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SUMMARY

The incidence of myocardial infarctions and influenza follow similar seasonal patterns. To

determine if acute myocardial infarctions (AMIs) and ischaemic strokes are associated with

influenza activity, we built time-series models using data from the Nationwide Inpatient Sample.

In these models, we used influenza activity to predict the incidence of AMI and ischaemic stroke.

We fitted national models as well as models based on four geographical regions and five age

groups. Across all models, we found consistent significant associations between AMIs and

influenza activity, but not between ischaemic strokes and influenza. Associations between

influenza and AMI increased with age, were greatest in those aged >80 years, and were present

in all geographical regions. In addition, the natural experiment provided by the second wave of

the influenza pandemic in 2009 provided further evidence of the relationship between influenza

and AMI, because both series peaked in the same non-winter month.
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INTRODUCTION

Influenza is a major cause of morbidity and mortality

[1]. Because deaths due to influenza and deaths due to

other non-influenza-related diseases follow a similar

temporal distribution, in the 1930s, Collins proposed

that a causal relationship might exist between influ-

enza and other non-respiratory causes of death [2]. A

time-series analysis using 40 years of data on mor-

tality from ischaemic heart disease, cerebrovascular

disease, and diabetes mellitus strongly suggested that

the excess winter mortality due to these diseases may

be, in fact, attributable to influenza [3]. Similarly, a

recent time-series study using data from the UK,

Wales, and Hong Kong confirmed an association

between influenza and myocardial infarctions [4].
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However, other independent studies, have resulted in

contradictory conclusions regarding this association

[5–8].

The link between influenza and myocardial infarc-

tions is thought to be mediated via inflammation [5, 8].

Acute inflammation caused by influenza and other

respiratory infections is believed to cause local in-

flammation in atherosclerotic plaques within cor-

onary arteries. This may in turn lead to plaque

destabilization, plaque rupture, and ultimately, a

myocardial infarction. In addition, the inflammation

caused by influenza could result in an increase in

metabolic demand, possibly leading to cardiac

ischaemia if the period of increased demand is pro-

longed. With influenza, a lengthy period of elevated

metabolic demand is commonplace, as patients can be

febrile for days [4].

Ischaemic strokes, like myocardial infarctions, re-

sult from ischaemia secondary to the lack of blood

flow. As with myocardial infarctions, investigators

have proposed that acute infections, including influ-

enza, can trigger events leading to ischaemic strokes

[9–11], and epidemiological investigations have pro-

posed associations between influenza and stroke-

related events [12–14]. Strengthening the biological

plausibility of this association is a recently developed

animal model demonstrating that infections by the

influenza virus trigger cytokine cascades that can in-

crease cerebral infarct size in mice with experimentally

induced ischaemic strokes [15]. Finally, while several

studies have suggested that influenza vaccinations

may protect against myocardial infarctions [16, 17],

recent studies habe shown that influenza vaccinations

are also protective against ischaemic strokes [18–20].

The purpose of this study is to use time-series re-

gression modelling to determine whether the inci-

dence of acute myocardial infarctions (AMIs) is

associated with the seasonal variation in the incidence

of influenza in the USA, to confirm recent studies

based on data from other countries [4], and to address

the same question for the incidence of ischaemic

strokes. Time-series analytical techniques are in-

creasingly being utilized in ecological epidemiology

studies, especially in studies involving incidence data

[21–24]. A second goal of this study is to estimate the

burden of AMI and ischaemic stroke attributable to

influenza. Finally, the novel H1N1 influenza pan-

demic provided a natural experiment to examine the

relationship between influenza and other diseases in

the absence of traditional seasonal confounding fac-

tors. Thus, we built a forecasting model to determine

if we could accurately forecast AMI using influenza

activity during the second wave of the novel H1N1

pandemic.

METHODS

Data source

All data were extracted from the Nationwide

Inpatient Sample (NIS), the largest all-payer database

of national discharges in the USA. The database is

maintained as part of the Healthcare Cost and

Utilization Project by the Agency for Healthcare

Research and Quality, and contains data from a 20%

stratified sample of non-federal acute-care hospitals

[25]. This sample includes academic medical centres,

community hospitals, general hospitals, and speciality

hospitals. It excludes long-term care facilities and re-

habilitation hospitals. To adjust for yearly changes in

the sampling design, we applied the weights provided

by the Agency for Healthcare Research and Quality

[26].

We first identified all hospitalizations over the per-

iod from January 1998 to November 2009 during

which a primary or secondary diagnosis of AMI was

received. For case ascertainment, we used the Inter-

national Classification of Diseases, 9th Revision,

Clinical Modification (ICD-9-CM) codes 410.0–

410.9. We then aggregated all cases by month to

produce a national sample of cases of AMI over time.

Cases were assigned to a calendar month on the basis

of the date that the patient was admitted to the hos-

pital. In a similar fashion, we identified all hospital-

izations over the same time period during which a

primary diagnosis of ischaemic stroke was received.

For case ascertainment of strokes, we used the ICD-

9-CM codes 433.01, 433.11, 433.21, 433.31, 433.81,

433.91, 434.00–434.91, and 436.

Seasonal models

To build a time series to reflect seasonal influenza

activity, we identified all hospitalizations over the

period from January 1998 to September 2007 during

which a primary or secondary diagnosis of influenza

was received, leaving the remainder of the data

(October 2007–November 2009) as a validation sam-

ple for assessing the accuracy of our forecasts. We

formulated this series to represent an overall en-

vironmental exposure to influenza. For case ascer-

tainment we used the ICD-9-CM codes 487.0
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(influenza with pneumonia), 487.1 (influenza with

other respiratory manifestations), and 487.8 (influ-

enza with other manifestations). Each time-series

(AMI, ischaemic stroke, influenza) was first log-

transformed and subsequently differenced to better

meet the assumption of stationarity, allowing for the

use of the traditional Box–Jenkins approach [27].

Differencing the series accommodates the curvilinear

temporal trends that are present in the AMI and

stroke series.

To investigate the association of either AMI or

ischaemic stroke with influenza at the national level,

we computed a cross-correlation function (CCF) be-

tween the AMI and influenza series and between the

ischaemic stroke and influenza series. Because cross-

correlations between time series can be spurious due

to the effects of common temporal patterns, we

employed a pre-whitening process [28]. The pre-

whitening process involves the filtering of the two

time series as a means of removing common temporal

patterns. We were then able to detect correlations

based on prominent local peaks or troughs in two

time series that are temporally aligned, as opposed to

coincidental correlations based on shared seasonal

patterns. The former are representative of a legitimate

association, whereas the latter are merely due to

common cyclic behaviour. In our application, com-

mon yearly cycles are present in both AMI and

ischaemic stroke series as well as the influenza series,

since both are elevated during the winter months.

Clinical judgement would suggest that any tem-

poral association between either the AMI or the

stroke series and the influenza series would be in-

stantaneous. The CCF was used to statistically vali-

date (or negate) a contemporaneous relationship. We

then formulated time-series regression models with

autocorrelated errors, according to the steps outlined

in section 5.5 of Shumway & Stoffer [29]. The errors

were described using seasonal autoregressive in-

tegrated moving-average (ARIMA) models. Such a

time-series regression model can be written as

yt=b0+b1xt+"t,

where yt is the outcome (AMI or stroke incidence), xt
is influenza, and etyARMA(p, q)(P,Q)12. Here, p and

q represent the local autoregressive and moving aver-

age components, respectively, and P and Q represent

the seasonal autoregressive and moving average

components, respectively.

In the first national-level regression model, AMI in-

cidence is the response series and concurrent influenza

activity is the explanatory series. We included a

moving-average and two seasonal autoregressive

components to account for the temporal progression

of the series. These components were identified by

inspecting the autocorrelation function (ACF) and

the partial autocorrelation function (PACF) for the

residuals from an ordinary linear regression model

fitted to the response and explanatory series.

In a similar fashion, we formulated a second

national-level regression model where ischaemic

stroke incidence is the response series and concurrent

influenza activity remains the explanatory series.

Using the ACF and the PACF for the residuals from a

fitted ordinary linear regression model to guide model

selection, we again included a moving-average com-

ponent as well as two seasonal autoregressive com-

ponents to account for temporal correlation.

Seasonal, regional and age analysis

The NIS data can be categorized by both geographi-

cal region and age. There are four geographical census

regions: Northeast, Midwest, South, and West. Based

on clinical judgement, we first chose to divide the data

by age into those cases agedf65 years and those aged

>65 years. To further investigate the effect of ad-

vanced age, we created overlapping subsets of the

>65 years age group defined by four criteria: >65,

>70, >75, and >80 years. We fitted a time-series

regression model for each region and each age group,

as well as for every combination of region and age

group. We performed the regional-specific analyses

to account for the large temperature, seasonal

and demographic differences among the four NIS-

identified geographical regions of the USA. The age-

specific analyses were performed to investigate the role

of age as a moderator of the associations of interest.

Measures of attributable risk

A measure akin to an attributable risk was then cal-

culated to assess the burden of influenza activity on

AMI incidence. It should be noted that we did not

attempt to measure risk at the individual level (by

identifying subjects with a history of influenza prior to

a myocardial infarction), since outpatient records

were not available in our dataset. To compute the at-

tributable risk measure for a specific year, we first

found the peak influenza month during a 12-month

period extending from July to June. We then calcu-

lated the ratio of (1) the average AMI incidence for
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the year, less the incidence during the peak influenza

month, over (2) the average AMI incidence for the

year. Our attributable risk measure represents the

proportion of AMIs that could potentially be elimi-

nated if it were possible to bring the level of influenza

during the peak month of the influenza season down

to the average level during the course of a given year.

We used the same approach to compute an attribu-

table risk measure for ischaemic strokes.

AMI forecasts for 2007–2008, 2008–2009 and the

2009 pandemic

To use the novel H1N1 pandemic as a natural exper-

iment to further confirm the association between in-

fluenza and AMI, we used the same codes as listed

earlier for both influenza and AMI to extend our

time-series to November 2009. We made monthly

predictions of AMI from the model we developed

using seasonal influenza activity (from June 1998 to

September 2007), and evaluated the performance of

the model by comparing the forecast incidence of

AMI with the actual observed incidence levels. We

made predictions both with and without influenza

activity as a covariate. In total, we compiled three

different sets of monthly forecasts to capture the fol-

lowing: the 2007–2008 influenza season, the

2008–2009 influenza season (note that this also in-

cludes the ‘first wave’ of the pandemic), and finally

the first part of the 2009 influenza season, which

captured the ‘second wave’ of the 2009 novel H1N1

pandemic. Specifically, we defined these three time

periods to be: (1) October 2007–June 2008, (2) July

2008–June 2009, and (3) July 2009–November 2009.

Finally, we used mean squared prediction error to

compare the two forecasts (with influenza and with-

out influenza) for each observation period. All

analyses were performed using R version 2.11.1 (R

Foundation, Austria).

RESULTS

Seasonal models

Figure 1 shows the AMI, ischaemic stroke, and in-

fluenza time series. The coefficients and correspond-

ing standard errors for our national-level time-series
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Fig. 1. The raw time-series data for the incidence of acute myocardial infarction (AMI) (top), ischaemic stroke (middle), and

influenza (bottom) from January 1998 to September 2007. All units reflect the weighted frequency of discharges as reported
from the Nationwide Inpatient Sample (NIS).
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regression models based on AMI and ischaemic

stroke are shown in Table 1. We found the concurrent

influenza covariate to be statistically significant in the

model for AMIs but not in the model for ischaemic

stroke. Thus, influenza is significantly associated with

AMI, but not ischaemic stroke. Note that removal of

the influenza covariate from the AMI model results in

an increase of 8.2% in the estimated residual vari-

ance, accompanied by a considerable increase in the

value of Akaike’s Information Criterion (AIC) from

x463.6 to x456.5. AIC is a widely used tool for

statistical model selection based on predictive effi-

cacy; optimal models correspond to smaller values for

the AIC. The large increase in AIC that results from

removing influenza from the model tells us that in-

fluenza is an important covariate in our AMI model.

(A difference in AIC values of two or more is gener-

ally viewed as a meaningful difference.) Removal of

the influenza covariate from the ischaemic stroke

model results in an increase of 0.18% in the estimated

residual variance, accompanied by a decrease in the

value of the AIC from x514.1 to x516.0.

Since our raw incidence series are comprised of

counts, we also performed the national-level analyses

using a Poisson regression approach, where the mod-

els were fitted using generalized estimating equations

and a simple autoregressive working correlation

structure. The influenza covariate series was log

transformed; the outcome series were not, but a log-

link function was employed. To accommodate the

curvilinear trends in the AMI and stroke series, linear

and quadratic terms in the time index were included as

covariates. Again, the influenza covariate was signifi-

cantly associated with AMI, but not ischaemic stroke.

The point estimates and model-based standard

errors were quite close to those obtained using the

time-series regression approach. The point estimates

were only marginally affected by the removal of the

linear and quadratic terms in the time index.

Seasonal, regional and age analysis

The AMI and ischaemic stroke analyses were then

stratified by age group. Age-specific time-series re-

gression models were fitted using the same model

structure as that used for the overall national series.

The influenza covariate estimates, along with their

standard errors and P values, for the national-level

age-specific AMI and ischaemic stroke analyses are

shown in Table 2. The influenza covariate was found

to be significant in the models of AMI for all age

groups >65 years. In the f65 years age group, no

such association was found. In contrast, no group was

found to have a significant influenza covariate in the

age-specific models for ischaemic stroke. Based on

these results, age-specific attributable risk measures

were calculated for AMI; these measures are illu-

strated in Figure 2.

Table 3 shows the influenza covariate estimates, as

well as their standard errors and P values, for our

AMI and ischaemic stroke time-series regression

models based on all combinations of age groups and

regions. Note that the national pattern for AMI,

where the influenza covariate was significant for all

age groups except for those aged f65 years, holds in

all four geographical regions. The ischaemic stroke

analyses show no pattern of significance. Using a

conservative adjustment for multiple comparisons

(the Bonferroni method), none of the ischaemic

stroke tests were significant, while the pattern of

significance for AMI in older populations remained

significant.

Table 1. Estimates, standard errors, and accompanying P values for the national level time-series regression

models. (a) Acute myocardial infarction incidence serves as the response series and concurrent influenza activity as

the explanatory series. (b) Ischaemic stroke incidence serves as the response series and concurrent influenza activity

as the explanatory series

Coefficients

(a) Acute myocardial infarction (b) Ischaemic stroke

Estimate S.E. P value Estimate S.E. P value

Moving average component 1 x0.3033 0.0873 0.0005 x0.6778 0.0630 <0.0001
Seasonal autoregressive

component 1

0.4198 0.0890 <0.0001 0.4215 0.0870 <0.0001

Seasonal autoregressive
component 2

0.4596 0.0949 <0.0001 0.4278 0.0936 <0.0001

Influenza 0.0116 0.0038 0.0023 x0.0011 0.0027 0.6806
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AMI attributable risk measures

Figure 3 shows age-specific AMI attributable risk

measures calculated for each region, categorized by

age group. Again, the national pattern of risk in-

creasing with age holds for each region.

AMI forecasts for 2007–2008, 2008–2009 and the

2009 pandemic

Three sets of predictions were made, one for each in-

fluenza season and a third to examine the ‘second

wave’ in autumn 2009. Each set of predictions in-

cluded forecasts from the model with influenza in-

cluded as a covariate and forecasts from the model

without influenza. In 2008, the forecasts based on the

model with influenza reflected a 34.5% reduction in

mean squared prediction error vs. the forecasts based

on the model without influenza. For the 2008–2009

influenza season (including the first wave in May of

2009), using our model with influenza we observed

only an 8.6% reduction in mean squared prediction

error vs. the model without influenza. It should be

noted that this was a period of very mild influenza

activity. Finally, when predicting AMI during

autumn 2009 (coinciding with the second wave of

the pandemic), using the model with influenza

we observed a 70.1% reduction in mean squared

prediction error compared to the model without in-

fluenza.

DISCUSSION

Our results show that in the USA, the incidence of

AMI is associated with influenza activity. Specifically,

we show that models incorporating influenza as a

covariate predict AMI with much greater accuracy

than models that omit influenza (i.e. the models that

include influenza exhibit large decreases in AMI pre-

diction error vs. the models that exclude influenza).

The 2009 pandemic provided a unique opportunity to

study the relationship between influenza and AMI

because the pandemic peaked several months prior to

traditional peaks in influenza activity. This allowed us

to focus on the relationship between influenza and

AMI in the absence of traditional potential con-

founders, e.g. weather. If the association with influ-

enza and AMI was indeed spurious, it would be

expected that the early peak in influenza would lead to

poor predictive ability for those models incorporating

influenza as a covariate. However, in contrast, we

observed a substantial reduction in the observed error

of our forecasts when we included influenza activity in

our model, especially during the second wave of the

2009 influenza pandemic that did not occur during the

traditional influenza season.

Table 2. Estimates, standard errors, and accompanying P values for the influenza covariate in the age-specific

time-series regression models with (a) acute myocardial infarction incidence and (b) ischaemic stroke incidence

as the response series

Model age

group (years)

(a) Acute myocardial infarction (b) Ischaemic stroke

Coefficient

estimate S.E. P value

Coefficient

estimate S.E. P value

f65 x0.0017 0.0044 0.6992 x0.0040 0.0042 0.3468
>65 0.0201 0.0040 <0.0001 x0.0010 0.0028 0.7181
>70 0.0233 0.0042 <0.0001 0.0004 0.0031 0.9025

>75 0.0297 0.0043 <0.0001 0.0022 0.0032 0.4898
>80 0.0365 0.0046 <0.0001 0.0048 0.0033 0.1508

0·010

0·008

0·006

0·004

0·002

A
ttr

ib
ut

ab
le

 ri
sk

0·000

–0·002

–0·004
¯65 >65 >70

Age group (years)
>75 >80

Fig. 2. Attributable risk measures for influenza activity on

acute myocardial infarction incidence for age groups f65,
>65, >70, >75, and >80 years. Note that the risk in-
creases with age.
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The association we found between influenza and

AMI is, however, dependent upon age, as groups aged

f65 years did not produce a statistically significant

result. This age-related risk may be why some

investigators have not found an association between

influenza and myocardial infarctions in previous

studies. The observed association with age implies a

dose– response, with an attributable risk of 0.5% for

individuals aged >65 years, increasing to 0.85% for

individuals aged >80 years. By categorizing the AMI

and influenza series by census regions, we were able to

demonstrate that our age-related findings were con-

sistent across different temperature ranges, climates

and demographics. That is, we observed the same do-

se–response association of age within each geographi-

cal region aswas observed at the national level. Finally,

in contrast to our findings for myocardial infarctions,

we did not find a similar association for ischaemic

strokes, even after adjusting for age.

We were surprised by the lack of association be-

tween influenza and strokes. A recent study showed

that vaccination against influenza was associated with

significant reductions in the risk of hospitalizations

for heart disease and cerebrovascular disease [14].

There are several possible reasons for this discrepancy

in associations. First, it could be that imprecision in

the diagnosis of stroke masks a true association. For

example, respiratory infection appears to predispose

to large vessel and cardioembolic stroke, but not to

small vessel strokes (which represent the majority of

strokes) [30]. Note, we also examined the incidence of

transient ischaemic attacks, but our results were also

negative (data not shown). Second, use of medications

for influenza symptoms may have selectively in-

creased the risk for myocardial infarction (or pre-

senting symptoms). Non-steroidal anti-inflammatory

agents have been shown to increase risk of an AMI,

but have little or no effect on stroke [31, 32].

Sympathomimetics such as decongestants increase

cardiac workload and may cause coronary vaso-

spasm, and may precipitate ischaemia or cardiac ar-

rhythmia that leads to hospital admission. Third, the

Table 3. Estimates, standard errors, and accompanying P values for the influenza covariate in the regional

age-specific models of (a) acute myocardial infarction incidence and (b) ischaemic stroke incidence

Region
Model age
group (years)

(a) Acute myocardial infarction (b) Ischaemic stroke

Influenza
estimate S.E. P value

Influenza
estimate S.E. P value

Northeast Overall 0.0101 0.0045 0.0248 x0.0016 0.0044 0.7113

f65 x0.0010 0.0051 0.8445 x0.0070 0.0054 0.1966
>65 0.0183 0.0050 0.0002 x0.0020 0.0049 0.6771
>70 0.0228 0.0052 <0.0001 x0.0005 0.0051 0.9286

>75 0.0283 0.0053 <0.0001 0.0019 0.0056 0.7306
>80 0.0316 0.0055 <0.0001 0.0044 0.0058 0.4482

Midwest Overall 0.0128 0.0037 0.0005 x0.0037 0.0032 0.2471
f65 0.0004 0.0047 0.9322 x0.0149 0.0051 0.0031

>65 0.0204 0.0045 <0.0001 x0.0018 0.0033 0.5790
>70 0.0228 0.0048 <0.0001 x0.0019 0.0034 0.5716
>75 0.0277 0.0051 <0.0001 x0.0009 0.0037 0.8036
>80 0.0322 0.0052 <0.0001 0.0049 0.0041 0.2336

South Overall 0.0127 0.0060 0.0343 x0.0029 0.0043 0.5025

f65 0.0022 0.0068 0.7463 x0.0102 0.0048 0.0351
>65 0.0220 0.0061 0.0003 0.0014 0.0048 0.7745
>70 0.0264 0.0063 <0.0001 0.0049 0.0052 0.3531

>75 0.0276 0.0065 <0.0001 0.0101 0.0054 0.0636
>80 0.0323 0.0071 <0.0001 0.0159 0.0053 0.0028

West Overall 0.0048 0.0053 0.3651 0.0052 0.0041 0.2037
f65 x0.0038 0.0060 0.5265 x0.0078 0.0057 0.1693

>65 0.0171 0.0068 0.0119 0.0053 0.0047 0.2551
>70 0.0196 0.0070 0.0051 0.0087 0.0054 0.1090
>75 0.0321 0.0074 <0.0001 0.014 0.006 0.0194

>80 0.0470 0.0083 <0.0001 0.0135 0.0069 0.0506
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haemodynamic effects of infection (increased heart

rate and stroke volume) could also precipitate myo-

cardial ischaemia or arrhythmia. Fourth, influenza

can causes abnormal EKG findings [33] and some-

times myocarditis with increased cardiac enzymes

[34], both of which could lead to misdiagnosis of

myocardial infarction. Fifth, there is increasing evi-

dence from animal models that atherosclerosis has

site-specific differences in susceptibility to changes in

immune responses. Of particular relevance is evidence

that lesions in mouse innominate arteries (which are

strikingly similar to human carotid lesions) exhibit

different responses to immune manipulation than

coronary sinus and aortic lesions [35, 36]. Murine in-

nominate lesions also have strikingly different gene

activation patterns for CD44 than do aortic lesions

[37]. Moreover, there is clinical evidence in humans

that tissue propensity to accumulate cholesterol (i.e.

presence of xanthelasma) predicts coronary disease

but not ischaemic stroke [38]. It is also possible that

the positive findings in the previously mentioned

stroke-influenza-vaccination study may instead be a

reflection of other differences between subjects who

chose vaccination compared to subjects who declined

annual vaccination. Nevertheless, there are still many

reasons for patients at risk for strokes to undergo

annual vaccination against influenza.

Our attributable risk measure represents the pro-

portion of AMIs that could be eliminated if it were

possible to bring the level of influenza during the peak

of the influenza season down to the average level dur-

ing the course of a given year. This is a conservative

assessment of burden because only the peak month of

influenza activity, not the entire influenza season, is

taken into account. In terms of public health impact,

the proportion of myocardial infarctions attributable

to influenza that are identified is relatively small.

However, considering the tens of thousands of cases of

AMIs that occur yearly, this represents a non-trivial

number of myocardial infarctions.

The observed association between AMI incidence

and influenza suggests a variety of strategies for

reducing seasonal variation in myocardial incidence,

beginning with the prevention of influenza via a sea-

sonal vaccination. Second, as influenza vaccinations

are often less effective in the elderly, there may be a
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role for social distancing during the influenza season,

especially in severe influenza seasons. Finally, im-

proving local influenza surveillance data may play a

similar role. As the likelihood of contracting influenza

increases with hospitalization, physicians may rec-

ommend that elective or non-imperative procedures

occur outside the influenza season. However, in the

USA the only universally available local influenza

activity surveillance data is at the state level, and it is

often 1–2 weeks old when it becomes available. Thus,

expanding local surveillance data may lead to reduced

numbers of influenza infections, thereby possibly re-

ducing AMI incidence, or at least helping to antici-

pate the presentation of possible influenza-associated

myocardial infarction cases.

Our study has several limitations. First, we used

administrative data rather than clinical or micro-

biological data for case ascertainment. However,

other studies have shown that ICD-9-CM codes have

a reasonable sensitivity, specificity, and positive pre-

dictive value for detecting influenza, myocardial

infarctions and strokes [39–41]. Second, other

respiratory viral pathogens co-circulate during winter

months, possibly contributing to AMI incidence;

however, we did not find such a relationship with

respiratory syncytial virus (data not shown). Third,

our study is ecological. We used the aggregate inci-

dence for each disease and did not study associations

at the individual level ; instead, we focused on influ-

enza as an ‘environmental ’ risk factor. Although it

would be ideal to have data showing that individual

subjects actually had influenza prior to an AMI or

stroke, we cannot infer this from hospital discharge

data. Even if we had linked outpatient data we would

not have detected all cases since patients with influ-

enza can present with atypical symptoms, especially

the elderly.

Despite the limitations to our study, we found a

strong statistical relationship between influenza and

AMI, and our focus on the pandemic further

strengthens this association. Although the relative

attributable burden (i.e. clinical significance) is fairly

modest considering all AMIs, our findings in the USA

in conjunction with findings in other countries pro-

vide another reason for annual influenza vaccination.

Our results also suggest that clinicians should have a

high index of clinical suspicion when caring for

patients presenting with cardiac symptoms during the

influenza season, especially if they report recent ex-

posures to influenza or report a recent or current his-

tory of influenza-like symptoms. Finally, myocardial

infarctions and strokes are often categorized together ;

our results may provide insights to different pathways

for these two different vascular diseases. Future work

should focus on individual-level analyses and consider

the possible effects of influenza in the setting of other

cardiac risk factors.
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