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On a Linear Refinement of the
Prékopa-Leindler Inequality

Andrea Colesanti, Eugenia Saorín Gómez, and Jesús Yepes Nicolás

Abstract. If f , g∶Rn → R≥0 are non-negative measurable functions, then the Prékopa-Leindler
inequality asserts that the integral of the Asplund sum (provided that it is measurable) is greater
than or equal to the 0-mean of the integrals of f and g. In this paper we prove that under the sole
assumption that f and g have a common projection onto a hyperplane, the Prékopa–Leindler in-
equality admits a linear reûnement. Moreover, the same inequality can be obtained when assuming
that both projections (not necessarily equal as functions) have the same integral. An analogous
approach may be also carried out for the so-called Borell-Brascamp-Lieb inequality.

1 Introduction

_e Prékopa–Leindler inequality, originally proved in [17, 21], states that if λ ∈ (0, 1)
and f , g , h∶Rn → R≥0 are non-negativemeasurable functions such that, for any x , y ∈
Rn ,

(1.1) h((1 − λ)x + λy) ≥ f (x)1−λ g(y)λ ,

then

∫
Rn

h dx ≥ (∫
Rn
f dx)

1−λ
(∫

Rn
g dx)

λ
.

Amore stringent version of this result can be obtained considering the smallest func-
tion h verifying condition (1.1), given f , g, and λ. Such a function is nothing but the
so-called Asplund sum of f and g, deûned as follows (see e.g., [24, p. 517]).

Deûnition 1.1 Given two non-negative functions f , g∶Rn → R≥0 and λ ∈ (0, 1), the
function (1 − λ) f ⋆ λg∶Rn → R≥0 ∪ {∞} is deûned by

(1 − λ) f ⋆ λg (x) = sup
(1−λ)x1+λx2=x

f (x1)1−λ g(x2)λ .

It is worth noting that the assumption that f and g aremeasurable is not suõcient
to guarantee that (1−λ) f ⋆λg ismeasurable; see [9, Section 10]. _ePrékopa–Leindler
inequality can be now rephrased in the following way.
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On a Linear Reûnement of the Prékopa–Leindler Inequality 763

_eorem A (Prékopa–Leindler inequality) Let λ ∈ (0, 1) and let f , g∶Rn → R≥0 be
non-negativemeasurable functions such that (1− λ) f ⋆ λg is measurable as well. _en

(1.2) ∫
Rn

(1 − λ) f ⋆ λg dx ≥ (∫
Rn
f dx)

1−λ
(∫

Rn
g dx)

λ
.

_is functional inequality can be seen as the analytic counterpart of a geometric
inequality, i.e., the Brunn–Minkowski inequality. Let λ ∈ [0, 1] and let A and B be two
nonempty (Lebesgue) measurable subsets of Rn , such that their vector linear combi-
nation

(1 − λ)A+ λB = {(1 − λ)x + λy ∶ x ∈ A, y ∈ B}
is also measurable. _en

(1.3) vol((1 − λ)A+ λB) 1/n ≥ (1 − λ)vol(A)1/n + λvol(B)1/n ,

where by vol( ⋅ ) we denote the Lebesguemeasure. _e Brunn–Minkowski inequality
admits an equivalent form, o�en referred to as its multiplicative or dimension-free
version,

(1.4) vol((1 − λ)K + λL) ≥ vol(K)1−λvol(L)λ .

Note that a straightforward proof of (1.4) can be obtained by applying (1.2) to charac-
teristic functions. Indeed, for A, B ⊂ Rn ,

(1.5) (1 − λ)χA ⋆ λχB = χ(1−λ)A+λB
where χ denotes the characteristic function. On the otherhand, thePrékopa–Leindler
inequality can be proved by induction on the dimension n, and the initial case n = 1
follows easily from (1.3) (see, for instance, [20, p. 3] or [9, Section 7]).

Inequalities (1.2) and (1.3) have a strong link with convexity, as is shown by the
description of the equality conditions. Indeed, equalitymay occur in (1.2) if and only
if, roughly speaking, there exists a log-concave function F (i.e., F = e−u , where u is
convex) such that f , g, and h coincide a.e. with F, up to translations and rescaling
of the coordinates ([7]). As a consequence, equality holds in the Brunn–Minkowski
inequality if andonly ifAandB are twohomothetic compact convex sets, up to subsets
negligible with respect to the Lebesguemeasure.

_e Brunn–Minkowski inequality is one of the most powerful results in convex
geometry and, togetherwith its analytic companion (1.2), has awide range of applica-
tions in analysis, probability, information theory, and other areas ofmathematics. We
refer the reader to the updated monograph [24], entirely devoted to convex geome-
try, and to the extensive and detailed survey [9] concerning the Brunn–Minkowski
inequality.

In [1, Section 50], linear reûnements of the Brunn–Minkowski inequality were ob-
tained for convex bodies (i.e., nonempty compact convex sets) having a common or-
thogonal projection onto a hyperplane or more generally a projection with the same
(n − 1)-dimensional volume. To state these results we need some notation: Kn de-
notes the set of convex bodies inRn ,Ln

n−1 is the set of (n− 1)-dimensional subspaces
of Rn (i.e., hyperplanes containing the origin) and, given K ∈Kn and H ∈ Ln

n−1, K∣H
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is the orthogonal projection of K onto H (which is a convex body as well). Moreover,
voln−1(⋅) denotes the (n − 1)-dimensional Lebesguemeasure in Rn .

_eorem B ([1, 10]) Let K , L ∈ Kn be convex bodies such that there exists H ∈ Ln
n−1

with K∣H = L∣H. _en, for all λ ∈ [0, 1],

vol((1 − λ)K + λL) ≥ (1 − λ)vol(K) + λvol(L).

In other words, the volume itself is a concave function on the “segment” joining K
and L in Kn .

_eorem C ([1,10,19]) LetK , L ∈Kn be convex bodies such that there existsH ∈ Ln
n−1

with voln−1(K∣H) = voln−1(L∣H). _en, for all λ ∈ [0, 1],

(1.6) vol((1 − λ)K + λL) ≥ (1 − λ)vol(K) + λvol(L).

_ese results have been extended to compact sets in [19] andmore recently in [10,
Subsection 1.2.4]; see also [13] for related topics.

We would like to point out that, contrary to _eorem B,_eorem C does not pro-
vide the concavity of the function f (λ) = vol((1 − λ)K + λL) for λ ∈ [0, 1]. More
precisely, inequality (1.6) only yields the condition f (λ) ≥ (1− λ) f (0)+ λ f (1). Nev-
ertheless, when working with convex bodies K and L having a common projection
onto a hyperplane, it is easy to check that the above condition implies, indeed, con-
cavity of f (see e.g., the proof of [13,_eorem 2.1.3]). On the other hand, Diskant [6]
constructed an example where the above-mentioned function is not concave under
the sole assumption of a common volume projection (the bodies used byDiskant are
essentially a cap body of a ball and a half-ball). For further details about this topic we
refer to Notes for Section 7.7 in [24] and the references therein.
At this point it is natural towonderwhether analogous results to_eoremsB andC

could be obtained for Prékopa–Leindler inequality. _e aim of this paper is to provide
an answer to this question. As a ûrst step we notice that there is a rather natural way
to deûne the “projection” of a function (see, for instance, [16]).

Deûnition 1.2 Given f ∶Rn → R≥0 ∪ {∞} and H ∈ Ln
n−1, the projection of f onto H

is the (extended) function projH( f )∶H → R≥0 ∪ {∞} deûned by

projH( f )(h) = sup
α∈R

f (h + αν)

for h ∈ H, where ν is a normal unit vector of H.

_e geometric idea behind this deûnition is very simple: the hypograph of the
projection of f onto H is the projection of the hypograph of f onto H. In particular,
the projection of the characteristic function of a setA is just the characteristic function
of the projection of A.

In this paperwe show that under the equal projection assumption for the functions
f and g, the Prékopa–Leindler inequality becomes linear in λ. _is is the analytical
counterpart of _eorem B. Indeed, taking f = χK and g = χL , _eorem B may be
obtained as a corollary.
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_eorem 1.3 Let λ ∈ (0, 1) and let f , g∶Rn → R≥0 be non-negative measurable
functions such that (1 − λ) f ⋆ λg is measurable. If there exists H ∈ Ln

n−1 such that
projH( f ) = projH(g), then

(1.7) ∫
Rn

(1 − λ) f ⋆ λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

Notice that bymeans of the Arithmetic-Geometricmean inequality, the Prékopa–
Leindler inequality (_eorem A) directly follows from the above result (and hence,
indeed, (1.7) is a stronger inequality under the common projection assumption). As
we already remarked, the Prékopa–Leindler inequality is naturally connected to log-
concave functions, i.e., functions of the form e−u where u∶Rn → R ∪ {∞} is convex.
As a consequence of the above result we have the following statement.

Corollary 1.4 Let f , g∶Rn → R≥0 be log-concave functions and let λ ∈ (0, 1). If there
exists H ∈ Ln

n−1 such that projH( f ) = projH(g), then

∫
Rn

(1 − λ) f ⋆ λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

Proof _e Asplund sum preserves log-concavity, as easily follows with the so-
called inûmal convolution (see Section 3). Hence it preserves measurability, be-
cause a log-concave function ϕ deûned in Rn is, in fact, continuous in the interior
of {x ∈ Rn ∶ ϕ(x) > 0}.

We prove that (1.7) can be obtained under the less restrictive hypothesis that the
integral of the projections coincide, establishing a functional version of _eorem C.
In the general case of measurable f and g (see _eorem 3.2 in Section 3), this result
requires two mild (but technical) measurability assumptions. For simplicity, here we
present this result for log-concave functions decaying to zero at inûnity.

_eorem 1.5 Let f , g∶Rn → R≥0 be log-concave functions such that

lim
∣x ∣→∞

f (x) = lim
∣x ∣→∞

g(x) = 0,

and let λ ∈ (0, 1). If there exists H ∈ Ln
n−1 such that

∫
H
projH( f )(x)dx = ∫

H
projH(g)(x)dx <∞

then

∫
Rn

(1 − λ) f ⋆ λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

In the special case n = 1, _eorem 1.3 reduces to the following fact: if f and g are
non-negativemeasurable functions deûned onR such that (1−λ) f ⋆λg ismeasurable
and supR f = supR g, then (1.7) holds. _is result can be found in [3,_eorem 3.1].

_e Prékopa–Leindler inequality has been generalized by introducing pth means
(see Section 4 for detailed deûnitions and explanations) on both sides of (1.2); the re-
sulting inequalities came to be called Borell-Brascamp-Lieb inequalities due to [2,3].
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We have been able to extend our approach to these inequalities by obtaining the suit-
able versions of_eorems 1.3 and 1.5. Again, for simplicity and in order to avoid tech-
nical measurability assumptions, we present here the result for the case of p-concave
functions (see Section 4 for the deûnition).

_eorem 1.6 Let f , g∶Rn → R≥0∪{∞} be p-concave functions,where−1/n ≤ p ≤∞,
and let λ ∈ (0, 1). If there exists H ∈ Ln

n−1 such that

∫
H
projH( f )(x)dx = ∫

H
projH(g)(x)dx ,

then
∫
Rn

(1 − λ) f ⋆p λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

_e paper is organized as follows. Section 2 is devoted to collecting some deûni-
tions and preliminary constructions, whereas _eorems 1.3 and 1.5 (in fact, a more
general version of the latter) will be proven in Section 3, as well as other related re-
sults. Finally in Section 4we dealwith the Borell-Brascamp-Lieb extensions, proving,
among other results,_eorem 1.6.

2 Background Material and Auxiliary Results

Working in the n-dimensional Euclidean space Rn , n ≥ 1, let Kn denote the set of all
convex bodies in Rn . Given a subset A of Rn , χA is the characteristic function of A.

With Ln
k , k ∈ {0, 1, 2, . . . , n}, we will represent the set of all k-dimensional linear

subspaces of Rn . For H ∈ Ln
k , H

� ∈ Ln
n−k denotes the orthogonal complement of

H. Given A ⊂ Rn and H ∈ Ln
k , the orthogonal projection of A onto H is denoted by

A∣H. For k ∈ {0, 1, . . . , n} and A ⊂ Rn , volk(A) denotes the k-dimensional Lebesgue
measure of A (assuming that A is measurable with respect to this measure). We will
o�en omit the index k when it is equal to the dimension n of the ambient space; in
this case vol(⋅) = voln(⋅) is just the (n-dimensional) Lebesguemeasure.

Let f ∶Rn → R; we deûne the strict epigraph of f by

epis( f ) = {(x , t) ∶ x ∈ Rn , t ∈ R, t > f (x)} ⊂ Rn+1 ,

while its strict hypograph (or subgraph) will be denoted as

hyps( f ) = {(x , t) ∶ x ∈ Rn , t ∈ R, f (x) > t} ⊂ Rn+1 .

_e same deûnitions are valid for functions that take valuesonR∪{∞} (orR∪{±∞}).
In this case the strict epigraph of a function f is empty if and only if f is identically
equal to inûnity. Since we will work with non-negative functions, we also deûne

hyp+s ( f ) = {(x , t) ∶ x ∈ Rn , t ∈ R≥0 , f (x) > t} ⊂ Rn+1 .

_roughout this paper, given H ∈ Ln
n−1, we set H̃ = H × R, i.e., H̃ is the

n-dimensional subspace (in Rn+1) associated to H when working with epigraphs and
hypographs of functions.

_e proof of our main result is based on symmetrization procedures; in fact, we
will use two distinct types of symmetrization of functions that will be introduced in
the rest of this section.
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2.1 The Steiner symmetrization of a Function

To begin with, we brie�y recall the Steiner symmetrization of sets: given a nonempty
measurable set A ⊂ Rn and H ∈ Ln

n−1, the Steiner symmetral of Awith respect to H is
given by

SH(A) = {h + l ∈ Rn ∶ h ∈ A∣H, l ∈ H⊥ , ∣l ∣ ≤ 1
2
vol1(A∩ (h +H⊥))}

(see e.g., [11, p. 169] or [1, Section 9] for the compact convex case). Notice that SH(A)
is well deûned, since the sections of ameasurable set are also measurable (for voln−1
a.e. h ∈ A∣H) and it is measurable (see, for instance, [8, p. 67]). To complete the
picture, we deûne SH(∅) = ∅.

Next we deûne the ûrst type of symmetrization of a (non-negative measurable)
function f with respect to a hyperplane H; roughly speaking this is simply obtained
by the Steiner symmetrization of the hypograph of f with respect to H. _is tech-
nique is very well known in the theory of partial diòerential equations and calculus
of variations; see, for instance [15].

Given ameasurable f ∶Rn → R≥0∪{∞}, itwill be convenient towrite it in the form
f = e−u where u∶Rn → R ∪ {±∞} is a measurable function, i.e., u(x) = − log f (x)
with the conventions that log 0 = −∞ and log∞ = ∞. First we will consider the
“symmetral” uH of u with respect to H ∈ Ln

n−1, which is given by

(2.1) epis(uH) = SH̃(epis(u)) .
Notice that (2.1) deûnes uH completely. Indeed, as u is measurable, its strict epi-

graph is also measurable and hence SH̃(epis(u)) is well deûned and measurable.
Moreover, it is easy to see that if a point (x , t̄) ∈ SH̃(epis(u)) , with x ∈ Rn and t̄ ∈ R,
then the entire “vertical” half line {(x , t) ∶ t ≥ t̄} above it is contained in SH̃(epis(u)) .
Hence (2.1) is equivalent to the following explicit expression for uH ∶Rn → R∪{±∞}:

uH(x) = inf{ r ∈ R ∶ (x , r) ∈ SH̃(epis(u))} .

Note also that themeasurability of its epigraph implies themeasurability of uH . _e
next step is to deûne the symmetral of f = e−u through the symmetral of u, as follows.

Deûnition 2.1 Let u∶Rn → R ∪ {±∞} be ameasurable function and let H ∈ Ln
n−1.

_en the Steiner symmetral of f = e−u is SH( f ) = e−uH , where uH is given by (2.1).

As uH is measurable, SH( f ) is measurable as well. Moreover, since t ↦ e−t is a
decreasing bijection between R ∪ {±∞} and R≥0 ∪ {∞}, we also have

hyps(SH( f )) = SH̃(hyps( f )) ,

which would have allowed us to deûne SH( f ) directly. _e above equality still holds
if hypographs are replaced by positive hypographs or even if we consider sections
(h + H⊥) ×R for any h ∈ H (see Figure 1), i.e., we replace f by any of its restrictions
to a line perpendicular to H.
From the deûnition of SH̃(⋅) we clearly have

epis(u)∣H̃ = SH̃(epis(u))∣H̃ = SH̃(epis(u)) ∩ H̃,
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H

H⊥

f|(h+H⊥)

h+H⊥

SH(f)

∫

h+H⊥
f|
(h+H⊥)

dx =

∫

h+H⊥
SH(f)|

(h+H⊥)
dx

H

H⊥

SH(f)|(h+H⊥)

h+H⊥

Figure 1

which is equivalent to

hyps( f )∣H̃ = hyps(SH( f )) ∣H̃ = hyps(SH( f )) ∩ H̃.

Hence, it follows that

projH( f ) = projH(SH( f )) = SH( f )∣H ,

where we have used the following notation: for a function g deûned in Rn and H ∈
Ln

n−1, g∣H is the restriction of g to H.
On the other hand, by construction of SH(⋅), it is clear that (for any ûxed h ∈ H)

vol1(x ∈ h +H⊥ ∶ f (x) > t) = vol1(x ∈ h +H⊥ ∶ SH( f )(x) > t)

and hence

∫
Rn
f dx = ∫

H
∫

projH( f )(h)

0
vol1(x ∈ h +H⊥ ∶ f (x) > t)dt dh

= ∫
H
∫

projH(SH( f ))(h)

0
vol1(x ∈ h +H⊥ ∶ SH( f )(x) > t)dt dh

= ∫
Rn

SH( f )dx .

_erefore, we have shown the following result.

Proposition 2.2 Let f ∶Rn → R≥0 ∪{∞} be a non-negativemeasurable function and
let H ∈ Ln

n−1 be a hyperplane. _en
(i) SH( f )∶Rn → R≥0 ∪ {∞} is a non-negativemeasurable function.
(ii) ∫

Rn
f dx = ∫

Rn
SH( f )dx .

(iii) projH( f ) = projH(SH( f )) = SH( f )∣H .
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Itwill be important to relate the Steiner symmetral of the Asplund sumof two non-
negative functions with the Asplund sum of their symmetrals. For this we will need
the following inclusion involving the symmetrals of the (nonempty) measurable sets
A, B, and (1− λ)A+ λB respectively. _e proof can be carried out following the ideas
of the proof for convex bodies (see e.g., [11, Proposition 9.1]); we include it here for
completeness.

Proposition 2.3 Let A, B ⊂ Rn be nonemptymeasurable sets such that (1− λ)A+ λB
is measurable for a given λ ∈ (0, 1) and let H ∈ Ln

n−1 be a hyperplane. _en we have

(2.2) SH((1 − λ)A+ λB) ⊃ (1 − λ)SH(A) + λSH(B).

Proof Let x ∈ SH(A), y ∈ SH(B), or, equivalently, x = hx + lx , y = hy + ly , where
hx , hy ∈ H and lx , ly ∈ H⊥ are such that ∣lx ∣ ≤ 1

2vol1(A ∩ (x + H⊥)) and ∣ly ∣ ≤
1
2vol1(B ∩ (y +H⊥)) . _en (1 − λ)x + λy = ((1 − λ)hx + λhy) + ((1 − λ)lx + λly) ,
with (1 − λ)hx + λhy ∈ H and (1 − λ)lx + λly ∈ H⊥. By means of the (1-dimensional)
Brunn–Minkowski inequality, we have

∣(1 − λ)lx + λly ∣ ≤ (1 − λ) ∣lx ∣ + λ ∣ly ∣

≤ 1
2
((1 − λ)vol1(A∩ (x +H⊥)) + λvol1(B ∩ (y +H⊥)))

≤ 1
2
vol1((1 − λ)(A∩ (x +H⊥)) + λ(B ∩ (y +H⊥)))

≤ 1
2
vol1(((1 − λ)A+ λB) ∩ ((1 − λ)x + λy +H⊥)) .

Hence (1 − λ)x + λy ∈ SH((1 − λ)A+ λB) .

2.2 Schwarz-type Symmetrization of a Function

_e second symmetrization of functions which we will use is deûned as follows.

Deûnition 2.4 Given H ∈ Ln
n−1 and a non-negative measurable function f ∶Rn →

R≥0 ∪ {∞}, the symmetrization of f with respect to H⊥ is the function SH⊥( f )∶Rn →
R≥0 ∪ {∞} given by

SH⊥( f )(h + αν) = dα χBn−1
(h),

for h ∈ H and α ∈ R, where

dα = ∫
αν+H

f∣(αν+H) dx ,

ν is a normal unit vector ofH, and Bn−1 ∈Kn−1 is the Euclidean ball of volume 1 (lying
in H).

See Figure 2, where, for a clearer representation, we havemade a change of axes in
relation to those of Figure 1.
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H⊥

H

f|(αν+H)

αν

SH⊥(f)

∫

αν+H

f|(αν+H)
dx =

∫

αν+H

SH⊥(f)|(αν+H)
dx

H⊥

H

dαχBn−1
(h)

αν +Bn−1

Figure 2

_e choice of the unit volume ball Bn−1 in the previous deûnition is not relevant:
any other (ûxed) convex body (for instance, a cube of edge length 1) could have re-
placed it with no essential change. _e behavior of the function SH⊥( f ) is basically
described by the function α → dα , depending on the real variable α.
By means of Fubini’s theorem (together with the fact that the cartesian product

of measurable sets is also measurable) it is clear that SH⊥( f ) is also a non-negative
measurable function. Moreover, we have

(2.3) ∫
Rn

SH⊥( f )dx = ∫
Rn
f dx .

Notice also that the symmetrization SH⊥( ⋅ ) is increasing in the sense that if f ≤ g,
then SH⊥( f ) ≤ SH⊥(g).

In next section (Propositions 3.3 and 3.4) we will show that the behavior of these
symmetrizations, SH( ⋅ ), SH⊥( ⋅ ),with respect to the operation⋆ is “good” (whichmay
be seen as the analytic counterpart ofProposition 2.3). Roughly speakingwewill show
that, for both symmetrizations, the symmetral of the Asplund sum is pointwise larger
than the Asplund sum of the symmetrals, which will allow us to obtain the inequality
of_eorem 3.2.

3 Proof of Main Results

In this section we prove_eorem 1.3 and amore general version of_eorem 1.5 (see
_eorem 3.2 below). We start by showing a result needed for the proof of _eorem
1.3.

Proposition 3.1 Let f , g∶Rn → R≥0 be non-negative functions such that

projH( f ), projH(g)∶H → R≥0
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for an H ∈ Ln
n−1 and let λ ∈ (0, 1). _en

(3.1) projH((1 − λ) f ⋆ λg) ≥ (1 − λ)projH( f ) ⋆ λ projH(g).

Proof Let ν be a normal unit vector ofH. _en for h, h1 , h2 ∈ H such that (1−λ)h1+
λh2 = h and any α1 , α2 ∈ R, we clearly have

projH((1 − λ) f ⋆ λg)(h) ≥ (1 − λ) f ⋆ λg((1 − λ)(h1 + α1ν) + λ(h2 + α2ν))
≥ f (h1 + α1ν)1−λ g(h2 + α2ν)λ .

Hence, by taking suprema over α1 , α2 ∈ R, it follows

projH((1 − λ) f ⋆ λg)(h) ≥ projH( f )(h1)1−λprojH(g)(h2)λ

for all h1 , h2 ∈ H with (1 − λ)h1 + λh2 = h.

Proof of_eorem 1.3 Let U ∶H → R≥0 ∪ {∞} be the (extended) function given by
U(h) = projH( f )(h) = projH(g)(h). We claim that

(3.2) projH((1 − λ) f ⋆ λg) ≥ U .

Indeed, if U ∶H → R≥0, then

projH((1 − λ) f ⋆ λg) ≥ (1 − λ)U ⋆ λU ≥ U (cf. (3.1));

otherwise following the proof of Proposition 3.1 (taking h1 = h2 = h) we may assert
that (3.2) holds. Moreover,

(3.3) {x ∈ h +H⊥ ∶ f (x) ≥ t} , { y ∈ h +H⊥ ∶ g(y) ≥ t} ≠ ∅,

for all 0 ≤ t < U(h). By the deûnition of ⋆ together with (3.3), it is clear that

{ z ∈ h +H⊥ ∶ ((1 − λ) f ⋆ λg)(z) ≥ t}
⊃ (1 − λ){x ∈ h +H⊥ ∶ f (x) ≥ t} + λ{ y ∈ h +H⊥ ∶ g(y) ≥ t}

(for all 0 ≤ t < U(h)) and hence, by the Brunn–Minkowski inequality, we obtain

vol1({ z ∈ h +H⊥ ∶ ((1 − λ) f ⋆ λg)(z) ≥ t})
≥ (1 − λ)vol1({x ∈ h +H⊥ ∶ f (x) ≥ t}) + λvol1({ y ∈ h +H⊥ ∶ g(y) ≥ t}) .
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From the above inequality, and using Fubini’s theorem together with (3.2) we get

∫
Rn

(1 − λ) f ⋆ λg dx

= ∫
H
∫

h+H⊥
((1 − λ) f ⋆ λg)

∣(h+H⊥)
dx dh

= ∫
H
∫

projH((1−λ) f⋆λg)(h)

0
vol1({x ∈ h +H⊥ ∶ ((1 − λ) f ⋆ λg)(x) ≥ t}) dt dh

≥ ∫
H
∫

U(h)

0
vol1({x ∈ h +H⊥ ∶ ((1 − λ) f ⋆ λg)(x) ≥ t}) dt dh

≥ ∫
H
∫

U(h)

0
(1 − λ) vol1({x ∈ h +H⊥ ∶ f (x) ≥ t}) dt dh

+ ∫
H
∫

U(h)

0
λvol1({x ∈ h +H⊥ ∶ g(x) ≥ t}) dt dh

= (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx ,

as desired.

Given a non-negative (extended) function f ∶Rn → R≥0 ∪ {∞}, we will denote by
f ∶Rn → R≥0 the function given by

f (x) =
⎧⎪⎪⎨⎪⎪⎩

0 if f (x) =∞,
f (x) otherwise.

Note that if f is measurable, then f is measurable as well. Indeed f = f ⋅ χF where
F = {x ∈ Rn ∶ f (x) < ∞}; the measurability of f implies that F is a measurable set,
i.e., χF is measurable. Hence f is measurable.

_eorem 3.2 Let f , g∶Rn → R≥0 be non-negative measurable functions such that
(1 − λ) f ⋆ λg is measurable for λ ∈ (0, 1) ûxed. If there exists H ∈ Ln

n−1 such that

(1 − λ)SH( f ) ⋆ λSH(g), (1 − λ)SH⊥(SH( f )) ⋆ λSH⊥(SH(g))
aremeasurable functions and

(3.4) ∫
H
projH( f )(x)dx = ∫

H
projH(g)(x)dx <∞,

then
∫
Rn

(1 − λ) f ⋆ λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

We ûrst see how this result implies, in particular,_eorem 1.5.

Proof of_eorem 1.5 If ϕ ∶ Rn → R≥0 is a log-concave function satisfying the con-
dition

lim
∣x ∣→∞

ϕ(x) = 0,

then there exist constants K , a > 0 such that

ϕ(x) ≤ Ke−a∥x∥
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for every x ∈ Rn (see [4, Lemma 2.5]). In particular ϕ is bounded. It is an easy
exercise to check that SH(ϕ) is log-concave as well and, by the boundedness of ϕ, is
also ûnite, since it is also bounded. Consequently SH(ϕ) = SH(ϕ). Moreover, by the
log-concavity of SH(ϕ) and [3, Corollary 3.5], the function α → dα in the deûnition
of SH⊥(SH(ϕ)) is log-concave and then SH⊥(SH(ϕ)) is still log-concave, as a product
of log-concave functions.

If we apply these considerations to the functions f and g in the statement of the
present theorem, we get that SH( f ), SH(g), SH⊥(SH( f )) , and SH⊥(SH(g)) are log-
concave functions. On the other hand, the Asplund sum preserves log-concavity, so
that

(1 − λ)SH( f ) ⋆ λSH(g), (1 − λ)SH⊥(SH( f )) ⋆ λSH⊥(SH(g))
aremeasurable functions. _e proof is concluded applying _eorem 3.2.

Remark In the statement of the above theorem, we can exchange the condition of
decaying to zero at inûnity (for both functions f and g) for that of boundedness, and
we would still obtain the same inequality.

In order to establish _eorem 3.2 we need to study the interaction between the
symmetrizations SH(⋅), and SH⊥(⋅) (for a given H ∈ Ln

n−1) and the Asplund sum; this
is done in Propositions 3.3 and 3.4.

Proposition 3.3 Let f , g∶Rn → R≥0 be non-negativemeasurable functions such that
(1− λ) f ⋆ λg is measurable for λ ∈ (0, 1) ûxed and let H ∈ Ln

n−1 be a hyperplane. _en

(3.5) SH((1 − λ) f ⋆ λg) ≥ (1 − λ)SH( f ) ⋆ λSH(g).

Proof Writing f = e−u , and g = e−v , we have that (1 − λ) f ⋆ λg = e−w with w =
(1 − λ)u ⊕ λv, where ⊕ denotes the inûmal convolution of u, v (see [22, p. 34, 38],
[23, Section 1.H]) given by

((1 − λ)u ⊕ λv)(t) = inf{(1 − λ)u(x) + λv(y) ∶ (1 − λ)x + λy = t} .

_e strict epigraph of the inûmal convolution satisûes (see [23, p. 25])

(3.6) epis((1 − λ)u ⊕ λv) = (1 − λ)epis(u) + λepis(v).

Write SH( f ) = e−ũH , SH(g) = e−ṽH , i.e., ũH = − log(SH( f )) and ṽH = − log(SH(g)).
We may assume without loss of generality that both f and g are not identically zero
so that epis(ũH), epis(ṽH) ≠ ∅. By (3.6), (2.2), and the deûnition of ũH , ṽH , we have

epis(wH) = SH̃(epis(w))
= SH̃((1 − λ)epis(u) + λepis(v))
⊃ (1 − λ)SH̃(epis(u)) + λSH̃(epis(v))
= (1 − λ)epis(uH) + λepis(vH)
⊃ (1 − λ)epis(ũH) + λepis(ṽH) = epis((1 − λ)ũH ⊕ λṽH).

(3.7)

_is is equivalent to wH ≤ (1 − λ)ũH ⊕ λṽH ; therefore inequality (3.5) holds.

https://doi.org/10.4153/CJM-2015-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-016-6


774 A. Colesanti, E. Saorín Gómez, and J. Yepes Nicolás

Remark Notice that it was necessary to introduce ⋅ , as the Asplund sum of two
non-negative functions f and g that may attain∞ is in general not well deûned. We
also point out that the “< ∞” assumption in (3.4) has arisen in order to avoid some
ambiguities of the type “∞ ⋅ 0” (see the proofs of Proposition 3.4 and _eorem 3.2).
All these con�icts will disappear in Section 4 when working with the p-th mean (for
p < 0) instead of the 0-th mean.

On the other hand, for real-valued functions, for instance when working with
bounded functions, in the penultimate line of (3.7) we would have

(1 − λ)epis(uH) + λepis(vH) = epis((1 − λ)uH ⊕ λvH) ,

obtaining SH((1 − λ) f ⋆ λg) ≥ (1 − λ)SH( f ) ⋆ λSH(g).

Proposition 3.4 Let f , g∶Rn → R≥0 be non-negativemeasurable functions such that
(1 − λ) f ⋆ λg is measurable for some ûxed λ ∈ (0, 1). Assume also that there exists
H ∈ Ln

n−1 such that

∫
αν+H

f∣(αν+H) dx , ∫αν+H
g∣(αν+H) dx <∞ for all α ∈ R.

_en SH⊥((1 − λ) f ⋆ λg) ≥ (1 − λ)SH⊥( f ) ⋆ λSH⊥(g).

Proof We use the Prékopa–Leindler inequality (_eoremA). Indeed, given α1 , α2 ∈
R and α = (1 − λ)α1 + λα2, we clearly have

∫
αν+H

((1 − λ) f ⋆ λg)
∣(αν+H)

dx

≥ (∫
α1ν+H

f∣(α1 ν+H) dx)
1−λ

(∫
α2ν+H

g∣(α2 ν+H) dx)
λ
,

which allows us to assert that for given h1 , h2 ∈ H

SH⊥((1 − λ) f ⋆ λg)(((1 − λ)h1 + λh2) + ((1 − λ)α1 + λα2)ν)
≥ SH⊥( f )(h1 + α1ν)1−λSH⊥(g)(h2 + α2ν)λ .

As it occurs for the (linear improvements of) Brunn–Minkowski inequality, _e-
orems B and C, the same inequality can be obtained when a condition on the integral
of the projection is assumed.

Proof of_eorem 3.2 Hypothesis (3.4) together with the deûnition of SH , SH⊥ , and
⋅ imply that (see Proposition 2.2 (iii))

projH(SH⊥( SH( f ))) = projH(SH⊥(SH( f )))
= projH(SH⊥(SH(g))) = projH(SH⊥(SH(g))) .

(3.8)

Moreover, since the projections onto H of f and g are integrable, bymeans of Fubini’s
theorem we have (see Proposition 2.2 (ii) and (2.3))

(3.9) ∫
Rn

SH⊥(SH( f )) dx = ∫
Rn
f dx , ∫

Rn
SH⊥(SH(g)) dx = ∫

Rn
g dx .

https://doi.org/10.4153/CJM-2015-016-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-016-6


On a Linear Reûnement of the Prékopa–Leindler Inequality 775

On the other hand, Proposition 3.3 together with the monotonicity of SH⊥( ⋅ ) and
Proposition 3.4 imply

(3.10) SH⊥(SH((1 − λ) f ⋆ λg)) ≥ SH⊥((1 − λ)SH( f ) ⋆ λSH(g))
≥ (1 − λ) SH⊥( SH( f ) ) ⋆ λSH⊥(SH(g)) .

_erefore, applying Proposition 2.2 (ii) togetherwith (2.3), (3.10),_eorem1.3 (taking
into account (3.8)), and (3.9), respectively, we get

∫
Rn

(1 − λ) f ⋆ λg dx = ∫
Rn

SH⊥(SH((1 − λ) f ⋆ λg)) dx

≥ ∫
Rn

(1 − λ)SH⊥(SH( f )) ⋆ λ SH⊥(SH(g)) dx

≥ (1 − λ)∫
Rn

SH⊥(SH( f )) dx + λ∫
Rn

SH⊥(SH(g)) dx

= (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx ,

as desired.

As a consequence of the above theorem, wemay immediately obtain the following
reûnement of the Brunn–Minkowski inequality (cf. _eorems B and C) for themore
general case ofmeasurable sets.

Corollary 3.5 Let A, B ⊂ Rn be nonempty measurable sets and let λ ∈ (0, 1) be such
that (1 − λ)A+ λB is measurable. If there exists H ∈ Ln

n−1 such that
(i) voln−1(A∣H) = voln−1(B∣H) <∞,
(ii) (1 − λ)SH(A) + λSH(B) is ameasurable set,
(iii) (1 − λ)SH⊥( χSH(A)) ⋆ λSH⊥( χSH(B)) is ameasurable function,

then vol((1 − λ)A+ λB) ≥ (1 − λ)vol(A) + λvol(B).

Proof It is enough to consider the functions f = χA , g = χB and apply the theorem
above (recall that in this casewe have projH( f ) = χA∣H , projH(g) = χB∣H and (1− λ) f ⋆
λg = χ

(1−λ)A+λB (cf. (1.5)). Notice also that for anymeasurable set M,we have SH(χM) =
χSH(M)).

Remark Although themeasurability conditions (ii) and (iii) could appear a little bit
stronger, they may be also easily fulûlled, for instance, when working with compact
sets A and B. Indeed, since A and B are compact, then SH(A) and SH(B) are also
compact. _us condition (ii) holds. On the other hand, for a general compact set K
and by the construction of SH( ⋅ ) (for sets), the sections of SH(K) satisfy the following
decreasing volume behavior:

voln−1(SH(K) ∩ (t1ν +H)) ≥ voln−1(SH(K) ∩ (t2ν +H))

if ∣t1∣ ≤ ∣t2∣ (where ν is a normal unit vector ofH). _is fact togetherwith the compact-
ness condition of SH(K) imply that SH⊥( χSH(K)) is an upper semi-continuous func-
tion.
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Now (iii) follows from the fact that for non-negative upper semi-continuous func-
tions ϕ = e−u and ψ = e−v so that {x ∈ Rn ∶ u(x) < ∞}, {x ∈ Rn ∶ v(x) < ∞} are
bounded, we have [23, p. 25] epi((1 − λ)u ⊕ λv) = (1 − λ)epi(u) + λepi(v), where
epi( ⋅ ) denotes the epigraph of a function.

In [1] (see also [10, Corollary 1.2.1]) a similar result to _eorem C was proved, in-
volving sections instead of projections. _e aim of the following result is to prove that
the inequality in _eorems 1.3 and 3.2 can be obtained if we replace the projection
hypothesis by a suitable section condition.

_eorem 3.6 Let f , g∶Rn → R≥0 be non-negative measurable functions such that
(1 − λ) f ⋆ λg is measurable for λ ∈ (0, 1) ûxed. If there exists H ∈ Ln

n−1 such that

(3.11) sup
y∈H�
∫

y+H
f∣(y+H) dx = sup

y∈H�
∫

y+H
g∣(y+H) dx <∞,

and (1 − λ)SH⊥( f ) ⋆ λSH⊥(g) is ameasurable function, then

∫
Rn

(1 − λ) f ⋆ λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

Proof Notice that hypothesis (3.11) together with the deûnition of SH⊥ implies that

∫
H
projH(SH⊥( f )) dx = sup

y∈H�
∫

y+H
f∣(y+H) dx

= sup
y∈H�
∫

y+H
g∣(y+H) dx = ∫H

projH(SH⊥(g)) dx ,

and, furthermore, we have projH(SH⊥( f )) = projH(SH⊥(g)) . _us, applying (2.3),
Proposition 3.4, and_eorem 1.3, respectively, we get

∫
Rn

(1 − λ) f ⋆ λg dx = ∫
Rn

SH⊥((1 − λ) f ⋆ λg) dx

≥ ∫
Rn

(1 − λ) SH⊥( f ) ⋆ λSH⊥(g)dx

≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx ,

as desired.

Remark Wewould like to point out that_eorem 3.6 can be obtained as a particular
consequence of results contained in [5], where the authors provide a standard proof
of this Borell–Brascamp–Lieb type inequality based on induction in the dimension
(cf. [5, _eorem 3.2]). Indeed, they obtain a “more general range" for the parameter
p proving that the inequality holds not just for p ≥ −1/n but for p ≥ −1/(n − 1). In
Section 4weprovide an alternativeproof of the inequality in this slightly smaller range
based on symmetrization procedures. _e work [5] deals with integral inequalities
providing simple proofs of certain known inequalities (such as the Prékopa–Leindler
and the Borell–Brascamp–Lieb inequalities) aswell asnew ones. Despite the relevance
of the proven inequalities, this work seems not to be so well known in the literature.
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We also refer the interested reader to [12,18] for related topics involving inequalities
for functions andmeasures.

We end this section by remarking that (under a mild assumption on measurabil-
ity) the analogous result to Corollary 3.5 for measurable sets A and B with a common
maximal volume section (through parallel hyperplanes to a given one H) can be ob-
tained. _is is the content of the following result.

Corollary 3.7 Let A, B ⊂ Rn be nonempty measurable sets and λ ∈ (0, 1) such that
(1 − λ)A+ λB is measurable. If there exists H ∈ Ln

n−1 such that

sup
x∈H⊥

voln−1(A∩ (x +H)) = sup
x∈H⊥

voln−1(B ∩ (x +H)) <∞,

then (provided that (1 − λ)SH⊥( χA) ⋆ λSH⊥( χB) is ameasurable function)

vol((1 − λ)A+ λB) ≥ (1 − λ)vol(A) + λvol(B).

4 Extension to Borell–Brascamp–Lieb Inequalities

In this section we present an extension of _eorems 1.3 and 1.5 to the Borell–Bras-
camp–Lieb (“BBL” for short) inequalities. In order to describe these inequalities and
our contribution, we need to introduce some further notation. More precisely we
recall the deûnition of the p-th mean of two non-negative numbers, where p is a pa-
rameter varying in R ∪ {±∞}. For this deûnition we follow [3], regarding a general
reference for p-th means of non-negative numbers; we refer also to the classic text of
Hardy, Littlewood, and Pólya [14].
Consider ûrst the case p ∈ R and p ≠ 0. Given a, b ≥ 0 such that ab ≠ 0 and

λ ∈ [0, 1], we set Mp(a, b, λ) = ((1 − λ)ap + λbp)1/p . For p = 0 we set

M0(a, b, λ) = a1−λbλ

and, to complete the picture, for p = ±∞ we deûne M∞(a, b, λ) = max{a, b} and
M−∞(a, b, λ) = min{a, b}. Finally, if ab = 0, we will deûne Mp(a, b, λ) = 0 for all
p ∈ R∪{±∞}. Note that Mp(a, b, λ) = 0 if ab = 0 is redundant for all p ≤ 0, however
it is relevant for p > 0 (as we will brie�y comment later on). Furthermore, for p ≠ 0,
we will allow that a, b take the value∞ and in that case, as usual,Mp(a, b, λ) will be
the value that is obtained “by continuity”.

_e next step is to deûne a family of functional operations based on thesemeans,
including the Asplund sum for the special case p = 0. Given non-negative functions
f , g∶Rn → R≥0, p ∈ R ∪ {±∞}, and λ ∈ [0, 1], we deûne
(4.1) (1 − λ) f ⋆p λg (x) = sup

(1−λ)x1+λx2=x
Mp( f (x1), g(x2), λ) .

In this way, the Asplund sum is obtained for p = 0. Note further that

(4.2) (1 − λ) f ⋆p λg ≤ (1 − λ) f ⋆q λg
if p ≤ q.

_e following theorem contains the Borell–Brascamp–Lieb inequality (see [2,3,9]
for a detailed presentation).
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_eorem D (Borell–Brascamp–Lieb inequality) Let λ ∈ (0, 1), −1/n ≤ p ≤ ∞ and
let f , g∶Rn → R≥0 be non-negative measurable functions such that (1 − λ) f ⋆p λg is
measurable as well. _en

(4.3) ∫
Rn

(1 − λ) f ⋆p λg dx ≥ Mp/(np+1)(∫
Rn
f dx , ∫

Rn
g dx , λ) .

Note that the fact that Mp(a, b, λ) = 0 if ab = 0 prevents us from obtaining trivial
inequalities when p > 0. Furthermore, the above theorem is a generalization of both
the classical Brunn–Minkowski inequality (1.3) (p =∞ and taking f and g character-
istic functions) and Prékopa–Leindler inequality,_eorem A (p = 0).

Regarding the functions which are naturally connected to the above theorem, we
give the following deûnition: a non-negative function f ∶Rn → R≥0 is p-concave,
p ∈ R ∪ {±∞}, if
(4.4) f ((1 − λ)x1 + λx2) ≥ Mp( f (x1), f (x2), λ)
for all x1 , x2 ∈ Rn and all λ ∈ (0, 1). _is deûnition has the following meanings.
(i) For p = ∞, f is ∞-concave if and only if f is constant on a convex set and 0

otherwise.
(ii) For 0 < p <∞, f is p-concave if and only if f p is concave on a convex set and 0

elsewhere.
(iii) For p = 0, f is 0-concave if and only if f is log-concave.
(iv) For −∞ < p < 0, f is p-concave if and only if f p is convex.
(v) For p = −∞, f is (−∞)-concave if and only if its level sets {x ∈ Rn ∶ f (x) > t}

are convex (for all t ∈ R).
Furthermore, for any p ∈ R ∪ {±∞}, f is p-concave if and only if

(4.5) (1 − λ) f ⋆p λ f = f .
In the following, for p ≠ 0,wewillworkwith (non-negative) extendedmeasurable

functions f , g∶Rn → R≥0 ∪{∞} forwhichwewill deûne the functional operation ⋆p
as in (4.1). Notice that since f and g can be approximated from below by bounded
functions (in such a way that the integrals converge), we are allowed to extend _e-
orem D for such f and g (functions which may take∞ as a value and provided that
p ≠ 0).

In the same way, we will say that a non-negative extended function

f ∶Rn → R≥0 ∪ {∞}
is p-concave, p ≠ 0, if and only if the equivalent conditions (4.4), (4.5) hold.

4.1 BBL Inequality Under an Equal Projection Assumption

Let H ∈ Ln
n−1 and let ν be a normal unit vector of H. Given f , g∶Rn → R≥0 ∪ {∞},

for h, h1 , h2 ∈ H such that (1 − λ)h1 + λh2 = h and any α1 , α2 ∈ R, we clearly have

projH((1 − λ) f ⋆−∞ λg)(h)
≥ ((1 − λ) f ⋆−∞ λg)((1 − λ)(h1 + α1ν) + λ(h2 + α2ν))
≥ min( f (h1 + α1ν), g(h2 + α2ν)) .
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_us, by taking suprema over α1 , α2 ∈ R,

projH((1 − λ) f ⋆−∞ λg)(h) ≥ min(projH( f )(h1), projH( f )(h2))

for all h1 , h2 ∈ H with (1 − λ)h1 + λh2 = h. _is implies that

projH((1 − λ) f ⋆−∞ λg) ≥ (1 − λ)projH( f ) ⋆−∞ λprojH(g).

In particular, if projH( f ) = projH(g) andwe set U ∶H → R≥0 ∪{∞} given byU(h) =
projH( f )(h) = projH(g)(h), then

(4.6) projH((1 − λ) f ⋆−∞ λg) ≥ U .

On the other hand, it is clear that

(4.7) {x ∈ h +H⊥ ∶ f (x) ≥ t} , { y ∈ h +H⊥ ∶ g(y) ≥ t} ≠ ∅,

for all 0 ≤ t < U(h) and, by means of the deûnition of ⋆−∞ together with (4.7), we
have

(4.8) { z ∈ h +H⊥ ∶ ((1 − λ) f ⋆−∞ λg)(z) ≥ t}
⊃ (1 − λ){x ∈ h +H⊥ ∶ f (x) ≥ t} + λ{ y ∈ h +H⊥ ∶ g(y) ≥ t}

for all 0 ≤ t < U(h). Now, using the same approach as in the proof of_eorem 1.3 and
taking into account (4.6) and (4.8) together with (4.2), wemay assert the following.

_eorem 4.1 Let f , g∶Rn → R≥0 ∪ {∞} be non-negativemeasurable functions such
that (1− λ) f ⋆p λg is measurable for p ∈ R∪ {±∞} and λ ∈ (0, 1) ûxed. If there exists
H ∈ Ln

n−1 such that projH( f ) = projH(g), then

∫
Rn

(1 − λ) f ⋆p λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

In the one-dimensional case this theorem was proved by Brascamp and Lieb (see
[3, _eorem 3.1]). We notice that _eorem 1.3 is obtained when p = 0. Note further
that since p/(np+1) ∈ [−∞, 1/n], the above inequality is stronger than (4.3) (cf. (4.2)).

4.2 BBL Inequality Under the Same Integral of a Projection

Given f ∶Rn → R≥0 ∪ {∞} measurable and −∞ < p < 0, it will be convenient to
write it in the form f = u1/p where u∶Rn → R≥0 ∪ {∞} is ameasurable function, i.e.,
u(x) = f (x)p with the conventions that 0p =∞ and∞p = 0). Given an H ∈ Ln

n−1,we
may write the Steiner symmetral of f = u1/p in the form SH( f ) = u1/p

H , i.e., uH ∶Rn →
R≥0 ∪ {∞} is the function given by uH(x) = (SH( f )(x)) p

. Notice further that as
t ↦ t1/p is a decreasing bijection on R≥0 ∪ {∞} and hyps(SH( f )) = SH̃(hyps( f )) ,
we also have epis(uH) = SH̃(epis(u)) .

Now writing f = u1/p and g = v1/p , it is easy to check that (1 − λ) f ⋆p λg = w1/p

where w = (1 − λ)u ⊕ λv. _erefore SH( f ) = u1/p
H , SH(g) = v1/p

H whereas

SH((1 − λ) f ⋆p λg) = w1/p
H
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and, without loss of generality, we may also assume that both f and g are not iden-
tically zero (which implies that epis(uH), epis(vH) ≠ ∅). _us, using a similar argu-
ment to that at the end of Proposition 3.3, we have

epis(wH) = SH̃(epis(w)) ⊃ epis((1 − λ)uH ⊕ λvH).

_is is equivalent to wH ≤ (1 − λ)uH ⊕ λvH and hence

SH((1 − λ) f ⋆p λg) = w1/p
H ≥ ((1 − λ)uH ⊕ λvH) 1/p = (1 − λ)SH( f ) ⋆p λSH(g).

Furthermore, notice that for p = −∞, we have

{ z ∈ Rn ∶ SH((1 − λ) f ⋆−∞ λg)(z) > t}
= SH({ z ∈ Rn ∶ ((1 − λ) f ⋆−∞ λg)(z) > t})
⊃ (1 − λ)SH({x ∈ Rn ∶ f (x) > t}) + λSH({ y ∈ Rn ∶ g(y) > t})
= (1 − λ){x ∈ Rn ∶ SH( f )(x) > t} + λ{ y ∈ Rn ∶ SH(g)(y) > t}
= { z ∈ Rn ∶ ((1 − λ)SH( f ) ⋆−∞ λSH(g))(z) > t} ,

and thus SH((1 − λ) f ⋆−∞ λg) ≥ (1 − λ)SH( f ) ⋆−∞ λSH(g).
On the other hand, given α1 , α2 ∈ R and α = (1 − λ)α1 + λα2, and bymeans of the

Borell–Brascamp–Lieb inequality (_eorem D), we have

∫
αν+H

((1 − λ) f ⋆p λg)
∣(αν+H)

dx

≥ Mp/(np+1)(∫
α1ν+H

f∣(α1 ν+H) dx ,∫α2ν+H
g∣(α2 ν+H) dx , λ) ,

for −1/n ≤ p < 0. _is ensures that, for h1 , h2 ∈ H,

SH⊥((1 − λ) f ⋆p λg)(((1 − λ)h1 + λh2) + ((1 − λ)α1 + λα2)ν)
≥ Mp/(np+1)(SH⊥( f )(h1 + α1ν), SH⊥(g)(h2 + α2ν), λ) .

_erefore, we have shown the following result.

Proposition 4.2 Let f , g∶Rn → R≥0 ∪ {∞} be non-negative measurable functions
such that (1− λ) f ⋆p λg is measurable for λ ∈ (0, 1) ûxed and −∞ ≤ p < 0. _en given
H ∈ Ln

n−1,

(4.9) SH((1 − λ) f ⋆p λg) ≥ (1 − λ)SH( f ) ⋆p λSH(g).

Moreover, if −1/n ≤ p < 0,

(4.10) SH⊥((1 − λ) f ⋆p λg) ≥ (1 − λ)SH⊥( f ) ⋆q λSH⊥(g),

where q = p/(np + 1).

Now as in _eorem 3.2,we extend the above theorem for the case of two functions
with the same integral of a projection onto a hyperplane.
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_eorem 4.3 Let −1/n ≤ p < 0 and let f , g∶Rn → R≥0 ∪ {∞} be non-negative
measurable functions such that (1− λ) f ⋆p λg ismeasurable for λ ∈ (0, 1) ûxed. If there
exists H ∈ Ln

n−1 such that

(1 − λ)SH( f ) ⋆p λSH(g) and (1 − λ)SH⊥(SH( f )) ⋆−∞ λSH⊥(SH(g))
aremeasurable functions and

(4.11) ∫
H
projH( f )(x)dx = ∫

H
projH(g)(x)dx ,

then ∫Rn(1 − λ) f ⋆p λg dx ≥ (1 − λ) ∫Rn f dx + λ ∫Rn g dx.

Proof Hypothesis (4.11) together with the deûnition of SH , SH⊥ implies

projH(SH⊥(SH( f ))) = projH(SH⊥(SH(g))) .
On the other hand, Proposition 4.2 (togetherwith themonotonicity of SH⊥( ⋅ ) and

(4.2)) implies

SH⊥(SH((1 − λ) f ⋆p λg)) ≥ SH⊥((1 − λ)SH( f ) ⋆p λ SH(g))
≥ (1 − λ) SH⊥(SH( f )) ⋆q λ SH⊥(SH(g))
≥ (1 − λ) SH⊥(SH( f )) ⋆−∞ λSH⊥(SH(g)) ,

where q = p/(np + 1). _e proof is now concluded by following similar steps to
_eorem 3.2.

Remark Notice that if in the above theorem f , g∶Rn → R≥0 ∪ {∞} are such that
(1 − λ) f ⋆p′ λg is measurable for λ ∈ (0, 1) and p′ ≥ 0, then (cf. (4.2))

∫
Rn

(1 − λ) f ⋆p′ λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .

Proof of_eorem 1.6 Without loss of generality we may assume that p < 0 (cf.
(4.2)). It is an easy exercise to check that if a function ϕ is p-concave, then SH(ϕ)
and SH⊥(ϕ) are, respectively, p-concave and q-concave (q = p/(np+ 1)) functions. In
fact, this may be quickly obtained from (4.5), (4.9), and (4.10).

On the other hand, since q-concave functions are also (−∞)-concave and the
t-Asplund sum ⋆t preserves t-concavity, we can assert that

(1 − λ)SH( f ) ⋆p λSH(g), (1 − λ)SH⊥(SH( f )) ⋆−∞ λSH⊥(SH(g))
aremeasurable functions. _e proof is concluded by applying _eorem 4.3.

To end this paper, we establish here the analogous result to _eorem 3.6. It can be
shown following the steps of the proof of the above-mentioned theorem.

_eorem 4.4 Let −1/n ≤ p < 0 and let f , g∶Rn → R≥0 ∪ {∞} be non-negative
measurable functions such that (1− λ) f ⋆p λg ismeasurable for λ ∈ (0, 1) ûxed. If there
exists H ∈ Ln

n−1 such that

sup
y∈H�
∫

y+H
f∣(y+H) dx = sup

y∈H�
∫

y+H
g∣(y+H) dx ,
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and (1 − λ)SH⊥( f ) ⋆−∞ λSH⊥(g) is ameasurable function, then

∫
Rn

(1 − λ) f ⋆p λg dx ≥ (1 − λ)∫
Rn
f dx + λ∫

Rn
g dx .
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