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Abstract

For a set function G on an atomless finite measure space (X, ®, m), we define the
subgradient, conjugate set of © and conjugate functional of G. It is proved that a
minimization problem of set function G has an optimal solution if and only if the
Lagrangian on @ X L,(X, ©, m) has a saddle point (Qo, f0) such that

G(Q0) = inf G(Q) = inf L(Q;f0)
as© os@

where /0 is an element of the conjugate set ©* (for the definition, see the later context).

1. Introduction

The mathematical programming of a set function was first studied by Morris [5],
[6]. The authors investigated the minimization problem for a set function in [3]
and proved that the Fenchel duality theorem holds for set functions, where we
have defined the conjugate set of a o-algebra and the conjugate functional of a
convex set function. In this note we ask what relations hold between the original
set function and the conjugate functional in mathematical programming. This
question has been investigated by Scott and Jefferson [8-10] for several function-
als. In this note our main result will investigate a convex set function in
mathematical programming. It is related to convex integral functions on Lx, see
Rockafellar [7].

Let (X, ®, m) be a finite atomless measure space and G be a convex set
function from © to R, the real numbers. We consider an optimization problem as
follows

MinimizeG(fi). (l . l)
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[2) Optimization of convex set functions 131

The existence of a solution of (1.1) is essentially related to its conjugate functional
G* defined on the conjugate set @*. In this note, we prove that the minimal point
ft0 of (1.1) satisfies G(£20) = infae@ L(fi; / 0 ) for some /0 E @* if and only if
(J20, / 0) is a saddle point of the Lagrangian L(B; / ) . For this purpose, we begin
with some definitions about the subdifferential, conjugate set and conjugate
functional of a convex set in Section 2. Section 3 is the main part of this note.

2. Conjugate functional and subdifferential

Throughout this note, we assume that {X, @, m) is a finite atomless measure
space and G is a convex set function from a o-algebra © to R (for the definition,
see [3]). We define a subgradient of the set function G as follows.

DEFINITION 1. An element f E L^X, ®, m) is said to be a subgradient of the
convex set function G at a point ft0 E % if it satisfies the inequality

G(fi)>G(flo) + </,xa-Xao> for all 8 e ©.

For a set function G, its subgradient at a point Qo is not unique, it is a set of the
following form:

9G(B0) = { / e l , ( I , ®,m) | G(0) > G(00) + </, Xa ~ Xa0>forallQ G ®)"

(2.1)

We call this set a subdifferential of G at fi0. / / 9G(Q0) ¥= 4>, then G is said to be
subdifferentiable at J20.

If the set function G is convex and differentiable at Qo (see [3]), then

where/0() = £>G(fi0) denotes the derivative of G at fl0. As G is differentiable at a
point, fi0 E ©, then S20 is a minimal of G on © if and only if for any £2 E ©,

(DG(Slo),Xao)<(DG(Qo),Xa) (2.2)

From the definition of subgradient at fl0, it is evident that fi0 is the minimal of
the functional G(fi) - </, Xc>-

In order to induce the Lagrangian of a set function G, we have to define the
conjugate set and conjugate functional with respect to G.

DEFINITION 2. A subset of Lx(X,®,m) which is defined by

©*= {/EL1(X,©,m)|sup[</)Xo>-G(fl)]<oo}, (2.3)
v fie© >
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is called the conjugate set of®. The functional G* on®* defined by

G*(/)=sup[</,Xo>-G(O)], (2.4)
fie©

for f £ ®* is called the conjugate functional of G.

Evidently, G* is a convex function (see [3]) and for any fie®,

G(0) = sup [</,Xo>-<?*(/)]• (2-5)

DEFINITION 3. 77ie subdifferential of a conjugate functional G* at a point f0 £ @*
is defined to be a subfamily of measurable subset in @:

9G*(/o) = {« e © I G*(/) > G*(/o) + < / - / „ , XQ},forallf(E ©*}.

(2.6)

element of dG*(f0) is called a subgradient of G* at the point f0 £ ©*.

Note that if (X, ©, m) is a finite atomless measure space then the conjugate
transform for the set exists (cf. [3]). Throughout this paper we assume that
(X, @, m) is a finite atomless measure space.

By the definition of the conjugate functional, we have Young's inequality:

G*(/) + G(fl) > ( / , Xn) (2-7)

for any J2 £ © and / £ ©*. The question arises whether or not the equality in
(2.7) holds. We would give the answer as follows.

PROPOSITION 4. If G is a convex set function on © with its conjugate functional
G* on the conjugate set ©*, then

( i) / £ 9G(fl0) if and only i/G(Oo) + G*(f) = ( / , xflo> whenever J20 £ @,
(ii) Q £ 3G*(/0) if and only if G(fl) + G*(/o) = </0, Xa> whenever /„ £

PROOF, (i) If/ £ 9G(fl0), then by definition, for any fl £ ©, we have

This implies that

for all fi £ © , a n d

. XQO>> G(O O ) + sup
fle©
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It follows that

and by Young's inequality, it would imply that

Conversely, if G(Q0) + G*(f) — (/ , Xa0). then by the definition of conjugate
functional, we have

</. XQO>= G(QO) + G*(f) > G(Q0) + </, X D > - G(Q),

or
G(S2)>G(flo) + < / , X a - X S o > foral lf iG®.

This implies that/ G dG(Q0).
(ii) For Q G 3G*(/0) we have

or
</o. Xa>> <?*(/o) + </, XQ>" G*(/) for all/G ©

It follows that
</o.Xa>>G*(/o)+ sup [</,Xo>-<?*(/)].

/£©•

That is
(fo>Xa)^G*

Hence, by Young's inequality, we obtain

Conversely, if G(fi) + G*(/o) = </„, xB>, then

</o. Xa>= G(Q) + G*(/o) > </, XD>- <?*
or

G*(/)>G*(/0) + < / - /

This means that B G 3G*(/0).

3. Characterization for the optimality of a set function

We define a function on © X L,(*. ©, w) by

(3.1)

This function L(Q; / ) may be called Lagrangian. We would show that L(Q; / )
has a saddle-point property. The following theorem is essential in this paper.
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T H E O R E M 5. If&0
 e ® andf0 G © * , then the following statements are equivalent.

(i) fi0 minimizes the problem (1.1) JO //ia/ G( f i 0 ) = m I a e © Z.(S2; J^,).
(ii) (£20, /0) « a saddle point of the Lagrangian L(fl; / ) , //urt w,

/or a/// G @* and ii G ©. Consequently, L(ii0; /„) = G(fl0).

PROOF. Suppose (i) holds, then, by definition,

< sup [</,Xao>-G*(/)]

= G(B0) = inf L(ii;f0) <L(Q;/0) forallfiG®.
fie®

Since G(00) = inf L(0; / 0 ) < </0, X Q 0 > - (?*(/„), we have

G(Bo) + G*( / o )< ( / o , X a o > -

Thus, by the Young's inequality, we obtain

and, by Proposition 4(ii), we have S20 G 3G*(/0). This implies

< / o . X Q o > - G * ( / o ) > ( / , X a o > - G * ( / ) foral l /G©*.

Therefore, (fl0, /„) is a saddle point of L(ii; / ) . That is,

L ( f i o ; / o )<L(Q o ; / o )<L( f l ; / o ) for all 0 G © , / e ©*.

Conversely, suppose that (ii0, f0) is a saddle point of the Lagrangian L, then

= sup [</, XCo>- <?•(/)] > </0, X B o>- G*(/O)

= <f,Xao)-G*(f) forall/G©*.

Hence G(fi) > sup/e@>.[</, Xoo>- G*(/)] = G(S0) h o l d s f o r a11 n e ®- There-
fore, fi0 is the minimal point of (1.1). It remains to show that G(00) =
inffie(S i-(Q; /o). Since (fi0, /0) is a saddle point,

inf L (O; / O )>L(B O ; / O )> sup L ( 0 0 ; / ) = G(00) .
fie©

On the other hand,

It follows that

G ( 0 0 ) = inf L(Q;/0).
fie©

https://doi.org/10.1017/S0334270000003635 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003635


[6] Optimization of convex set functions 135

COROLLARY 6. In order that the supremum sup/e@.L(fl0; / ) = L(Q,0; f0) is
attained at a point f0 G ©* C L(X, ©, m) if and only iff0 G 3G(B0).

PROOF. Suppose sup/e@. L(fi0; / ) = L(fl0; /0) . Then

G(00)= sup[</,XCo>-C?*(/)]

= supL(flo;/) =
/£©•

That is, G(fi0) + G*(f0) = (fQ, Xa0)- Hence by Proposition 4, we see that
/0 G 3<?(00).

Conversely, if/0 G dG(QQ), then, for any B G ®,

L ( 0 0 ; / ) < sup L(O0; /)

Hence,

L ( 0 0 ; / ) < jnf^ [G(Q) - </0, Xa>] + </0, XQO>

= - sup [</0, X f l > - <?(0)] + </0, Xao>
/£©•

= L(00;/0) for all/G©*.

It follows that

supL(flo;/)<L(fio;/o).
/£©•

And then,

/£©•

By the above discussion, we could characterize the following equivalent state-
ments for optimization of a set function.

THEOREM 7. For Qo G © and f0 G ©* CLl(X,®,m), then the following state-
ments are equivalent:

(i) A point Qo G © w the minimal of the problem (1.1), such that G(B0) =
infQs(8L(J2;/0).
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(ii) (f l 0 , / 0 ) is a saddle point of the Lagrangian L(J2; / ) , that is

L(O0;/)<L(O0;/0)<L(O;/0)

for allf G ©* and Q, G ©.
(iii) y* subgradient f0 £ 9G(fi0) ««* f/iaf L(80; /0) = infBe@ L(fl; / 0 ) .

In fact, the equivalence of (i) and (ii) follows from Theorem 5, and the
equivalence of (ii) and (iii) follows from Corollary 6. Therefore (i), (ii) and (iii) are
equivalent.

4. Examples

Let X be an infinite compact subset of R", © a family of Lebesgue measurable
subsets of X, and let m be the Lebesgue measure on R". Then (A', ©, m) is an
atomless finite measure space. We consider the following problem.

MinimizeG(fl) = [ g(x) dm
fie© JQ

where g is an integrable function from R" into R. Then for any f G ®* =
Ll(X,®,m), the conjugate functional of G is given by

( ? * ( / ) = sup [</ ,Xo>-G(Q)]

[f(x)-g(x)]dm,
"ii,nx

where

The Lagrangian, defined by equation (3.1), is

= (g(x)dm-J [f(x)-g(x)]dm.

Then by straightforward calculation, one sees that the equivalent relations of
Theorem 7 hold.

5. Additional remark

There are a variety of interesting applications of the set function optimization
problem. These include applications in fluid flow [1], electrical insulator design [2]
and optimal plasma confinement [11].
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