in figure 1. The flow dynamics is self-similar in R on this line δ = 1.
The stratifications with R > 1, δ = 1 are stable. At later times, different dynamic density
stratifications can be obtained depending on the values of parameters R and δ.

When δ > 1, the upward diffusion of the lower solute B is faster than the downward
diffusion of the upper solute A. In the RT regime (R < 1), the density profiles develop
then a non-monotonic spatial dependence as soon as t > 0 with a maximum above the
initial interface and a minimum in the lower layer (Trevelyan et al. 2011; Gopalakrishnan
et al. 2018). As shown in figure 1, this induces a dynamic density difference Δρm > 0
which is larger than the initial density difference Δρ0 and controls the vertical speed of
the RT fingers (Gopalakrishnan et al. 2018). Section 4 summarises the influence of Δρm
on the flow dynamics and scalings in this RT regime influenced by DD effects (called
here the RT–DD regime). When R ≥ 1, the less dense solution is initially overlying the
denser one but, when δ > 1, the faster diffusion of solute B to the upper layer can induce
a DD instability. The asymptotic neutral stability curve is given by δ = R2/3 (thick dotted
line in figure 1) below which the stratification is linearly stable (Trevelyan et al. 2011;
Gopalakrishnan 2020). For R2/3 ≤ δ ≤ R2, the miscible interface is initially statically
stable but deforms at a later time via a delayed-double-diffusive (DDD) instability
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(Trevelyan et al. 2011). The DDD flows are not investigated in the present study as we have
considered only flows that are readily unstable at t = 0. Moreover, as shown in figure 1,
the density profiles are monotonically increasing downwards when 1 ≤ δ ≤ R2 (shaded
yellow and white regions in figure 1), and they feature thus no unstable stratification neither
globally nor locally. We will focus here on the DD zone (1 ≤ R2 ≤ δ when R > 1) for
which non-monotonic profiles are obtained. Scalings in this pure DD regime are discussed
in § 5.

If δ < 1, the solute A present in the upper phase diffuses faster downwards than the
solute B which diffuses upwards. If R ≥ 1, the initial density stratification is stable
but, as soon as t > 0, the differential diffusion between solutes induces the formation
of a depletion zone above the initial contact line and an accumulation region below it.
This triggers a so-called DLC instability because the density profiles in these regimes
are non-monotonic with two local zones possessing an unstable stratification where the
density decreases along the direction of gravity (Trevelyan et al. 2011; Carballido-Landeira
et al. 2013). Localised convection develops then on either side of the miscible interface.
If R < 1, the properties of the RT regime depend on the value of δ. For R2 < δ < 1,
the density profiles are monotonically decreasing downwards (figure 1) and classical RT
dynamics is observed with fingers deforming in a similar manner above and below the
initial interface. If δ < R2, a non-monotonic spatial dependence is observed in the density
profiles with a locally stable density stratification across the initial miscible interface
as a result of the faster downward diffusion of the solute in the upper layer. A critical
value for the buoyancy ratio, Rc, can be defined for which the unstable initial density
difference, Δρ0, equals the density difference Δρm across the locally stable zone around
the initial interface (Carballido-Landeira et al. 2013). This boundary corresponds to the
δ = Rc curve in figure 1 which is given by δ = Rn (where n ≈ 6.8) (Carballido-Landeira
et al. 2013). It has been shown that, for Rc < δ < R2, i.e. when the initial unstable
density jump, Δρ0, exceeds the amplitude Δρm of the locally stable zone, RT effects
dominate in the deformation of the miscible interface. However, the presence of the locally
stable zone due to the differential diffusion effects deforms the cap of the fingers in
a ‘mushroom-like’ way (Carballido-Landeira et al. 2013). When δ < Rc < 1, the local
stable stratification across the interface has a larger density jump than the initial unstable
density difference, giving an RT–DLC mixed-mode regime in which RT flow features
are influenced by DLC effects (Carballido-Landeira et al. 2013) (called here RT–DLC
regime). A ‘Y-shaped antenna-like’ structure of the tip of the fingers is then observed
on either side of the interface, which is itself deformed by the RT modulation. At a
fixed δ < 1, Carballido-Landeira et al. (2013) showed that the contribution of the RT
mode decreases while the DLC characteristics become more and more prominent when R
increases, in agreement with the numerical simulations of Trevelyan et al. (2011). Typical
base-state density profiles in these regimes are illustrated in figure 1. Scalings in the
RT–DLC, and pure DLC regimes are discussed in § 6. A more complete description of the
various features of the base-state density profiles can be found in Trevelyan et al. (2011).

4. Scaling in the RT–DD regime (R < 1, δ > 1)

The scalings in the R < 1, δ > 1 zone of the parameter space i.e. in the RT regime
influenced by DD effects have been analysed previously by Gopalakrishnan et al. (2018)
but are summarised in this section for completeness. At t = 0, we start from a statically
unstable density stratification characterised by the initial density difference Δρ0 = 1 − R
(shown in red in figure 2a). As δ < 1, the solute B in the lower less dense solution diffuses
faster upwards than the solute A in the upper denser zone which diffuses downwards.
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Figure 2. Characteristics of the RT–DD regime when DD modes influence the RT instability (R < 1, δ > 1).
Here, R = 0.868, δ = 2. (a) Self-similar base-state density profiles at time t = 0, 1, 5, 10. The initial profile at
t = 0, shown in red, features the initial density jump, Δρ0 whereas, as soon as t > 0, a dynamic density jump
Δρm is triggered by the differential diffusion effects. (b) Base-state density profile ρ̄( y) (solid curve) and its
derivative ∂ρ̄/∂y (dotted curve). (c) Mixing velocity U as a function of the dynamic density jump Δρm (values
of R, δ are shown for each colour point). The red line is the scaling U = 0.8Δρm. The maximum deviation in
the values of U arising from the seeded initial conditions over 20 simulations is of the order 10−3. (d) Spatial
distribution of the density at a given time in the nonlinear regime. The density profiles along the black and
red lines denoted in (d) are shown in (e) with the amplitude of Δρm, 0.25, demarcated using dotted lines and
marked as labels along the y axis.

This leads to non-monotonic base-state density profiles with a maximum in the upper
layer and a minimum in the lower one as soon as t > 0 (figure 2a). As a result, a dynamic
density jump Δρm > 0 is obtained across the zone where ∂ρ̄/∂y < 0 and that corresponds
to the density difference between the maximum and the minimum. This adverse density
jump Δρm is larger than the initial density difference Δρ0, stays constant for 0 < t < ∞,
and can be computed analytically as (Gopalakrishnan et al. 2018)

Δρm = erf

⎛
⎝

√
ln |(δ/R2)|

2|(1 − 1/δ)|

⎞
⎠ + R erf

⎛
⎝−

√
ln |(δ/R2)|
2|(δ − 1)|

⎞
⎠. (4.1)

As an example, the base-state density profile for R = 0.868, δ = 2 and its derivative along
the vertical direction are shown in figures 2(a) and 2(b) respectively. Note that, if δ = 1 in
(4.1), we recover Δρm = Δρ0 = 1 − R.

It has been shown recently both experimentally and numerically that, for δ > 1, this
adverse dynamic density jump Δρm (rather than Δρ0) governs the velocity U at which the
mixing zone of the RT fingers grows (Gopalakrishnan et al. 2018). This mixing velocity U
is computed as the slope in the nonlinear regime of the temporal evolution of the averaged
mixing length L measured as the distance between the most upward and downward point
of the fingered zone. As shown in figure 2(c), U scales as U = 0.8Δρm in the zone of
parameter space where R < 1 and δ ≥ 1 (Gopalakrishnan et al. 2018).

This scaling of U can be qualitatively understood from the spatial distribution of the
density field in the nonlinear regime, as shown in figure 2(d). The variations of the density
along the black and red lines passing in the middle of the upper and lower parts respectively
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Scaling of buoyancy-driven fingers in porous media

of the fingered zone are shown in figure 2(e). The density difference between the middle of
the fingers and the invaded solution ahead of it is seen to be approximately equal to Δρm
(= 0.25). This remains the same during the whole nonlinear regime. This shows that, even
though the initial density jump is Δρ0, right from the beginning, differential diffusion
induces a non-monotonic density profile such that, locally, fingers experience the dynamic
density difference Δρm with the solution surrounding them. As a consequence, the mixing
velocity U at which the fingers move in their environment remains constant and scales as
Δρm (Gopalakrishnan et al. 2018). It is worth noting that the value of Δρm is independent
of the flow equation and can be computed analytically via (4.1) solely on the basis of the
solution to the diffusive equations for the concentrations of the two solutes at hand. In
the subsequent sections, we extend the scaling observed for the RT–DD regime to other
regimes in the (R, δ) parameter space.

5. Scaling in the pure DD regime (1 ≤ R2 ≤ δ)

The pure DD instability arises when 1 ≤ R2 ≤ δ starting from an initially statically stable
configuration (less dense above denser). A couple of representative base-state density
profiles are shown for these cases in figure 3(a,b). The initial density profile (shown
in red in figure 3a,b) is buoyantly stable (Δρ0 = (1 − R) < 0). However, as δ > 1, B
diffuses faster upwards than A, which diffuses downwards. As soon as t > 0, this induces
a non-monotonic density profile with, locally, a denser zone above a less dense one across
the initial interface. The amplitude of this buoyantly unstable density difference is the
dynamic density jump Δρm > 0, which can be computed using the values of (R, δ) via
(4.1). This region with an adverse density gradient is the zone where ∂ρ̄/∂y < 0, as shown
for the corresponding base-state profiles in figure 3(c,d).

We have numerically integrated model (2.1)–(2.4) for various values of R and δ in the
pure DD regime. The spatial distribution of the density field at a given time in the nonlinear
regime is shown in figure 4(a,c) for two values of parameters in the R ≥ 1, δ ≥ 1 zone. As
both RT and DD instabilities have similar eigenfunctions (Trevelyan et al. 2011), similar
convective patterns are observed in the case of pure DD. Figure 4 shows some examples of
DD fingers in the spatio-temporal distribution of the density field. From such snapshots,
we can measure the mixing length as the distance between the upper and lower points of
the mixing zone. Figure 5(a) shows the temporal evolution of the mixing length L averaged
over 20 simulations for various values of δ > 1 at R = 1.1. We see that a linear scaling
can be observed in the nonlinear regime, such as in the RT regime (Gopalakrishnan et al.
2017; De Paoli et al. 2019). The mixing velocity U, computed as the slope of this linear
L(t) trend, is shown as a function of δ for three different values of R in figure 5(b). At a
fixed R, it increases with δ, while for a given value of δ it decreases when R increases.
As observed in the RT–DD regime, the mixing velocity scales here linearly again with the
dynamic density jump as U = 0.8Δρm (figure 5c). To understand this scaling, we plot in
figure 4(b,d) the variation of density along the black and red lines shown in figures 4(a)
and 4(c) respectively. Strikingly, the adverse density jump Δρm induced by differential
diffusion effects is the density difference between the middle of the fingers and their
surroundings. This explains why their averaged propagation speed quantified by U scales
with Δρm.

In the DDD regime obtained in the parameter space for R2/3 ≤ δ ≤ R2, the first
derivative of the base-state density profiles is strictly positive throughout the domain.
Typical density profiles along with their spatial derivatives are illustrated for this regime
in figure 6. Although the flows are linearly unstable, the differential diffusion effects do
not lead to locally unstable zones where ∂ρ̄/∂y < 0 in the base-state density profiles.
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Figure 3. Characteristics of the pure DD regime (1 ≤ R2 ≤ δ). (a,b) Base-state density profiles shown at t = 0
(in red) and at 3 successive times for (a) R = 1.1, δ = 3 and (b) R = 1.5, δ = 7. (c,d) Base-state density profile
ρ̄( y) and its derivative ∂ρ̄/∂y for the parameter settings in (a,b). The dynamic density jump Δρm that governs
the rate at which the fingers grow corresponds to the difference in density between the bounds of the interval
where ∂ρ̄/∂y is negative.
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Figure 4. Spatial distribution of the density field at a given time in the nonlinear regime for (a) R = 1.1, δ = 3
and (a,c) R = 1.5, δ = 7. The variations of the density along the black and red lines in (a,c) are shown in (b,d).
The corresponding values of Δρm are 0.21 and 0.25 respectively.
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Figure 5. (a) Temporal evolution of the mixing length L (averaged over 20 simulations) for R = 1.1 and
various values of δ. Mixing velocity U as a function of (b) δ and (c) Δρm at three different values of R.
The red line in (c) is the scaling U = 0.8Δρm. The maximum deviation in the values of U arising from the
seeded initial conditions over 20 simulations is of the order 10−3.
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Figure 6. Typical base-state density profiles and their spatial derivatives in the DDD regime (R2/3 ≤ δ < R2).

Hence, an adverse dynamic density jump Δρm cannot be defined. The necessary condition
for such base flows to be unstable is the presence of a point on either side of the initial
interface where the second derivative of the base-state density profile is 0, i.e. it changes
its sign on either side of the initial interface (Gopalakrishnan 2020). In these flows, the
instability arises as stationary modes unlike in the other unstable regimes, where the
growth rates can be real or complex.

6. Scalings in the RT–DLC regime (R < 1, δ < 1) and pure DLC regime
(R > 1, δ < 1)

The flow dynamics can also be influenced by DLC modes if δ < 1. We analyse here
the scalings of the mixing velocity U in this case, both in the RT regime (R < 1) and
in the pure DLC regime (R > 1). When R2 ≤ δ < 1, the base-state density profiles are
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Figure 7. Base-state density profiles in RT regimes with (a) R2 ≤ δ < 1 and (b) Rc ≤ δ < R2 where the
unstable initial density difference Δρ0 (shown in red) is larger than the stable stratification Δρm that develops
at t > 0. (c,d) The base-state density profile and its spatial derivative ∂ρ̄/∂y. Parameter settings: (a,c)
δ = 0.25, R = 0.50, Δρm = 0, Δρ0 = 0.50; (b,d) δ = 0.25, R = 0.75, Δρm = −0.19, Δρ0 = 0.25.

monotonic (see figure 7a,c) with the unstable initial density difference, Δρ0 = 1 − R,
driving the flow dynamics as observed in single-species RT flows. If Rc ≤ δ < R2, the
faster diffusion of A downwards results in a non-monotonic base-state density profile
once t > 0. A buoyantly stable zone where ∂ρ̄/∂y > 0 develops then across the initial
interface (figure 7b,d). The amplitude of the density difference across that stable layer is
the dynamic density jump Δρm given by (4.1); Δρm between the minimum and maximum
in density has here a negative value as, locally, the density stratification is stable around
the interface.

We can then distinguish two different zones in the region of the parameter space
δ < R2. They are separated by the curve δ = Rc given by δ = Rn (where n ≈ 6.8)
(Carballido-Landeira et al. 2013) at which Δρm = Δρ0. First, if Rc ≤ δ < R2 < 1, we
have Δρ0 > |Δρm| (see figure 7b,d) and the growth of the RT mixing zone is controlled
by Δρ0. Once δ < Rc, we have Δρ0 < |Δρm| as the two extrema of the non-monotonic
density profile lie outside the range of initial values of density (figure 8a). A local
buoyantly stable layer separates the solutions across the initial interface while zones where
locally a denser solution overlies a less dense one develop on either side of the initial
interface. The typical base-state density profile and its spatial derivative is illustrated in
figure 8(c). An adverse density jump Δρ′

m can be defined across the zone where locally
∂ρ̄/∂y < 0 on either side of the initial interface (figure 8a). Its value can be computed as

Δρ′
m = Δρ0 − Δρm

2
, for Δρ0 < |Δρm|, (6.1)

with Δρm given by (4.1).
Similar features i.e. a non-monotonic density profile such that |Δρ0|< |Δρm| but with

both Δρ0 < 0 and Δρm < 0 can be observed in pure DLC regimes when R ≥ 1, δ < 1,
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Figure 8. Base-state density profiles in (a) the RT–DLC mixed-mode regime and (b) in the pure DLC regime.
(c,d) Corresponding spatial derivatives and the adverse density jump Δρ ′

m. Parameter settings: (a,c) δ = 0.25,

R = 0.90, Δρ0 = 0.10, Δρm = −0.24, Δρ′
m = 0.17; (b,d) δ = 0.25, R = 1.10, Δρ0 = −0.10, Δρm = −0.41,

Δρ′
m = 0.15.

as shown in figure 8(b,d). As R ≥ 1, the initial density difference Δρ0 is negative,
corresponding to an initially buoyantly stable configuration. In these flows, as discussed in
§ 3, the system destabilises due to the differential diffusion of the solutes which induces
an adverse density stratification on either side of the initial interface, similar to the
RT–DLC mixed-mode regime. This adverse density jump Δρ′

m, given by (6.1), is the
density difference across the regions where ∂ρ̄/∂y < 0 as shown in figure 8(d).

The flow dynamics corresponding to the various base-state density profiles for δ < 1
shown in figures 7 and 8 is summarised in figure 9 giving the spatial distribution of
the density field at a given time during the nonlinear regime. In the RT regime, fingers
extend all across the initial position of the interface (figure 9a,b) with some fingers
showing a Y-shape if Rc ≤ δ < R2 (figure 9b). The corresponding density variation
along the black and red lines is shown in figure 9(e, f ). When entering the RT–DLC
mixed-mode regime (δ < Rc), DLC features, such as local deformation of the tip of the
fingers into Y-shaped antennae, appear in addition to the RT modulation of the interface
(Carballido-Landeira et al. 2013). Figure 9(c) shows an example of such a RT–DLC mixed
mode. Figure 9(d) illustrates the pure DLC dynamics characterised by a stable middle
interface and convective zones developing on either side of it. The origin of the DLC
mechanism can be noted in the density map where a low density zone is seen above the
interface while an accumulation zone with a larger density develops below the interface.
As can be seen in figure 9(h) the density difference driving the convection of the fingers is
≈ 0.16 both above and below the interface which corresponds to the value of Δρ′

m = 0.16.
Figure 10(a) plots the averaged mixing length for the RT–DLC regime. The mixing

length is here still measured as the distance between the uppermost tip of fingers in the
top layer to the lowest tip of the fingers in the lower layer. Figure 10(b) shows that, as R
increases, the mixing velocity U decreases. This is due to the fact that the driving density
jump decreases as well. We find numerically that the mixing velocity U scales throughout
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Figure 9. Spatial distribution of density fields illustrating the transition from flows dominated by (a,b) RT
effects, to the (c) RT–DLC mixed-mode scenario and eventually to the (d) pure DLC mechanism. The variation
of density for the corresponding flow fields along the black and red lines are shown in (e, f,g,h). Parameter
settings: δ = 0.25 and (a) R = 0.25, (b) R = 0.75, (c) R = 0.90, (d) R = 1.1.

the δ < 1 zone as U ∼ 0.8Δρ∗
m where Δρ∗

m is defined as

Δρ∗
m = Δρ0, for |Δρ0| ≥ |Δρm|, (6.2)

Δρ∗
m = 0.5Δρ′

m, for |Δρ0| < |Δρm|. (6.3)

914 A27-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.42


Scaling of buoyancy-driven fingers in porous media

5 × 105 1060

6 × 104

1.2 × 105

L

R = 0.25
R = 0.50
R = 0.65

R = 0.75
R = 0.85
R = 0.90
R = 0.95

4.5 × 105 9 × 105

t

t R

0

2.5 × 104

5 × 104

L

δ = 0.10
δ = 0.20
δ = 0.25
δ = 0.30
δ = 0.50

0.6

0.4

0.2

0

0.6

0.4

0.2

0.5 0.20 0.4 0.6 0.81.0

0.10

0.05

0.15

0.10

0.05

00 0.2 0.4 0.6 0.05 0.10 0.15

U

U

U

U

δ

�ρ∗
m

R = 0.90

δ = 0.25

δ = 0.50
δ = 0.25

δ = 0.50

R = 1.00
R = 1.10
R = 1.25

R = 0.90
R = 1.00
R = 1.10
R = 1.25
0.8�ρ∗

m

0.8�ρ∗
m – 0.03

(a) (b) (c)

(d) (e) ( f )

�ρ∗
m

Figure 10. Temporal evolution of the mixing length L (averaged over 20 simulations) for (a) variable R at
δ = 0.25 and (d) variable δ at R = 1.1. Mixing velocity U as a function of (b) R and (e) δ, and its variation
with the adverse density jump Δρ∗

m in (c, f ). Open circles indicate when Δρ∗
m is given by the initial density

difference Δρ0, and filled circles by (6.3). The maximum deviation in the values of U arising from the seeded
initial conditions over 20 simulations is of the order 10−3.

The scaling of the mixing velocity U as a function of the adverse density jump Δρ∗
m

is shown in figure 10(c). In figure 10(b,c,e, f ), the open circles indicate that the driving
force comes from the unstable initial stratification Δρ0 for δ > Rc and filled circles are
driven by Δρ∗

m = 0.5Δρ′
m when δ < Rc. As in the earlier flow regimes, we observe a linear

relationship between U and the adverse density stratification Δρ∗
m, with U = 0.8Δρ0 for

Rc ≤ δ, and U = 0.8Δρ∗
m = 0.4Δρ′

m for δ < Rc.
The evolution of the average mixing length in the DLC regime is shown in figure 10(d)

for different values of δ and R = 1.1. As δ decreases at a fixed value of R, the rate of
diffusion of the solute from the upper solution to the lower one increases, which results in
an increased value of the adverse density jump Δρ′

m and thus to an increased mixing
velocity U (figure 10e). The mixing velocity U as a function of the adverse density
jump Δρ∗

m given by (6.2) and (6.3) is plotted in figure 10( f ) where a linear scaling,
U = 0.8Δρ∗

m, can be observed. The same scaling law applies thus to both the RT–DLC
mixed-mode regime and pure DLC flows, similarly to the RT–DD and DD flows. The fact
that Δρ∗

m = 0.5Δρ′
m when |Δρm| > Δρ0 is due to the fact that the density jump Δρ′

m can
develop only towards one side as it is bounded on the other side by a stable barrier. The
extent of this stable barrier is given by Δρm (4.1).

The transition of the adverse density jump from Δρ0 to Δρ∗
m = 0.5Δρ′

m in the (R, δ)

plane when δ < 1 is summarised in figure 11(a). Figure 11(b) shows isocontours of the
adverse density jump in the δ < 1 zone. The curve δ = Rc, given by δ = Rn(n = 6.8)

shown using a dotted line demarcates the switch from the RT regime to the RT–DLC
mixed-mode and pure DLC regimes. For δ > Rc, Δρ0 = 1 − R is at play. When δ < Rc,

Δρ∗
m = 0.5Δρ′

m fixes the dynamics. The value of Δρ′
m is given by (6.1) and decreases with

an increase in δ at a fixed R. For small values of δ(< 0.2), Δρ′
m stays roughly constant as

a function of R, whereas at higher values of δ it decreases slowly. Figure 11(c) summarises
the scaling U = 0.8Δρ∗

m across values dominated by Δρ0 (in black) and those ruled by
Δρ′

m (in blue).
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Figure 11. (a) Variation of Δρ0, Δρm and 0.5Δρ′
m as a function of R for δ = 0.25, with Δρ∗

m denoted by the
thick black line. The switch of Δρ∗

m from Δρ0 to 0.5Δρ′
m occurs at R = 0.915. (b) Contours of the adverse

density jump Δρ′
m which governs the scaling of U in the (R, δ) plane for δ < 1 illustrating the transition from

the RT dominant zone for R < Rc shown by the thick dotted line to the DLC-dominated regime when R > Rc.
In the RT zone, the adverse density jump is Δρ0 = 1 − R and the scaling of the mixing velocity is U = 0.8Δρ0.
In the RT–DLC mixed-mode and pure DLC regimes, we have U = 0.8Δρ∗

m = 0.5Δρ′
m. This is shown in panel

(c), where the velocity U is shown as a function of Δρ∗
m for δ < 1 (δ = [0.10, 0.20, 0.25, 0.30, 0.50]), with R

ranging from 0.25 to 1.25.

7. Summary and discussion

Different buoyantly unstable scenarios can be obtained depending on the values of the two
non-dimensional parameters R and δ that govern the flow dynamics. The miscible interface
is subject to a RT instability when R < 1. The single-species RT instability occurs when
δ = 1. In that case, the density is decreasing monotonically along the gravity field and U
scales as 0.8Δρ0 where Δρ0 = 1 − R is the initial density difference.

In the case of two-species RT–DD stratification, if the species in the lower solution
diffuses faster (δ > 1), the density profiles have a non-monotonic spatial dependence with
a maximum in density above the interface and a minimum in density in the lower layer
as soon as t > 0. The adverse density jump Δρm between these extrema is larger than
the initial density difference Δρ0, and can be computed analytically from the diffusive
base-state concentration profiles using the values of R and δ via (4.1). The mixing
velocities computed in the corresponding nonlinear RT regime are found to scale linearly
as U = 0.8Δρm. This is due to the fact that the density difference experienced by the
fingers with the solution ahead of them during their nonlinear evolution is approximately
Δρm. For δ > 1 and a buoyantly stable initial configuration (R ≥ 1) such that Δρ0 < 0,
DD effects result in an adverse density difference Δρm > 0 across the miscible interface
due to the faster upwards diffusion of the species from the lower layer. In the nonlinear
regime, the mixing velocity U is found to scale linearly with this adverse density difference
as U = 0.8Δρm. The footprint of Δρm can be observed in the nonlinear regime from the
spatial distribution of the density fields with the density difference between the fingers and
their surroundings being Δρm.

If δ < 1, other scenarios are encountered. If R2 ≤ δ < 1, the RT density profiles are
monotonically decreasing downwards and the flow dynamics is governed by the initial
density difference Δρ0 with U = 0.8Δρ0. For Rc ≤ δ < R2, the non-monotonic density
profiles feature a locally stable stratification across the initial interface where Δρm < 0.
In this regime, the initial density difference Δρ0 still drives the convective mixing
globally and U = 0.8Δρ0 even though the influence of differential diffusion can be
seen at the tips of some fingers. For δ ≤ Rc < 1, when the absolute value of the locally
stable stratification Δρm (< 0) exceeds the initial density difference Δρ0 > 0, an adverse
density difference Δρ′

m given by (6.1) can be observed on either side of the interface.
In this RT–DLC mixed-mode regime, where DLC effects strongly influence the RT
flow dynamics, ‘Y-shaped antenna-like’ structures can be observed developing around

914 A27-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.42


Scaling of buoyancy-driven fingers in porous media

the interface. Similar features in the density profiles can also be observed in a buoyantly
stable stratification R > 1 with δ < 1 where only pure DLC mechanisms are present. The
mixing velocities in these regimes decrease with increasing R and δ, and are found to
scale linearly as U = 0.8Δρ∗

m = 0.4Δρ′
m. For the RT–DLC mixed-mode and pure DLC

scenarios, the instability develops separately above and below the interface, with Δρ∗
m

driving the convection that develops independently on either side of the mixing zone.
In all the scenarios discussed in this study, the most striking observation is that the

driving force for the mixing velocity of the fingers is always the density difference
experienced by the fingers with their surroundings. This density difference, although
computed analytically from the base-state diffusive density profiles, persists in the
nonlinear regime, and imprints therefore its influence on the mixing velocity U. This
is illustrated in figure 12 which shows the distribution of the density field within
our computational domain at a given time in the nonlinear regime for the different
scenarios discussed in the present study in the (R, δ) parameter space. For (a) RT
and (e) DD instabilities, the distribution of the density field shows that the density
difference experienced by the fingers with their surroundings on either side of the initial
interface is Δρm. When Rc ≤ δ < 1 i.e. for RT-dominated flows (b,c), the initial density
difference Δρ0 = 1 − R drives the convective mixing. For the flows corresponding to the
(d) RT–DLC mixed-mode regime and the ( f ) pure DLC, Δρ∗

m = 0.5Δρ′
m is the density

difference which governs the evolution of the mixing length.
A summary of the different scalings can be seen in the various shaded zones of figure 1

with the shaded blue region corresponding to U = 0.8Δρm (RT–DD regime and pure DD
modes), the green region to U = 0.8Δρ0 (RT dominant modes at δ < 1) and the pink
region to U = 0.8Δρ∗

m = 0.4Δρ′
m (RT–DLC mixed mode and pure DLC modes).

The fact that the fingers extend vertically at a speed proportional to the largest adverse
density jump may sound intuitive at first sight. It certainly is intuitive in the case of the pure
one-species RT instability where the density difference Δρ0 between the upper solution of
A and the lower layer of pure solvent controls the dynamics. The situation is less intuitive
for two-species stratification. If you consider solutions of salt and sugar, different velocities
will be observed even if starting from the same Δρ0 because salt diffuses approximately 3
times faster than sugar. If the denser layer of salt overlies a less dense solution of sucrose,
we have δ = 1/3. Then, even if starting with the same Δρ0, the RT instability will be
influenced by DLC effects for Rc ≤ R < 1 in the RT–DLC zone. The mixing velocity will
then scale linearly with Δρ∗

m. If, in contrast, we start from a denser layer of sugar above a
less dense solution of salt then δ = 3 and Δρm becomes the relevant density jump. Table 2
from the supplemental information of Gopalakrishnan et al. (2018) lists a series of values
of Δρ0 and Δρm that can guide experimentalists in new experiments devoted to test our
predictions.

Our results also allow us to understand why, in the experiments of Pringle and Glass
(Pringle & Glass 2002) on the DD instability, the velocity with which the fingers advance
vertically remains almost the same even when concentrations are varied at a fixed δ

(see figure 10 in their article). This can be explained by the fact that the change in
concentrations was done by maintaining R at a constant value as they were changing the
values of initial concentrations A0 and B0 in the same proportion (see table 1 of their
manuscript).

8. Conclusions

A miscible horizontal interface separating solutions of two different species can deform
into finger-like structures in the gravity field due to buoyancy-driven instabilities like the
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Figure 12. Distribution of the values of the density field within our computational domain at a given time in
the nonlinear regime for the various scenarios discussed in the present study. The density difference Δρ driving
the evolution of the mixing length on either side of the initial interface y = 0 is: (a) RT–DD: R < 1, δ ≥ 1,

Δρ = Δρm; (b) RT: R < 1, R2 < δ < 1, Δρ = Δρ0 = 1 − R; (c) RT: R < 1, Rc < δ < R2, Δρ = Δρ0;
(d) RT–DLC: R < 1, δ < Rc, Δρ = 0.5Δρ′

m; (e) DD: R ≥ 1, δ > 1, Δρ = Δρm; ( f ) DLC: R ≥ 1, δ < 1,

Δρ = 0.5Δρ′
m. Parameter settings: (a) R = 0.868, δ = 2, (b) R = 0.25, δ = 0.25, (c) R = 0.75, δ = 0.25, (d)

R = 0.90, δ = 0.25, (e) R = 1.1, δ = 3, ( f ) R = 1.1, δ = 0.25.

RT, DD and DLC instabilities. We have here quantified in each regime the influence of
differential diffusion between the two species on the mixing velocity in the nonlinear
regime when the flow is solution of Darcy’s law. These differential diffusion effects can
induce non-monotonic base-state density profiles in which an adverse density difference
(Δρm or Δρ∗

m) can develop as soon as the two fluids are in contact and start to mix by
diffusion. We have computed numerically the mixing velocity U of the fingers as the
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slope of the temporal evolution of the averaged mixing length in the nonlinear regime. We
show that, throughout the parameter space (R, δ), U scales linearly with the largest adverse
density difference present in the density profile. This adverse density jump (Δρm if δ > 1
and Δρ∗

m if δ < 1) can be different from the initial density jump Δρ0 thanks to differential
diffusion. It can be computed analytically as a function of R and δ. This result demonstrates
that the mixing properties can be predicted in two-species stratifications knowing solely
the initial concentrations, the solutal expansion coefficients and the diffusion coefficients
of the various species involved, which fix the values of the buoyancy ratio R and of the
diffusivity ratio δ. This paves the way to a control of the mixing of two miscible layers by a
careful choice of the solutes dissolved in these layers. Their nature and the order in which
they are layered fixes the ratio of diffusivities δ and hence the accessible double-diffusive
effects (DD if δ > 1 or DLC if δ < 1). A subsequent choice of their initial concentrations
fixes then the buoyancy ratio R and thus the dynamic density jump controlling the growth
of the mixing length of the buoyancy-driven fingers. This control strategy, illustrated here
for differential diffusion effects, can easily be adapted to other processes (like non-ideal
mixing or chemical reactions for instance) that are able to induce non-monotonic density
profiles (De Wit 2020) or to multispecies stratifications. Moreover, as the control depends
only on local adverse density jumps, which are obtained analytically from the diffusion
equation and not from the flow equations, it will be interesting to test if the scalings
demonstrated here using porous medium flows have equivalent robust scalings for other
flow equations as well.
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