Matrix Differentiation of the Characteristic Function

By H. W. Turnbull, St Andrews University.

(Received 12th January 1931. Read 16th January 1931.)

The following work is a sequel to three previous communications,\(^1\) and more particularly to the first. The present object is to shew the effect of repeated operation with the matrix differential operator

\[
\Omega = \left[\frac{\partial}{\partial x_{ji}} \right],
\]

when it acts upon a scalar matrix formed from an \(n\) rowed determinant \(|x_{ij}|\), or sums of principal minors, the \(n^2\) elements \(x_{ij}\) being treated as independent variables. Thus when \(z\) is a scalar quantity \(\Omega z\) means the matrix \([\partial z/\partial x_{ji}]\), whose \(ij^{th}\) element is the derivative \(z/\partial x_{ji}\).

§ 1. Fundamental Formulae.

From the square matrix

\[
X = [x_{ij}] = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}
\]

(1)

there may be derived a determinant \(|X|\) and a characteristic function \(\phi(\lambda)\), given by

\[
\phi(\lambda) \equiv |\lambda I - X| \equiv \begin{vmatrix} \lambda - x_{11} & \cdots & -x_{1n} \\ \vdots & \ddots & \vdots \\ -x_{n1} & \cdots & \lambda - x_{nn} \end{vmatrix}
\]

\[
= p_0 \lambda^n + p_1 \lambda^{n-1} + \ldots + p_{n-1} \lambda + p_n.
\]

(3)

Clearly \(p_n\) is equal to \((-)^n |X|\), while \(p_0 = 1\). The reciprocal of this polynomial \(\phi(\lambda)\) can be expanded in the form

\[
\psi(\lambda) = \frac{1}{\phi(\lambda)} = \frac{h_0}{\lambda^n} + \frac{h_1}{\lambda^{n+1}} + \frac{h_2}{\lambda^{n+2}} + \ldots
\]

(4)

II. A matrix form of Taylor's Theorem (2), 2 (1929), 33-54.

for suitably large values of the modulus of λ, where the coefficients h_r are homogeneous products of the n latent roots λ_i of X, defined by $\phi(\lambda_i) = 0$. The coefficients p and h satisfy the well known Wronskian relations

$$h_r p_0 + h_{r-1} p_1 + h_{r-2} p_2 + \ldots + h_1 p_{r-1} + h_0 p_r = 0,$$

where $r = 1, 2, \ldots$. The unit matrix is denoted by $I = [\delta_{ij}]$ in terms of the Kronecker delta; and an arbitrary constant matrix by $A = [a_{ij}]$. Both λ and the a_{ij} are independent of the x_{ij}, whereas the h_r and p_r are clearly functions of the x_{ij}. As usual s_r denotes the sum of the r^{th} powers of the n latent roots λ_i.

By $\Omega \theta$ is meant the matrix $[\partial \theta / \partial x_{ij}]$ whose ij^{th} element is $\partial \theta / \partial x_{ij}$, θ being a scalar quantity. Taking θ to be s, p and h in turn, the fundamental formulae of Ω differentiation (Cf. I, p. 119) are

$$\Omega s_r = rX^{r-1},$$

$$P_r = X^r + p_1 X^{r-1} + \ldots + p_{r-1} X + p_r I = -\Omega p_{r+1},$$

$$H_r = X^r + h_1 X^{r-1} + \ldots + h_{r-1} X + h_r I = -\Omega h_{r+1}.$$

It is useful to have a special notation P and H for these polynomial scalar functions of the matrix X, whose order is shewn by the suffix. Initially r is taken to be zero or a positive integer, so that $P_0 = H_0 = I$; when $r \geq n$, the right member of (7) disappears, p_r being zero, and the Cayley Hamilton equation

$$P_n = \phi(X) = X^n + p_1 X^{n-1} + \ldots + p_{n-1} X + p_n I = 0$$

is put in evidence.

The reciprocal properties (7) and (8) are brought out very clearly by the following new proof, which is based on the inverse of the λ-matrix $\lambda X - X$.

Letting X_{ij} denote the cofactor of x_{ij} in the determinant $|X|$, we may write the reciprocal of the non-singular matrix X in the form

$$X^{-1} = [X_{ji}] / |X|.$$

But we have

$$X_{ji} = \frac{\partial}{\partial x_{ji}} |X|;$$

hence

$$[X_{ji}] = \Omega |X|, \quad X^{-1} = \Omega |X| / |X|. \quad (12)$$
Let each x_{ij} be replaced by $x_{ij} - \lambda a_{ij}$, where λ and a_{ij} are constants. This leaves $\partial / \partial x_{ij}$, and therefore Ω unaltered, but replaces the matrix X by $X - \lambda A$. Accordingly we have the relation

$$\frac{1}{X - \lambda A} = \frac{\Omega |X - \lambda A|}{|X - \lambda A|},$$

(13)

identically for all values of λ and a, a result which can also be exhibited as

$$\frac{1}{X - \lambda A} = \Omega \log |X - \lambda A|.$$

(14)

In particular let A be replaced by the unit matrix I. Then

$$- \log |X - \lambda I| = - \log (\lambda_1 - \lambda) (\lambda_2 - \lambda) \ldots (\lambda_n - \lambda)$$

$$= - \log (-\lambda)^n + \frac{s_1}{\lambda} + \frac{s_2}{2\lambda^2} + \frac{s_3}{3\lambda^3} + \ldots.$$

for large enough values of the modulus of λ, while

$$-(X - \lambda I)^{-1} = \frac{I}{\lambda} + \frac{X}{\lambda^2} + \frac{X}{\lambda^3} + \ldots.$$

Result (6) follows at once by substituting these values in (14) and comparing coefficients of corresponding negative powers of λ. More generally, if $A^{-1} = C$, the same procedure leads to the relation

$$\Omega_x (C X)^r = r (C X)^{r-1} C$$

(15)

in the notation of II, p. 37.

To obtain the relation (7), let (13) be written in the form

$$\frac{|\lambda A - X|}{\lambda A - X} = - \Omega |\lambda A - X|.$$

(16)

Treating numerator and denominator of the left member as a polynomial and a linear function of λ, we may perform ordinary long division in every case when A commutes with X. This is so when $A = I$, making the left member $\phi (\lambda) = (I\lambda - X)$. The polynomial $\phi (\lambda)$ is given by (3); on carrying out the long division the result is

$$\frac{\phi (\lambda)}{I\lambda - X} = I\lambda^{n-1} + (X + p_1 I)\lambda^{n-2} + \ldots + (X^{n-1} + \ldots + p_{n-1} I)$$

$$+ \frac{\phi (X)}{I\lambda - X}$$

$$= P_0 \lambda^{n-1} + P_1 \lambda^{n-2} + \ldots + P_{n-1} + \frac{P_n}{I\lambda - X}.$$

(17)
Again from the right member of (16), with \(A = I \), we obtain
\[-(\lambda^{n-1} \Omega p_1 + \lambda^{n-2} \Omega p_2 + \ldots + \Omega p_n),\]
since \(\Omega \lambda^n = 0 \). On multiplying throughout, here and in (17), by \(I \lambda - X \), expanding, and equating coefficients of powers of \(\lambda \), we obtain the relations (7), and also the Cayley Hamilton theorem implied by \(\phi(X) = 0 \).

Reciprocally, since \(\phi(\lambda) \psi(\lambda) = 1 \), it follows that
\[(\Omega \phi(\lambda)) \psi(\lambda) + \phi(\lambda) \Omega \psi(\lambda) = 0;\]
but, since
\[\phi(\lambda) = |\lambda I - X|,\]
we have
\[\frac{\Omega \phi(\lambda)}{\phi(\lambda)} = \frac{1}{X - \lambda I} = -\frac{\Omega \psi(\lambda)}{\psi(\lambda)}.\]

Again by ordinary long division of the series (4) by \(I - X \lambda^{-1} \), arranged in descending powers (all negative) of \(\lambda \), we have
\[
\frac{\psi(\lambda)}{I - X \lambda^{-1}} = \lambda^{-n} + (X + h_1 I) \lambda^{-n-1} + (X^2 + h_1 X + h_2 I) \lambda^{-n-2} + \ldots .
\]
Also
\[\Omega \psi(\lambda) = h_1 \Omega \lambda^{-n-1} + h_2 \Omega \lambda^{-n-2} + \ldots .\]

On substituting in (18), clearing of fractions, and comparing coefficients as before, the relations (8) follow. Incidentally we have the result
\[\frac{1}{I \lambda - X} = \frac{P_0 \lambda^{-n} + P_1 \lambda^{-n-2} + \ldots + P_{n-2} \lambda + P_{n-1}}{\lambda - \lambda_1} \ldots (\lambda - \lambda_n)\]

These coefficients \(P \) and \(H \) are matrices which commute with \(X \) and with each other, since they are polynomials in \(X \). From this relation each \(P_r \) can be deduced as a linear function of the \(H_s \) with \(s \leq r \), the coefficients being polynomial expressions in the \(p \)'s. Correlatively for \(H \) in terms of \(P \). Also if the \(r \)th Wronskian relation (5) is written \(w_r(h, p) = 0 \), it follows that
\[w_r(H, p) = w_r(h, P).\]

For example \(H_2 p_0 + H_1 p_1 + H_0 p_2 = h_2 P_0 + h_1 P_1 + h_0 P_2.\)

\[^1\text{Cf. L. E. Dickson, Modern Algebraic Theories (Chicago, 1926), 48, after replacing } P_r \text{ by } C_{n-1-r}.\]
§ 2. The Converse Problem.

By solving the recurrence relations (7) and (8) for successive powers of \(X \) we obtain the following equations, in which an accent denotes the effect of the \(\Omega \) operation:

\[
\begin{align*}
- p_1' &= I = h_1', \\
- h_1 p_1' - p_2' &= X = h_2' + h_1 p_1, \\
- h_2 p_1' - h_1 p_2' - p_3' &= X^2 = h_3' + h_2 p_1 + h_1 p_2,
\end{align*}
\]

and in general (since \(p_0' = h_0' = 0 \)),

\[
- w_r(h', p') = X^{r-1} = w_r(h', p).
\]

(21)

These follow at once from (18), on multiplying throughout by \(\phi(\lambda) \phi(\lambda) \) (which is unity), then expanding each of the three expressions in descending powers of \(\lambda \), and again equating coefficients. These alternative expressions for a power of \(X \) lead to the theorem:

The \((r - 1) \)th power of a matrix \(X \) is obtained by \(\Omega \) differentiation from the \(r \)th Wronskian relation, either by treating the \(p \)'s as constants, or else by treating the \(h \)'s as constants and affixing a negative sign to the result.

§ 3. Successive \(\Omega \) differentiation.

Theorem I. Any two consecutive coefficients \(p_r, p_{r+1} \) of the characteristic function \(\phi(\lambda) \) satisfy the matrix differential equation

\[
\Omega^2 p_{r+1} = (n - r) \Omega p_r.
\]

(22)

Proof. The left member of this equation denotes the effect of \(\Omega \) operating upon \(\Omega p_{r+1} \), and is therefore equal to

\[
- \Omega (X^r + p_1 X^{r-1} + \ldots + p_{r-1} X + p_r I).
\]

Now, by I, p. 117 (2),

\[
\Omega X^r = s_0 X^{r-1} + s_1 X^{r-2} + \ldots + s_{r-1} I,
\]

(23)

where \(s_0 = n \). Also \(\Omega p_{r-\nu} X^r = p_{r-\nu} \Omega X^r + (\Omega p_{r-\nu}) X^r \). Let this last be simplified, by use of (7) and (23), and arranged in descending powers of \(X \). On summing the results for \(\nu = 0, 1, 2, \ldots, r \) we have

\[
\Omega^2 p_{r+1} = q_0 X^{r-1} + q_1 X^{r-2} + \ldots + q_{r-2} X + q_{r-1} I,
\]

where

\[
q_m = -(s_m + p_1 s_{m-1} + \ldots + p_m s_0) + (r - m) p_m.
\]
After using the Newtonian relation
\[s_m + p_1 s_{m-1} + \ldots + p_{m-1} s_1 + mp_m = 0 \]
q_m becomes $(r - n) p_n$. Hence
\[\Omega^2 p_{r+1} = -(n - r) (X^{r-1} + p_1 X^{r-2} + \ldots + p_{r-1} I) = (n - r) \Omega p_r, \]
which proves the theorem.

Theorem II. Correlatively, consecutive coefficients h_{r+1}, h_r satisfy the equation
\[\Omega^2 h_{r+1} = (n + r) \Omega h_r. \]

Proof. The proof is analogous to that of Theorem I, but utilizes the relation
\[s_m + h_1 s_{m-1} + \ldots + h_{m-1} s_1 = mh_m. \]

As a consequence of these two theorems we may express each matrix P^r and H^r as a matrix derivative of p^r and h^r, respectively, provided that the suffix μ exceeds r. For example,
\[\Omega^2 p_{r+1} = (n - r) \Omega^2 p_r = (n - r) (n - r - 1) \Omega p_{r-1}. \]

This leads straightforwardly to the relations
\[\Omega^{n-r} p_n = \Omega^{n-r-1} p_{n-1} = 2! \Omega^{n-r-2} p_{n-2} = \ldots \]
\[= (n - r - 1)! \Omega p_{r+1} = -(n - r - 1)! P_r, \]
where $r = 0, 1, \ldots, n - 1$. In particular, r, when $r = 0$, the result may be written
\[\Omega^m p_m = -(n - 1)!/(n - m)!, \quad 0 < m \leq n, \]
so that the effect of m operations with Ω upon the coefficient p_m in the characteristic function, yields a negative integer.

Similarly from Theorem II,
\[H_r = \Omega h_{r+1} = \frac{(n + r)!}{(n + r + 1)!} \Omega^2 h_{r+2} = \frac{(n + r)!}{(n + r + 2)!} \Omega^3 h_{r+3} = \ldots \]

Theorem III. Any power series
\[f(X) = a_0 I + a_1 X + a_2 X^2 + \ldots \]
with scalar coefficients a_i can be derived from the scalar matrix $|X| I$ by means of a matrix operator $g(\Omega)$ which is a scalar polynomial, of order n, or less, in Ω.

Theorem IV. If $f(X)$ is a power series with the above properties, and $g(\Omega)$ is a scalar polynomial, of order n, or less, in Ω, then
\[f(X) = a_0 I + a_1 X + a_2 X^2 + \ldots \]

is a polynomial of degree n.
Proof. On substituting for powers of \(X \) from (21) we have
\[f(X) = \beta_0 p_1' + \beta_1 p_2' + \ldots + \beta_{n-1} p_n', \]
where
\[\beta_m = -a_m - a_{m+1} h_1 - a_{m+2} h_2 - \ldots, \quad (m = 0, 1, 2, \ldots). \]
Also by (25),
\[p_1' = \Omega p_1 = \frac{1}{(n-1)!} \Omega^2 p_2 = \ldots = \frac{1}{(n-1)!} \Omega^n p_n, \]
\[p_2' = \Omega p_2 = \frac{1}{(n-2)!} \Omega^{n-1} p_n; \]
and so on. Hence we have
\[f(X) = \left(\frac{\beta_0 \Omega^n}{(n-1)!} + \frac{\beta_1 \Omega^{n-1}}{(n-2)!} + \ldots + \frac{\beta_{n-2} \Omega^2}{1!} + \beta_{n-1} \Omega \right) p_n. \]
\[= (-)^n g(\Omega) p_n, \text{ say.} \]
The theorem follows since \(p_n = (-)^n |X| \).

Corollary. Any polynomial \(f(X) \) of order \(r \) less than \(n \) can be derived from an earlier coefficient \(p_m \) by an analogous operator \(g_m(\Omega) \), whenever \(m > r \).

A similar theorem holds for the derivation of a polynomial \(f(X) \) from a coefficient \(h_m \) of higher order. For example
\[X^2 = -\left(1 + \frac{h_1}{n-2} \Omega + \frac{h_2}{(n-1)(n-2)} \Omega^2 \right) \Omega p_3 \]
\[= \left(1 + \frac{p_1}{n+2} \Omega + \frac{p_2}{(n+1)(n+2)} \Omega^2 \right) \Omega h_3. \]

Theorem IV. The operator \(\Omega e^\Omega \) has the same effect upon \(p_n = \phi(0) \), that \(\Omega \) has upon the characteristic function \(\phi(\lambda) \).

Proof. We have \(\Omega e^\Omega p_n = \left(\Omega + \lambda \Omega^2 + \frac{\lambda^2 \Omega^3}{3!} + \ldots \right) p_n \)
\[= \Omega (\lambda^n + p_1 \lambda^{n-1} + \ldots + p_n), \text{ by (25),} \]
\[= \Omega \phi(\lambda), \]
which proves the theorem.

We are not however entitled to deduce the equality of \(e^\Omega p_n \) and \(\phi(\lambda) \), by operating with \(\Omega^{-1} \), since it by no means follows that when \(\Omega Y = 0 \), \(Y \) itself is zero.
§ 4. Connection with invariant theory.

As has been pointed out in III (see Introduction), the Ω process is equivalent to polarization by use of a sum of symbolic operators

$$
\left(\begin{array}{c|c} u & \frac{\partial}{\partial a} \\ \hline x & \frac{\partial}{\partial a} \end{array} \right) \left(\begin{array}{c|c} \sum_{i=1}^{n} u_i & \frac{\partial}{\partial a_i} \\ \hline \sum_{i=1}^{n} x_j & \frac{\partial}{\partial a_j} \end{array} \right),
$$

where the matrix $[x_{ij}]$ is expressed in symbolic notation by various equivalents

$$
[x_{ij}] = [a_i a_j] = [\beta_i b_j] = [\gamma_i c_j] = \text{etc.}
$$

In fact Ω is given by

$$
u \Omega \xi = \sum \left(u \left| \frac{\partial}{\partial a} \right| \xi \left| \frac{\partial}{\partial a} \right) ,
$$

where the summation runs through the equivalent symbols, one term for each pair a, a. The i_j^{th} element of Ω is given by the coefficient of $u_i \xi_j$ in this expression (30); and $u \Omega x$ denotes the bilinear differential form $\sum u_i \frac{\partial}{\partial x_{ij}} \xi_j$ in the usual matrix product notation. The quantities p_r are now invariants of the bilinear form $\sum u_i x_{ij} \xi_j$; namely

$$
p_1 = - (a | a), \quad p_2 = \frac{1}{2!} (ab | a\beta), \quad p_3 = - \frac{1}{3!} (abc | a\beta\gamma), \quad \ldots . \quad (31)
$$

Since the effect of the right hand operation in (30) is to replace each pair a, a in the operand by u, x, formulae (7) are now almost intuitive. For example

$$
u \Omega \xi p_2 = \frac{1}{2!} \left((ub | \xi\beta) + (au | a\xi) \right) = a_u u_\xi - \xi u_a,
$$

since the symbols a, a are equivalent to b, β.

Translated back into the original notation this becomes

$$
u (\Omega p_2) \xi = - u (X + p_1 I) \xi
$$

identically for all u and ξ. Whence

$$
X + p_1 I + \Omega p_2 = 0
$$

and similarly for all relations (7).
Repeated Ω operation now appears as repeated polarization. For example

$$u \Omega^2 \xi = \sum \left(u \left| \frac{\partial}{\partial a} \right| \left(\frac{\partial}{\partial a} \left| \frac{\partial}{\partial b} \right| \left(\frac{\partial}{\partial b} \right| \xi \right) \right),$$

summed for all pairs of distinct equivalent symbols a, a and b, β. When this acts, for example, upon p_3 it strikes out two symbols a, b and two symbols a, β in every possible way, replacing them by the single u and ξ. This leads to the result

$$\Omega^2 p_3 = (n - 2) \Omega p_2 = - (n - 2) (X + p_1 I),$$

and similarly for other cases.