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BEST CONSTANTS FOR TENSOR PRODUCTS OF
BERNSTEIN, SZASZ AND BASKAKOV OPERATORS

JESUS DE LA CAL AND ANA M. VALLE

We consider tensor product operators and discuss their best constants in preserva-
tion inequalities concerning the usual moduli of continuity. In a previous paper, we
obtained lower and upper bounds on such constants, under fairly general assump-
tions on the operators. Here, we concentrate on the loo -modulus of continuity and
three celebrated families of operators. For the tensor product of k identical copies
of the Bernstein operator Bn, we show that the best uniform constant coincides
with the dimension k, when k ̂  3, while, in case k = 2, it lies in the interval
[2,5/2] but depends upon n. Similar results also hold when Bn is replaced by a
univariate Szasz or Baskakov operator. The three proofs follow the same pattern,
a crucial ingredient being some special properties of the probability distributions
involved in the mentioned operators, namely: the binomial, Poisson, and negative
binomial distributions.

1. INTRODUCTION AND MAIN RESULTS

The preservation of global smoothness by positive linear operators and the best
constants involved have been actively investigated by several authors during the last
few years. We refer, for instance, to [1, 2, 3, 4, 5, 6, 7, 8, 9] and the references therein,
where different approaches can be found. In particular, when dealing with operators of
probabilistic type (also called Bernstein type operators), the approach in [1, 2, 6, 7, 9]
based on representations of the operators in terms of suitable stochastic processes has
shown to be adequate and fruitful.

Following this spirit, we have given in [7] a systematic account of general results
for tensor products of Bernstein type operators including explicit formulae for the best
constants in terms of the underlying stochastic processes, as well as numerical lower and
upper bounds when the operators fulfill appropriate conditions. Among other things,
we showed the following:

Let L be a Bernstein-type operator over the interval / (either [0,1] or [0, oo))
allowing for a representation of the form

(1) Lf(x):=Ef{Z(x)), xe/, /€£,
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where (here and hereafter) E denotes mathematical expectation, Z := {Z(x) : x €
/ } is an integrable /-valued stochastic process, starting at 0 and having stationary
increments, and £ stands for the domain of L, that is, the set of all real valued functions
on / for which the right-hand side in (1) makes sense. Denote by L^ :— L <g> • • • ® L
the tensor product of k copies of L, that is, the k -dimensional operator given by

L^f(x):=Ef(Z1(x1),...tZk(xk)), x:=(xll...,xfc)€/fc, /€£<*>,

where Z, := {Zi(x) : x € / } (i = 1 , . . -,k) are k stochastically independent copies of
Z defined on the same probability space. If C^(S) is the best positive constant (not
depending upon / ) such that

Lj[L^f;5)^C<k>{S)u(f;S)t f G £<*>, < 5 e / - { 0 } ,

where ui{f; •) stands for the usual modulus of continuity of / with respect to the /QO-
norm on Rfc , then

(2) ^.m-rf^W W)

where
fa] := the smallest integer not less than a.

Moreover, under the additional assumptions:

(a) EZ(x) = x (x G / ) , and
(b) limP(Z(x) = 0) = 1,

x4.0

we have

(3) k = lim C<*> (5) ^ sup C{k) (5) ^ k + 1.

The preceding results apply to many operators usually considered in approxi-
mation theory. However, the theoretical computation of the best uniform constant

sup C^(6), or the sharpening of (3), requires specific techniques adapted to the
<5e/-{0}
particular case under consideration.

In the present paper, we focus our attention on three of the most celebrated families
of operators (Bernstein, Szasz, and Baskakov operators), and establish some striking
facts relating the dimension with the corresponding best uniform constants.

The next section contains the statements of the main results. The proofs are given
in Section 4, and they are based on two main ingredients: on the one hand, the general
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relations (2) and (3) above; on the other hand, some special properties of the probability
distributions involved in the mentioned operators (namely: the binomial, Poisson, and
negative binomial distributions) leading to the auxiliary results collected in Section 3.
Since the three proofs follow the same pattern, we only give complete details in the case
of the Bernstein operator. Finally, some concluding remarks close the paper.

2. MAIN RESULTS

BERNSTEIN OPERATORS. The n t h Bernstein operator Bn over the interval [0,1] is
given by

n

B n f ( x ) := ^ 2 f ( j / n ) P n j ( x ) = E f [ ^

where the pnj(x) are the weights of the binomial distribution with parameters n, x,

that is,

(4\ „ .(T\ ._

and U\, U2,--- , are independent and uniformly distributed random variables on the
interval [0,1]. Since Bn depends on the parameter n, we shall denote by Cn (8) the
best constant for the tensor product Bn of k copies of Bn (the same convention will
be used in the other cases considered below). It is known [2, 3] that, for k — 1 and all
n ^ 1,

sup (#>(*) = 2.

In this paper, we show the following.

THEOREM 1. In the case of Bernstein operators, we have for all n ^ 1 :

(a) If k > 3, then sup dk)(8) = limdk){5) = k.
6 s±°

(b) Ifk = 2, then 2 = limC^2>(<5) ^ sup C^2>(<5) ^ 5/2.
•Ho o<a<i

REMARK 1. Unlike the cases k = 1 and k ^ 3, sup Cn (S) does depend upon n

(see Section 5 below). It should also be noticed that, for tensor products of different
Bernstein operators, the statement analogous to Theorem l(a) fails to be true (see [7]).

SZASZ-MIRAKYAN OPERATORS. For t > 0, the Szasz operator St over [0, co) is defined

by

Stf(x) := f ) / (* / t )T t j (x ) = Ef
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where the irtj (x) are the weights of the Poisson distribution with parameter tx

(5) Trtj(x):=e~l

and {N(u) : u ^ 0} is a standard Poisson process. In [9], it is shown that, for all t > 0,

s u p C t
( 1 ) ( < J ) - 2 - e - 1 .

<$>o

In the present paper, we prove the following.

THEOREM 2 . In the case ofSzasz operators, we have for all t > 0:

(a) Ifk^3, then supc\k)(S) = limCt
<fc>(S) = k.

6>0 W

(b) Ifk = 2, then 2 = limCt
<2>(S) ^ supCt

<2>(5) ^ 5/2.
<U0 S>0

REMARK 2. The best uniform constant supCt (<5) is independent of t > 0 (for each
<5>0

k ^ 1), as readily follows from the application of (2) to the situation at hand. In Section
5, we state a conjecture about the exact value of such a constant, in the case k = 2.

BASKAKOV OPERATORS. For t > 0, the Baskakov operator Ht over [0, oo) is denned

by

Htf(x) := f ] f(k/t) btJ(x) = E
fc=o \ * /

where the btj{x) are the weights of the negative binomial distribution with parameters
t, x, that is,

{N(u) : u ~£ 0} is a standard Poisson process, and Ut is a random variable having the
gamma distribution with parameters t, 1, and independent of the Poisson process. It
was shown in [2] that

supsupCt
(1>(<S) = 2.

t>0 (5>O

Our last main result in the present paper is stated as follows.

THEOREM 3 . In the case of Baskakov operators, we have for all t > 0 and k > 2

where

a* k :— min < , J2L\
' tk+iy

Combining (3) with the preceding theorem, we obtain the following.
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COROLLARY. In the setting of Theorem 3, we have:

(a) 2 = lim Ct
<2> (5) ^ sup Ct

<2> (6) ^ 3 - <t/(2t + 1)).
<H° <5>0

( b ) 3 = l i m Ct
<3> (d) ^ s u p Ct

<3> {6)^4- (3t/(3t + 1 ) ) .

(c ) For k^4 and t > 2/k(k - 3) , sup Ct
(fc> (6) = lim c\k) (6) = k.

<5>o «4-o

3. AUXILIARY RESULTS

In this section, we collect the auxiliary results to be used in the proofs of Theorems
1-3. They all are concerned with the expected maximum of a finite set of independent
identically distributed random variables.

We shall use the following notation: Yi(x),... ,Yk(x) (k ^ 2) are independent
random variables taking values in the set of nonnegative integers, and having the same
probability distribution depending on the parameter x € / (= either the interval (0, \\
or the interval (0,oo)). We also set

Y(x) := max{Fi (x ) :i = l,...,k},

*i \x) •— niax| i j(X) . j f i j , i — i , . . . , K,

„,,_,__( ™*{Yt(x): I *i,j} i f f c ^ 3 _ _ , _ .

Our first lemma is an easy exercise in probability theory. However, for the sake of
completeness, we include the details of the proof.

LEMMA 1 . We have, for all x e I,

1=0

PROOF: We have,

oo

EY(x) =

1=0 1=0

In Lemmas 2-4 below, the common distribution of the random variables Yi(x) is
completely specified.
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LEMMA 2 . Let n ^ 1 and k ^ 2 be fixed integers, and assume that the common
distribution of the random variables Yi(x) is the binomial distribution with parameters
n and x € (0,1], that is,

P(Yi{x)=j)=pnJ(x), j = 0,...,n,

where pnij(x) is given in (4). If ak is either 1/2 or 1, according to k = 2 or k ^ 3,
then the function

* S ^ ,6(0,1],) ,
nx

is nonincreasing, and

(7) sup h(x) = lim/i(x) = k + 1 - afc.

P R O O F : The nonincreasing character of h(-) will be established by showing that
this function has a nonpositive derivative. For x € (0,1], it is clear that

(8) nx2 4~Hx) = akkn2x2(l - re)"*"1 + x^-EY{x) - EY{x).
ax ax

fk\
Since akk ^ I j , we have

akkn2x2{\ - x)nk~x ^ akkn2x2(l-x)nk-2

(9)

On the other hand, by Lemma 1 and the fact that

(10) X—pnj{x)=jpnj(x)-{j + i)PnJ+l{x), j = 0, 1, 2, . . . ,

we can write

V = - £ W*-1 (*(*) ^ 0 x^-

(11) '=
n-1

(=0

= E (' + !) \ HP(Yi(x) ^ l)P(Yi(x) =
1=0 U=l
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For each / = 0, 1 , . . . , the A; 4- I 1 events

{Yi(x) = / + 1} n {Y*(x) ^l}, 1 < t < k,

{Yi(x) = Z + 1} n {Yj{x) = I + 1} n {Y^(x) < /} , 1 ̂  i < j < k,

are pairwise disjoint, and they all are included in the event {Y(x) — I +1}. Therefore,
we obtain from (9) and (11)

• n - l

n^kr}2r'1(\ — ri"*1"1 4- T—-EY(T} < \^ (I + 1\P(Y(T) — I + ~\}

= EY(x),

which, by (8), implies —h(x) ^ 0.
ax

Finally, from l'Hopital's rule and the above calculations, we have

n- l

xio nx xio j ^ Q

= *,

showing (7), and completing the proof of Lemma 2. U

It is immediately checked that (10) remains true when the functions pnj() are
replaced by the functions ntj(-) given in (5) (respectively, the functions btj(-) given
in (6)), for all t, x > 0. Using this fact, the proof of Lemma 3 (respectively, Lemma 4)
follows exactly the same pattern as the proof of Lemma 2, and we therefore omit the
details.

LEMMA 3 . Let t > 0, k ^ 2, and assume that the common distribution of the
random variables Yi(x) is the Poisson distribution with parameter tx (x € (0,00)),
that is,

P(Yi(x) = j) = 7Ttj(x), j = 0, 1,. . . ,

where irt,j(x) is given in (5). If c*fc is the same as in Lemma 2, then the function

h(x) := 1 - ake-tk* + ̂ & , x € (0,oo),

is nonincreasing, and
suph(x) = hmh(x) = k + 1 — a*.
x>0 *4-0
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LEMMA 4 . Let t > 0, k ^ 2, and assume that the common distribution of the
random variables Yi(x) is the negative binomal distribution with parameters t and
x € (0, oo), that is,

P(Yi(x)=j)=bt,j(x), j = 0 , l , . . . ,

where btj(x) is given in (6). If at,k is the same as in the statement of Theorem 3, then
the function

h(x) := 1 - Qt,fc(l + x)~(tfc+1) + ^ ~ , x G (0, oo),

is nonincreasing, and
sup h(x) = limft(x) = k + 1 - at,k-

4. PROOFS OF THEOREMS 1-3

4.1 PROOF OF THEOREM 1. Let n ^ 1 and k > 2. Since (3) holds true when / and
0^(6) are replaced by [0,1] and C« (<5), respectively, we only need to show that

sup C^ ' (S) ^ k + 1 — c*fc,
•56(0,1]

where a* is the same as in Lemma 2.
The application of formula (2) to the situation at hand yields

C<,*>(<J) = £ ? r ^ ^ l , < 5 e ( o , i ] ,

where Y(-) is the same as in Lemma 2.
Using the inequality E \U] ^ P(U > 0) + EU, (which holds for every nonnegative

random variable U), and the fact that a/t ^ 1, we therefore have, for every 6 € (0,1],

5) +

= h(S),

where h(-) is defined as in the statement of Lemma 2. The conclusion follows from this
lemma.

4.2 PROOFS OF THEOREMS 2 AND 3: In the setting of Theorem 2 (respectively,
Theorem 3), formula (2) gives

where Y(-) is the same as in Lemma 3 (respectively, Lemma 4). The same argument
as above yields the corresponding conclusions. D
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5. CONCLUDING REMARKS

5.1 BERNSTEIN OPERATORS. In the two-dimensional case, we have

0 < 5 < 1.
\t=0 \t=0

Therefore,

and

sup C<2>(<$) ^ sup (1 + I ) (l - (1 - S)2) = \,
o<<5 î o<a<i \ o J v / 4

sup
0<c5<l (5tl/2 ' ~ ' 16

(It can be checked that the preceding inequalities are actually equalities.) Thus, the
best uniform constant Cn := sup Cn (6) depends upon n, as it was noticed in

Remark 1.
It should also be remarked that, by managing on a computer the functions Cn

2\-),
one can get empirical evidence supporting the following two conjectures:

CONJECTURE 1. The sequence {Cn : n ^ l} is nondecreasing.

CONJECTURE 2 . For each n ^ 2, Cn
2) equals

l -

However, we have been unable so far to find a theoretical proof for such assertions.
Thus, they will remain here as open problems. Observe that, if both conjectures are
true, then

21

(12)
j=0

1 - e - 2
3 i

= 2.3884....

5.2 SZASZ OPERATORS. Let Y(5) be the random variable in Lemma 3 corresponding
to t = 1 and k = 2. Then, for the two-dimensional Szasz operator S\ <8) Si, we have

hmC<2>(«5) = )imE = f ) (Z

J=0

1 - e - 2

Observe that this value coincides with the right-hand side in (12). Recalling Remark 2,
we state the following.
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CONJECTURE 3 . In the case of Szasz operators, we have for all t > 0

supCt
(a>(«) = svpC[2\5) = lim c f >(<*).
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