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Abstract

For any positive integer M we show that there are infinitely many real quadratic fields that do not admit
M-ary universal quadratic forms (without any restriction on the parity of their cross coefficients).
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1. Introduction

The study of universal quadratic forms can be said to have started in 1770 with the
four square theorem of Lagrange, which one can formulate as the statement that the
positive definite form x2 + y2 + z2 + w2 is universal, that is, it represents every positive
integer. This has been followed by a large number of results, most dealing only
with diagonal forms

∑
aix2

i or with classical forms
∑

i≤ j ai jxix j which have all cross
coefficients ai j even for i , j. These common restrictions are somewhat unnatural,
but usually greatly simplify the arguments and results. Compare, for example, the
Conway–Schneeberger 15-theorem that a positive classical quadratic form is universal
if and only if it represents 1, 2, . . . , 15 with the Bhargava–Hanke [1] 290-theorem that
a (possibly nonclassical) form is universal if and only if it represents 1, 2, . . . , 290.
Another general result is the 451-theorem of Rouse [8] that an integral quadratic form
represents all odd natural numbers if and only if it represents 1, 3, . . . , 451. (The proof
is conditional on a conjecture that three specific ternary forms represent all odd positive
integers.)

One can also consider totally positive definite forms over totally real number fields.
Such a form is universal if it represents all totally positive integers. Again, much less
is known in general than in the special case of classical forms. To give two examples,
Deutsch [4] proved that the nonclassical form x2 + xy + y2 + z2 + zw + w2 is universal
over Q(

√
5) and Sasaki [9] classified all quaternary universal forms over Q(

√
13). In

the latter case, there are only two up to equivalence and they are both nonclassical.

The author was supported by ERC Starting Grant 258713.
c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

7

https://doi.org/10.1017/S0004972715001495 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001495


8 V. Kala [2]

It may seem that the number of variables required by a universal quadratic form
should grow with the discriminant of the (real quadratic) number field. This is not
entirely true, as Kim [7] constructed an infinite family of fields of the form Q(

√
n2 − 1)

admitting positive diagonal octonary universal forms.
On the other hand, Blomer and the author [2] have recently shown that for each

M there exist infinitely many real quadratic fields which have no M-ary positive
classical universal forms. The goal of the present short note is to extend this result to
nonclassical forms, to strengthen some of the statements (in particular Proposition 2.1)
and to greatly simplify the proofs. Our main result is the following theorem.

Theorem 1.1. For each positive integer M there are infinitely many real quadratic
fields Q(

√
D) which do not admit M-ary totally positive integral universal (possibly

nonclassical) quadratic forms.

The basic idea is the same as in [2]. By Proposition 2.1, it suffices to produce
M + 1 suitable elements αi = pi + qi

√
D of OK , which we do by considering finite

approximations pi/qi to the continued fraction for
√

D. These elements have small
norms of size approximately

√
D (see Proposition 3.3), which means that it is hard to

represent them nontrivially by a quadratic form. Surprisingly, the lower bound saying
that their norms are not too small also plays a key role in the proof. An important
difference from the previous arguments is that we are considering a different class of
continued fractions, which (together with the aforementioned improved estimate on
the norms of αi) allows us to bypass most of the delicate technical arguments of [2].
However, the present paper does not entirely supersede the previous one, as it produces
a much thinner sequence of suitable values of D.

The estimates on the norms of αi have a surprising corollary (Corollary 3.5) on the
sizes of certain coefficients of the continued fraction for

√
D. It is perhaps already

known, but we have not found it in the literature.
The proof of Proposition 2.1 is formulated in the language of lattices associated to

quadratic forms. It is also common to consider OK-lattices that are not necessarily free
as OK-modules. Our arguments work in this setting as well and we state the resulting
generalisation of Theorem 1.1 as Corollary 4.3.

Although Proposition 2.1 holds for any totally real number field, we do not know
how to extend the rest of the arguments to fields K of higher degree over Q, leaving
open the tantalising question of what happens in general. In fact, we are not aware of
any results concerning universal quadratic forms over OK . Surprisingly, the situation
is very different over rings of S -integers, as Collinet [3] recently proved that the sum
of five squares is universal over OK[ 1

2 ] for any number field K.

2. Universal forms

In this section, let K be a totally real number field of degree N over Q. Let
σ1 = id, σ2, . . . , σN : K ↪→ R be the (distinct) real embeddings of K. The norm of
a ∈ K is then N(a) = σ1(a) · · ·σN(a). We write a � b to mean σi(a) > σi(b) for all
1 ≤ i ≤ N; a � b denotes a � b or a = b.
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Proposition 2.1. Assume that there exist totally positive elements a1, a2, . . . , aM ∈ OK
such that, for all 1 ≤ i , j ≤ M, if 4aia j � c2 for c ∈ OK , then c = 0. Then there are no
universal totally positive (M − 1)-ary quadratic forms over OK .

This result is similar to [2, Proposition 4], but we do not need items (1)–(3) from
there. The assumption in the former item (4) was aia j � c2. The change here is only
needed in order to obtain the result for all forms, not only the classical ones.

The general idea of the proof is the same as before, but we will still give the details
(which are somewhat different) and state things more explicitly.

Proof. Assume that Q(xi) =
∑

1≤i≤ j≤n ai jxix j is a universal totally positive quadratic
form over OK and let A = (bi j) be its matrix with bii = aii and bi j = b ji = ai j/2 for i , j.

Let B(xi, yi) =
∑

1≤i, j≤n bi jxiy j be the associated bilinear form and consider the
corresponding OK-lattice L. By this we mean that L ⊂ Rn has an OK-basis `1, . . . , `n
and B(xi, yi) = 〈

∑
xi`i,

∑
yi`i〉, where 〈·, ·〉 is the usual inner product on Rn. Note that

for xi, yi ∈ OK we have B(xi, yi) ∈ 1
2OK .

Since Q is universal, for each totally positive integer α, the lattice L contains a
vector v(α) that represents α, that is, α = 〈v(α), v(α)〉. In particular, for 1 ≤ i ≤ M,
there is vi ∈ L such that ai = 〈vi, vi〉. From now on, we work only with the lattice L.

Let us show that vi and v j are orthogonal for i , j by computing the inner product
〈vi, v j〉 =: c/2 with c ∈ OK . By the Cauchy–Schwarz inequality for vi and v j,

c2

4
= 〈vi, v j〉

2 ≤ 〈vi, vi〉〈v j, v j〉 = aia j.

Since Q and L are totally positive definite, we also see that 4σh(ai)σh(a j) ≥ σh(c)2 for
all 1 ≤ h ≤ N, that is, 4aia j � c2. But this implies that c = 0 by assumption, proving
that vi and v j are orthogonal.

Thus, the lattice L ⊂ Rn contains M pairwise orthogonal elements and n ≥ M. �

3. Continued fractions

In this section, we collect some useful results on continued fractions.
Let γ = [u0, u1, . . . ] be an infinite continued fraction of a real number γ > 0 and let

pi/qi = [u0, . . . , ui] be its ith approximation (ui, pi, qi ∈ N). Then it is well known (and
easy to see) that pi+1 = ui+1 pi + pi−1 and qi+1 = ui+1qi + qi−1 (with initial conditions
p0 = u0, p1 = u1u0 + 1, q0 = 1, q1 = u1) and∣∣∣∣∣ pi

qi
−

pi+1

qi+1

∣∣∣∣∣ =
1

qiqi+1
.

Also note that p2i

q2i
<

p2i+2

q2i+2
< γ <

p2i+1

q2i+1
<

p2i−1

q2i−1
.

Lemma 3.1. We have
1

(ui+1 + 2)q2
i

<

∣∣∣∣∣ pi

qi
− γ

∣∣∣∣∣ < 1
ui+1q2

i

.
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Proof. For the upper bound,∣∣∣∣∣ pi

qi
− γ

∣∣∣∣∣ < ∣∣∣∣∣ pi

qi
−

pi+1

qi+1

∣∣∣∣∣ =
1

qiqi+1
<

1
ui+1q2

i

.

We show the lower bound by repeatedly using the recurrence for q j as follows:∣∣∣∣∣ pi

qi
− γ

∣∣∣∣∣ > ∣∣∣∣∣ pi

qi
−

pi+2

qi+2

∣∣∣∣∣ =

∣∣∣∣∣( pi

qi
−

pi+1

qi+1

)
−

( pi+1

qi+1
−

pi+2

qi+2

)∣∣∣∣∣
=

1
qiqi+1

−
1

qi+1qi+2
=

ui+2

qiqi+2
=

ui+2

qi(ui+2qi+1 + qi)

≥
1

qi(qi+1 + qi)
=

1
qi(ui+1qi + qi + qi−1)

>
1

(ui+1 + 2)q2
i

. �

Assume now that γ =
√

D with squarefree D > 0. This means that γ =√
D = [k, u1, u2, . . . , us−1, 2k] is periodic with period s and that the sequence

(u1, u2, . . . , us−1) = (u1, u2, . . . , ur, . . . , u2, u1) is symmetric, that is, us−i = ui and the
central element ur (for r = d(s − 1)/2e) appears once or twice. Note that u0 = k, usi = 2k
and usi+ j = u j for i > 0 and j ≥ 0.

Friesen proved the following theorem, which says that it is often possible to find
such a D. Note that the qi in the statement of the theorem are independent of k and so
the condition is well defined.

Theorem 3.2 [5]. Let (u1, u2, . . . , us−1) be a fixed symmetric sequence of positive
integers such that

qs−2 or
q2

s−2 − (−1)s

qs−1

is even. Then there exist infinitely many k such that
√

D = [k, u1, u2, . . . , us−1, 2k] for a
squarefree D.

Throughout the rest of the paper, let K = Q(
√

D) with squarefree D > 0. Then
OK = Z[

√
D] when D ≡ 2, 3 (mod 4) and OK = Z[ 1

2 (1 +
√

D)] when D ≡ 1 (mod 4).
We denote the conjugate of a ∈ K by a′. The norm is just N(a) = aa′ and a � b means
that a > b and a′ > b′.

Let
αi = pi + qi

√
D, N(αi) = p2

i − Dq2
i .

The elements αi clearly satisfy the recurrence αi+1 = ui+1αi + αi−1. Note that αi is
totally positive if and only if i is odd.

To prove Theorem 1.1, we will use Proposition 2.1 and take for a j some of the
approximations αi for a suitable value of

√
D. The following proposition gives us

crucial information about the approximate sizes of the norms of the elements αi, which
we shall use several times in the following proofs. Note that when D ≡ 1 (mod 4)
and pi and qi are both odd, we could consider αi/2 ∈ OK instead of αi, which would
improve the bounds by a factor of four.
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Proposition 3.3. We have

2
√

D
ui+1 + 2.5

< |N(αi)| <
2
√

D
ui+1 − 0.5

.

Proof. Using Lemma 3.1, we first see that

2qi
√

D −
1

ui+1qi
< pi + qi

√
D < 2qi

√
D +

1
ui+1qi

,

and then we obtain the upper bound as follows:

|N(αi)|= (pi + qi
√

D)|pi − qi
√

D| <
(
2qi
√

D +
1

ui+1qi

) 1
ui+1qi

=
2
√

D
ui+1

+
1

u2
i+1q2

i

<
2
√

D
ui+1 − 0.5

.

The proof of the lower bound is similar:

|N(αi)| >
(
2qi
√

D −
1

ui+1qi

) 1
(ui+1 + 2)qi

=
2
√

D
ui+1 + 2

−
1

ui+1(ui+1 + 2)q2
i

>
2
√

D
ui+1 + 2.5

. �

Conversely, we shall also need to know that every element of sufficiently small
norm is one of the approximations αi.

Lemma 3.4.

(a) Let µ ∈ Z[
√

D] \ Z be such that 0 < |N(µ)| < 1
2

√
D. Then µ = nαi or µ = nα′i for

some i ≥ 0 and n ∈ Z.
(b) Let D ≡ 1 (mod 4) and µ ∈ Z[ 1

2 (1 +
√

D)] \ Z. If 0 < |N(µ)| < 1
8

√
D, then µ = nαi

or µ = nα′i for some i ≥ 0 and n ∈ 1
2Z.

Proof. The proof is essentially the same as the last part of the proof of Proposition 12
in [2], so we give only a sketch.

For (a), let µ = x + y
√

D with x, y ∈ Z and y , 0. By factoring out n = ±gcd(x, y), we
can assume that x and y are coprime and x > 0. Also, by replacing µ by its conjugate
µ′ if necessary, we can assume that also y > 0. We need to distinguish two cases
depending on the sign of N(µ).

Case 1. N(µ) < 0, that is, x − y
√

D < 0 and y2D − x2 = |N(µ)| <
√

D/2. Hence,
y2D − 1

2

√
D − x2 < 0 and

√
D lies between the roots of the quadratic polynomial

2y2T 2 − T − 2x2. Thus,

√
D <

1 +
√

1 + 16x2y2

4y2 <
1

4y2 +

√
1 + 8xy + 16x2y2

4y2 =
x
y

+
1

2y2 .

We also have x/y <
√

D by assumption and so |(x/y) −
√

D| < 1/(2y2), which implies
[6, Theorem 184] that µ = αi for some i.
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Case 2. N(µ) > 0. This case is similar, and so we omit it (for details see [2, proof of
Proposition 12]).

To prove (b), just consider 2µ ∈ Z[
√

D] in (a). �

The two preceding results imply some basic information on the existence of large
coefficients in the continued fraction for

√
D. We do not need this result in the paper,

but it seems interesting in its own right. Let us remind the reader that by u � Dδ we
here mean that given δ > 0, there are positive constants cδ, dδ (independent of u and D)
such that cδDδ < u < dδDδ.

Corollary 3.5. Let
√

D = [k, u1, u2, . . . , us−1, 2k], where D is a squarefree positive
integer, and let αi be as above. Let 0 < ε < 1/2 and assume that ui � D1/2−ε for some i.
Then one of the following is true:

(1) αi−1 is divisible by a prime ramified in Q(
√

D); or
(2) for each m ∈ N with mε < 1/2, there is j(m) ∈ N such that u j(m) � D1/2−mε.

If D = P ≡ 1 (mod 4) is a prime, then (1) never happens, and so (2) holds.

Proof. By Proposition 3.3, we know that N(αi−1) � Dε. Assume that αi−1 is not
divisible by any ramified prime. Since pi−1 and qi−1 are coprime, it is also not divisible
by any inert prime, and so the only primes which divide it are split. The same holds
also for αm

i−1, and so n - αm
i−1 for all n ≥ 2. We have that N(αm

i−1) � Dmε � D1/2

and αm
i−1 > 1; hence, by Lemma 3.4, αm

i−1 = α j(m)−1 for some j(m). Then again by
Proposition 3.3 we conclude that u j(m) � D1/2−mε.

Finally, if D = P ≡ 1 (mod 4) is a prime, then the only ramified prime is (P) = p2

and N(p) = P. If p | αi−1, then P = N(p) ≤ N(αi−1) � Pε, which is not possible. �

Note that the proof actually shows how the constants implicit in u j(m) � D1/2−mε

depend on m: there are positive constants cε, dε such that

cm
ε D1/2−mε < u j(m) < dm

ε D1/2−mε.

The assumption in Corollary 3.5 on the existence of ui � D1/2−ε is unknown in
general, but if the class number of Q(

√
D) is 1, then it follows from the Riemann

hypothesis for L(s, χD) that there are many elements α with norm � Dε, and hence
coefficients ui � D1/2−ε for any 0 < ε < 1

2 . (See [2, proof of Proposition 5].)

4. The construction

We are finally ready to construct the continued fractions which give us many
elements satisfying the assumptions of Proposition 2.1.

Given M ∈ N, let u1, . . . , us−1 be a symmetric sequence of integers such that:

(1) r := d 1
2 (s − 1)e ≥ 2M + 1;

(2) the assumptions of Theorem 3.2 are satisfied; and
(3) ui is rapidly increasing, that is, u1 ≥ 2 and, for 1 ≤ i ≤ r, we have ui+1 ≥ u3

i .

For example, one can take s ≡ 2 (mod 3) and ui = 33i−1
for 1 ≤ i ≤ r.
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Let us show that in this setting, the assumption of Proposition 2.1 is satisfied.

Proposition 4.1. Assume that (1)–(3) above are satisfied and let i, j be odd such that
1 ≤ i < j ≤ r. If 4αiα j � c2 for c ∈ OK , then c = 0.

Proof. We can assume that c > 0. We shall first prove that it suffices to consider
c = 1

2αh for some h, then that h < j and finally h ≥ j, obtaining a contradiction.
(a) c = 1

2αh. By Proposition 3.3,

|N(c)| = |cc′| ≤ 4
√

N(αi)N(α j) <
8
√

D√
(ui+1 − 0.5)(u j+1 − 0.5)

<

√
D

8

(in the last inequality we used j ≥ i + 2 ≥ 3 and hence u j+1 ≥ u4 ≥ 233
), and so we can

apply Proposition 3.4. If c = nα′h (n ∈ 1
2N), then

1 <
( 1

2α1
)2
≤ (nαi)2 = c′2 ≤ 4α′iα

′
j < 1

(the first inequality follows from the definition of α1 and the last one from Lemma
3.1), which is not possible. Hence, c = nαh. Then 4αiα j � c2 = n2α2

h � ( 1
2αh)2, and so

we can assume that n = 1
2 and c = 1

2αh.
(b) h < j. The sequence αt is increasing, as we have αt+1 = ut+1αt + αt−1 > ut+1αt.

Hence, if h ≥ j, then αh ≥ α j and (since j ≥ i + 2)

αh ≥ αi+2 > ui+2αi+1 > ui+2ui+1αi ≥ 16αi.

This implies that ( 1
2αh)2 > 4αiα j, which is a contradiction.

(c) h ≥ j. By Proposition 3.3,
√

D
2(uh+1 + 2.5)

< |N(c)| ≤ 4
√

N(αi)N(α j) <
8
√

D√
(ui+1 − 0.5)(u j+1 − 0.5)

,

and so 162(uh+1 + 2.5)2 > (ui+1 − 0.5)(u j+1 − 0.5) > u j+1 − 0.5. But this is not possible
if h < j, because the sequence ut is rapidly increasing (and j ≥ 3). �

Theorem 1.1 now follows directly from Propositions 2.1 and 4.1.

Remark 4.2. The constructed elements αi have other interesting properties. For
example, when D ≡ 2, 3 (mod 4), then αi is not a sum of totally positive elements
and is irreducible (under a mild additional assumption on the size of k), that is, αi = xy
for x, y ∈ OK implies that x or y is a unit.

As we mentioned in the introduction, one can formulate the main theorem
(Theorem 1.1) more generally for OK-lattices that are not necessarily free. Let us
first briefly review the definitions.

For a (totally positive) number field K, a quadratic space is a pair (V,Q), where
V is a finite-dimensional K-vector space and Q is a quadratic form on V . An OK-
module (L,Q) is a (quadratic) OK-lattice if it is a lattice in (V,Q) of full rank. An OK-
lattice (L,Q) is totally positive if Q is a totally positive quadratic form, it is integral if
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Q(v) ∈ OK for all v ∈ L and it is universal if for each 0 ≺ a ∈ OK there is v ∈ L such that
Q(v) = a. In the proof of Proposition 2.1, we have used the fact that to each quadratic
form there corresponds an OK-lattice. Such an OK-lattice is always free as an OK-
module, but there exist also nonfree OK-lattices in the case when OK is not a principal
ideal domain.

All of the arguments, especially (the second part of) the proof of Proposition 2.1,
still apply almost verbatim in this setting and we obtain the following result.

Corollary 4.3. For each positive integer M, there are infinitely many real quadratic
fields Q(

√
D) which do not admit totally positive integral universal OK-lattices of

rank M.
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