Protective effects of enzyme degradation extract from *Porphyra yezoensis* against oxidative stress and brain injury in D-galactose-induced aging mice

Chun Wang¹, Zhaopeng Shen²,³, Junhong Yu⁴, Jieru Yang¹, Fei Meng¹, Xiaolu Jiang¹,³*, Changliang Zhu¹*

Corresponding author(‡): Xiaolu Jiang, Changliang Zhu

Address correspondence to: College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.

Tel.: +86-13808981437, +86-15165252650

E-mail address: jiangxl@ouc.edu.cn, zcl@ouc.edu.cn

The authors’ address and contact detail of the authors are as follows:

¹ College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China

² College of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China

³ Qingdao Marine Biomedical Research Institute, Qingdao 266071, PR China

⁴ State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao Beer Co Ltd, Qingdao 266000, PR China

Email addresses of the authors:

wangchun_95@163.com

shenzp1987@ouc.edu.cn

yujh@tsingtao.com.cn

yangjieru_95@163.com

mengfei@stu.ouc.edu.cn

jiangxl@ouc.edu.cn

chlzhu@163.com

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI 10.1017/S0007114519003088

The British Journal of Nutrition is published by Cambridge University Press on behalf of The Nutrition Society
Abstract: This study investigated the effects of *Porphyra yezoensis* enzyme degradation extract (PYEDE) on the brain injuries and neurodegenerative diseases due to oxidative stress. We used in vitro antioxidant systems to verify the antioxidant potential of PYEDE. The results indicated that PYEDE alleviated weight loss and organ atrophy, reduced the levels of lipid peroxidation and protein carbonylation, and elevated glutathione (GSH) content in the serum and brains of the D-gal-induced aging model mice. PYEDE also renewed the glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total anti-oxidant capability (T-AOC) activities, downregulated the inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) levels, normalized the hippocampal neurons, and modulated multiple neurotransmitter systems by inhibiting the activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) in the upregulation of acetylcholine (Ach), dopamine (DA) and norepinephrine (NE) levels. Overall, PYEDE is a promising supplement for the alleviation of oxidative stress and age-associated brain diseases.

Keywords: *Porphyra yezoensis*; enzyme degradation; D-galactose; oxidative stress; neurodegenerative diseases

1. Introduction

Harman outlined a theory on the mechanisms of aging based on free radical chemistry: “Aging and the degenerative disease associated with it are attributed basically to the deleterious side attacks of free radicals on cell constituents and on the connective tissues” (1). There is a growing body of evidence that reactive oxygen species (ROS) modify biological molecules, such as lipids and proteins, leading to impaired cellular function, including neuronal death in the hippocampus (2, 3). Oxidative stress is considered to play a pivotal role in the normal aging processes and in neural loss in various neurodegenerative diseases, such as Alzheimer’s disease (4, 5). Anti-aging and neurodegenerative diseases treatments have attracted extensive attention worldwide.

D-galactose (D-gal) is a naturally occurring chemical substance in the body. However, high doses of D-gal lead to the accumulation of galactitol, resulting in osmotic stress and ROS production (6). In addition, accumulated D-gal can react with the amino groups of proteins and peptides to form advanced glycation end-products (AGEs), which have
been linked to neuronal cell death in many age-related neurodegenerative diseases (7, 8). D-gal overload induces changes that resemble the biological aging process, and are considerably similar to changes occurring in natural senescence models of neurological impairment, decreased activities of antioxidant enzymes, and accelerated tissue aging (5, 6). The D-Gal-induced aging model has been frequently used for brain aging and anti-aging pharmacology studies.

Currently, there is interest in the use of natural bioactive products of marine organisms as anti-oxidants, e.g., from marine macroalgae. *Porphyra yezonensis* is a rich macroalgal resource in Asia that is valued for its nutritional properties, containing abundant polysaccharides (especially sulphated polysaccharides), proteins, and phenolic compounds, etc. The macroalgae is used as a vegetable and is believed to have value as a medicine to slow the aging process (9, 10). In recent years, sulphated polysaccharides and phycobiliproteins from marine algae have been reported to have powerful antioxidant activities for scavenging the free radicals and preventing oxidative damage in living organisms (11-13). In addition, phenolic compounds are other widely studied substances with antioxidant activities (14, 15). However, little effort has been applied to evaluating the possible protective effects of antioxidants against D-gal-induced neurotoxicity and in the treatment of neurodegenerative diseases.

In this study, we investigated the antioxidative activities of *P. yezoensis* enzyme degradation extract (PYEDE) in vitro. We also established an animal aging model by adapting the classic method of rodents chronically injected with D-gal. The objective of the present study was to assess the protective effects of PYEDE on brain injury and neurodegenerative diseases induced by D-gal.

2. Material and methods

2.1 Chemicals

D-gal, ascorbic acid (VC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were supplied by Sinopharm Chemical Reagent Co., Ltd. (Guangzhou, China). Assay kits for the measurements of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA), total anti-oxidant capability (T-AOC), nitric oxide (NO), nitro
oxide synthase (NOS), protein carbonyl (PC), acetylcholinesterase (AchE), monoamine oxidase (MAO), acetylcholine (Ach), and bicinchoninic acid (BCA) were purchased from Jiancheng Bioengineering Institute (Nanjing, China). ELISA kits for dopamine (DA) and norepinephrine (NE) were obtained from Sigma-Aldrich (St Louis, Missouri, USA). All other chemicals and reagents used in this study were analytical grade.

2.2 Sample preparation and composition analysis

P. yezoensis was provided by the Lianyungang Youhai Trading Co. Ltd. (Jiangsu, China). Agarase was purchased from Sigma Aldrich Pvt. Ltd. (Shanghai, China), pectinase and cellulase were procured from Heshibi Biotechnology Co. Ltd. (Ningxia, China). After drying in an oven at 50 °C for 12 h, the P. yezoensis samples were ground into a powder that could be shifted through a size 80 (0.180 mm) mesh sieve by a pulveriser. The samples were degraded by compound enzymes (50 U/g agarase, 90 U/g pectinase, and 250 U/g cellulase) for 12 h under the conditions of solid-liquid ratio (water as solvent), hydrolysis temperature and pH of 1:40, 40 °C, and 6.0, respectively. The mixture was centrifuged at 4800 rpm for 10 min, and the supernatant was collected and freeze-dried to obtain PYEDE. PYEDE was stored at −20 °C until further use.

The carbohydrate content in PYEDE was measured by the phenol-sulphuric acid method, and glucose was added as a standard (16). The reducing sugar content was assayed using the 3,5-dinitrosalicylic acid (DNS) method and compared with the standard curve of D-galactose (17). The protein content was estimated by the Kjeldahl method (18). The ninhydrin method was used for the quantitative determination of amino acids (19). The sulphuric radical content was evaluated by barium sulphate turbidimetry (20). The uronic acid content was measured according to the reported method (21). The Folin-Ciocalteu method was used to determine total phenolic compounds (22).

2.3 In vitro determination of antioxidant activity of PYEDE

2.3.1 Assay of DPPH radical scavenging activity

The DPPH radical scavenging activity assay was carried out based on the reported procedure with slight modifications (23). Briefly, the sample was prepared in deionized water to obtain various concentrations. Then 2 mL of a 2 mM methanol solution of DPPH was mixed with 2 mL of the sample. The solutions were fully mixed and
incubated at room temperature in the dark for 30 min. After which, the absorbance was measured by a 722S spectrophotometer (Shanghai Precision Instruments Co., Ltd., Shanghai, China) at 517 nm. VC was used as the positive control, and the DPPH radical scavenging ability was calculated according to the following equation:

\[
\text{DPPH radical scavenging activity (\%)} = \left[1 - \frac{A_1 - A_2}{A_0}\right] \times 100
\]

(1)

Where \(A_0\) is the absorbance of the control (methanol instead of the sample), \(A_1\) is the absorbance of the sample, and \(A_2\) is the absorbance of the sample under identical conditions as \(A_1\) with methanol instead of DPPH solution.

2.3.2 Assay of ABTS radical scavenging activity

The scavenging activity toward ABTS was evaluated according to a published method \(^{24}\). The ABTS radical solution was formed by a 12 h reaction of ABTS (7 mM) with potassium persulfate (\(\text{K}_2\text{S}_2\text{O}_8\), 2.45 mM) at room temperature in the dark. The ABTS solution was diluted with PBS (0.2 M, pH 7.4) to create the working solution with an absorbance of 0.7 ± 0.02 at 734 nm. Then 2.4 mL of the ABTS working solution was mixed with 0.6 mL of sample. After reaction for 6 min at room temperature, the absorbance at 734 nm was measured. VC was used as the positive control, and the ABTS radical scavenging ability was calculated according to the following equation:

\[
\text{ABTS radical scavenging activity (\%)} = \left[1 - \frac{A_1 - A_2}{A_0}\right] \times 100
\]

(2)

Where \(A_0\) is the absorbance of the control (water instead of the sample), \(A_1\) is the absorbance of the sample, and \(A_2\) is the absorbance of the sample only (PBS instead of ABTS).

2.3.3 Assay of hydroxyl radical scavenging activity

This assay was performed using the published method with slight modifications \(^{25}\). In brief, 1 mL of \(\text{FeSO}_4\) (9 mM), 1 mL of 9 mM ethanol solution of salicylic acid, and 1 mL \(\text{H}_2\text{O}_2\) (8 mM) were mixed with 1 mL of sample. After reaction at 37 °C for 30 min, the absorbance at 510 nm was measured. VC was used as the positive control and the hydroxyl radical scavenging ability was calculated according to the following equation:

\[
\text{Hydroxyl radical scavenging activity (\%)} = \left[1 - \frac{A_1 - A_2}{A_0}\right] \times 100
\]

(3)

Where \(A_0\) is the absorbance of the control (water instead of the sample), \(A_1\) is the
2.3.4 Assay of superoxide radical scavenging activity

The ability to scavenge the superoxide radical was determined as previously described by Di et al. (26) with slight modifications. A 1 mL of aliquot of the sample was mixed with 4.5 mL Tris-HCl buffer (pH 8.2, 50 mM) containing EDTA (1 mM); then 0.3 mL of pyrogallic acid (3 mm) was added to the mixture and incubated for 5 min at 25 °C. Then we rapidly added 1 mL HCl (8 M) to terminate the reaction and measured the absorbance at 325 nm. VC was used as the positive control and superoxide anion radical scavenging ability was calculated according to the following equation:

\[
\text{Superoxide radical scavenging activity (\%)} = \left[1 - \frac{A_1 - A_2}{A_0}\right] \times 100
\]

Where \(A_0\) is the absorbance of the control (water instead of the sample), \(A_1\) is the absorbance of the sample, and \(A_2\) is the absorbance of the sample only (water instead of pyrogallic acid).

2.4 In vivo assessment of the effects of PYEDE on D-gal-treated mice

2.4.1 Animals and experimental design

Female ICR mice (18-20 g) at three weeks of age were purchased from Vital River Laboratory Animal Centre (Beijing, China; Licensed ID: SCXK2012-0001). Animals were kept in a polyacrylic cage and maintained under constant conditions (room temperature 23 ± 1 °C, and humidity 50 ± 10%) with alternative 12 h light-dark cycles. The mice had free access to rodent food and water.

After 7 days of acclimatisation, all animals were randomly assigned to five groups of 12 animals each: blank control group (BC), D-gal model group (DM), positive control group (VC, 90 mg/kg), PYEDE-L group (dose of 50 mg/kg), and PYEDE-H group (dose of 300 of mg/kg). D-gal was administered at a dose of 400 mg/kg by subcutaneously injection, except for the BC group, which received normal saline (0.9%, w/w), for 10 weeks. Starting in week 7, the mice in VC and PYEDE groups (distilled water was used to dissolve VC and PYEDE) were given corresponding drug doses by oral gavage once a day for 4 weeks. The mice in the BC and DM groups were given
distilled water in the same volumes. All mice experiments were approved by the Ethical Committee of Experimental Animal Care at Ocean University of China (certificate no. SYXK2012014). All animal experiments were conducted in accordance with the line of legislation and ethical guidelines of People’s Republic of China.

2.4.2 Body weight measurement and organ indexes

The mice were weighed every 2 days. On the last day of the experimental period, after 8–12 h of fasting, the mice were sacrificed under ether narcotization, based on the methods described by Tu et al. (4). The brain, spleen, and thymus were isolated and weighed to calculate the organ coefficients, using the following formula:

\[
\text{coefficient (mg/g)} = \frac{\text{organ weight (mg)}}{\text{body weight (g)}}.
\]

2.4.3 Biochemical examinations of MDA, PC, and GSH levels in serum

All the mice were anesthetised and 0.5–0.6 mL of peripheral blood was drawn through the angular vein. (27) Blood samples were placed in centrifuge tubes and clotted for 30 min at room temperature, then centrifuged at 5000 rpm for 20 min at 4 °C. Finally, the supernatant was separated for biochemical analysis of MDA, PC, and GSH levels based on the manufacturer’s instructions for the kits.

2.4.4 Assessment of oxidative status in brain

A random subset of brain samples (nine per group) were collected and homogenized in volumes of ice-cold physiological saline to obtain a 10% (w/v) homogenate with 10 strokes at 4000 rpm in a Bioprep-6 homogenizer (Hangzhou Allsheng Instruments Co., Ltd., Hangzhou, China). According to the preparation of brain homogenates by Xu et al. (5), the homogenates were directly centrifuged at 2500 rpm at 4 °C for 10 min, and the supernatants were obtained to determine MDA, PC, and T-AOC levels; SOD, MAO, GSH-PX, NOS, and AchE activities; and GSH, NO, Ach, DA, and NE contents, according to the corresponding instructions for the kits. Protein concentrations were measured using a commercially available BCA protein assay kit and using bovine serum albumin as a standard.

2.4.5 Determination of neuropathological alterations in the brain

For histological analysis, the brain tissue of three randomly selected mice from different groups were fixed in a fresh solution of 4% paraformaldehyde (pH 7.4) at 4 °C
for 24 h, followed by embedment in paraffin and longitudinal sectioning. Then, 5-μm-thick sections were obtained for hematoxylin-eosin (H&E) staining. The stained slides were viewed by microscopy for histopathological analysis.

The method for preparing the brain homogenate was the same as in 2.4.4. The supernatants were obtained to determine iNOS activity and NO content based on the manufacturer’s instructions for the kits.

2.4.6 Statistical analysis

The experimental data were analyzed by PASW statistics 18 software and subjected to one-way analysis of variance (ANOVA), followed by LSD tests for multiple comparisons. All data were presented as the mean ± SD, and values of $P < 0.05$ and $P < 0.01$ were considered statistically significant.

3. Results

3.1 The main compositions of PYEDE

As shown in Table 1, the major constituents of PYEDE were polysaccharides and proteins. The carbohydrate and protein contents were 222.9 and 211.6 mg/g, respectively. The contents of reducing sugar, sulphuric radical, amino acids, uronic acid, and phenolic compounds and were assayed as 132.2 mg, 122.5 mg, 62.3 mg, 19.5 mg, and 6.9 mg per 1 g PYEDE, respectively.

3.1 In vitro antioxidant activity of PYEDE

The four widely used assays were performed to measure the antioxidant activity of PYEDE in vitro, and the results are displayed in Figure 1. The IC$_{50}$ value was measured as the concentration required to scavenge 50% of the radicals.

The DPPH and ABTS free radicals are widely used indicators of the preliminary radical scavenging capacity of antioxidant compounds. The scavenging capacities for DPPH and ABTS radicals are shown in Figures 1A and 1B, respectively. PYEDE and VC showed strong dose-dependent scavenging activity of DPPH and ABTS radicals. The IC$_{50}$ values for the DPPH and ABTS scavenging activities of VC were 0.013 and 0.008 mg/mL, respectively. The IC$_{50}$ values of PYEDE corresponded to 2.369 and 2.217 mg/mL, respectively, and the results showed that PYEDE had some DPPH and ABTS
radical scavenging abilities.

The superoxide radical is considered as the primary ROS, and the hydroxyl radical is a typical representative of harmful secondary ROS that can cause oxidative injury and cell damage\(^5\). As shown in Figures 1C and 1D, the antioxidant capacities of PYEDE and VC increased in a concentration-dependent manner. The IC50 values of hydroxyl and superoxide radicals of VC were found to be 0.136 and 0.019 mg/mL, respectively. Whereas that of PYEDE were 2.938 and 4.656 mg/mL, respectively. PYEDE exhibited greater hydroxyl and superoxide radicals scavenging capacities compared with VC. As a result, the antioxidant activities of PYEDE were further investigated.

3.3 Effect of PYEDE on D-gal-induced aging model mice

3.3.1 Effect of PYEDE on body weight and organ indexes

Morphological changes are inevitable during the aging process\(^2\)\(^8\). As shown in Figure 2A, although the five groups started at the same level, the body weight of the four groups injected with D-gal were similar before the intervention of the test substance, whereas the average body weight of the BC group was markedly higher than those of the other four groups. The experimental animals did not have adverse reactions throughout the experiment. Moreover, after the VC or PYEDE administration, the DM group experienced weight loss, while the VC, PYEDE-L, and PYEDE-H groups continued to show increased body weight to varying degrees; the body weights of VC and PYEDE-H groups were similar to that of the BC group. At the end of the experiment, the body weight of the DM group very significantly decreased compared with the BC group \(P < 0.05\). Compared with the BC group, the D-gal model group showed a similar situation with regards the organ indexes of the brain, spleen, and thymus \(P < 0.05\) or \(P < 0.01\); the organ indexes decreased significantly after 8 weeks of subcutaneous injection with D-gal (Figure 2B). In contrast, after treatment with VC and PYEDE, the phenomena were substantially alleviated. Overall, the results suggested that to a certain extent, the administration of PYEDE protected against weight loss and organ atrophy.

3.3.2 Effect of PYEDE on MDA, PC, and GSH levels in serum
The degree of lipid peroxidation and protein oxidative damage are conventionally assessed by the level of MDA and the quantification of carbonyl groups, and GSH plays a significant role in the intracellular antioxidant defense of the body (29,30). Therefore, we evaluated the oxidative damage in the body by measuring the biochemical indicators MDA, PC, and GSH. As illustrated in Figures 3A and 3B, the levels of MDA and PC noticeably increased (by 11.9% and 55.2%, respectively) in the serum of the model mice compared with those in the BC group ($P < 0.05$ or $P < 0.01$). In contrast, the content of GSH was 23.3% lower compared with the normal mice (Figure 3C). VC administration at 90 mg/kg substantially decreased the MDA and PC levels (by 17.1% and 40.0%, respectively) versus those in the DM group (both $P < 0.01$), but there were no statistically significant differences in the GSH content ($P > 0.05$). Supplementation with 300 mg/kg PYEDE alleviated the effect, resulting in an evident decrease in MDA and PC levels and an increase in GSH content in the serum ($P < 0.05$ or $P < 0.01$). These findings suggested that PYEDE attenuated D-gal-induced lipid peroxidation and protein carbonylation, and improved the ability of the mice to defend against antioxidants.

3.3.3 Effect of oxidative status in the brain

Numerous studies have proved that antioxidant activity plays an indispensable role in the biological aging process (3). Thus, we further investigate several key antioxidants that can scavenge ROS, including the enzymatic antioxidants GSH-Px and SOD and the non-enzymatic antioxidant T-AOC in the brain. The differences in the brain antioxidant parameters between the treatment groups are shown in Table 2. The D-gal group showed remarkably decreased GSH-Px (by 32.6%), SOD (by 17.2%), and T-AOC (by 51.9%) activities (all $P < 0.01$) relative to the BC group. Moreover, the challenge by D-gal led to a significant decrease in GSH (by 28.9%, $P < 0.05$) but an increase in MDA and PC contents by 1.26-fold and 1.44-fold, respectively ($P < 0.05$ or $P < 0.01$). When PYEDE was administered at a low dose (50 mg/kg), the activities of SOD and T-AOC and the level of GSH were 13.3%, 40.4%, and 33.3% ($P < 0.05$ or $P < 0.01$).
higher compared with the DM group, respectively. Meanwhile, the contents of MDA and PC clearly decreased by 16.6% and 24.5% ($P < 0.05$ or $P < 0.01$), but the variation in the activity of GSH-Px in the brain did not reach statistical significance ($P > 0.05$). In addition, significantly higher activities of GSH-Px, SOD, and T-AOC and a higher level of GSH were found in PYEDE-H (300 mg/kg) and VC groups, and a significant decrease in the contents of MDA and PC occurred ($P < 0.05$ or $P < 0.01$). PYEDE (300 mg/kg) exhibited similar effects to VC, and PYEDE was better for improving the levels of T-AOC and GSH. These results collectively indicated that PYEDE protected against oxidative stress damage induced by D-gal.

3.3.4 Analysis of PYEDE on brain neuropathological alterations

The CA1 region of the hippocampus is known to be vital for learning and memory, and the neurogenesis in the hippocampus declines with aging, along with a continuous loss of neurons (31). As depicted in Figure 4A, no pathological alterations were evident in the BC group, the nerve fibers and neurons were arranged regularly and tightly, and the nuclei were large, round, and lightly stained in the CA1 region of the hippocampus. In contrast, there were some neuropathological changes in the DM group, including a reduction of the CA1 pyramidal cell layer, irregular nerve fibers, and loosely arranged neurons, accompanied by atrophy or disappearance. After administration of VC and PYEDE, the morphology of the nerve fibers and neurons visibly improved compared with the DM group; there was an obvious increase in round-shaped neurons with regular nerve fibers, and neurons were more compactly and orderly arranged. The effect of PYEDE at high dose (300 mg/kg) appeared similar to those in the BC and VC groups. In addition, the iNOS activity and NO content, which lead to neurodegenerative diseases, markedly increased ($P < 0.01$) in D-gal-induced mice compared with normal mice (Figure 4B). After administration of PYEDE and VC, the iNOS activity and NO content significantly downregulated compared with those in the DM group. The results suggested that PYEDE attenuated neurodegenerative diseases caused by oxidative stress and improved cognitive ability.
3.3.5 Neuroprotective effect of PYEDE on D-gal-induced aging of the mice brain

The symptoms of neurodegenerative diseases include memory impairment, the loss of cognitive ability, and dyskinesia. It is well documented that these symptoms are also associated with the disorders of the metabolism of cholinergic and monoamine neurotransmitters (2, 32). Therefore, we studied the effect of PYEDE on the AchE activity and Ach content of the cholinergic nervous system and the MAO activity and DA and NE contents of monoamine neurotransmitters. Figure 5 reveals the data on neuroprotection in the mice brain. Long-term D-gal injection in mice caused a 1.20-fold increase in AchE enzymatic activity \((P < 0.01) \) (Figure 5A) but a significant decrease in the Ach content (by 16.2%, \(P < 0.05 \)) (Figure 5B) of the brain compared with those of the BC group. Similarly, MAO activity dramatically increased 1.43-fold \((P < 0.01) \) (Figure 5C), and DA and NE contents were 13.4% and 10.4% (both \(P < 0.01 \)) (Figures 5D and 5E) lower, respectively, versus the normal mice. While VC obviously inhibited the increase in AchE and MAO activities \((P < 0.01) \), and Ach and NE contents were remarkably enhanced 1.29-fold and 1.11-fold (both \(P < 0.01 \)), respectively, there was no significant improvement in DA content \((P > 0.05) \). In addition, PYEDE remarkably and dose-dependently exhibited neuroprotective effects, and the protective effect of 300 mg/kg PYEDE visibly exceeded that of VC. Our findings revealed that PYEDE markedly alleviated nervous system damage induced by D-gal.

4. Discussions

Aging is a major cause of physiological dysfunctions, including central nervous system degeneration, cognitive deterioration, and the massive loss of neurons. With the increasing population and prolongation of lifespans, aging has become a worldwide problem and anti-aging has become an important public issue \(^3\, \&\, 28\). The brain accounts for 20% of the total oxygen consumption of the body, it is prone to a lack of antioxidant enzymes and produces relatively more ROS compared with other tissues with low oxygen consumption \(^33\). There is considerable evidence that oxidative stress plays an
An important role during the pathogenesis of age-associated or neurodegenerative diseases. An imbalance between the generation of oxidants and the antioxidant defenses of the body leads to oxidative damage of cells and tissues, modifying their morphology and function and resulting in aging and premature cell death \(^{4,5}\). The D-gal-induced aging model is based on the metabolic and free radical theories of aging, and is similar to the natural aging process \(^{8,29}\). Therefore, the chronic D-gal-induced aging of mice has been widely used in anti-aging pharmacology studies. This model was used to investigate supplements and antioxidants that have the potential to treat brain damage caused by aging.

\textit{P. yezonensis} is a macroalga with high nutritive value that is mainly distributed in Asia; numerous studies have reported that the cell wall of red algae is mainly composed of an abundance of polysaccharides, such as agar, cellulose, and pectin \(^{10}\). In this study, we used agarase, cellulase, and pectinase to degrade the cell wall of \textit{P. yezonensis}, as, compared with other methods, the intracellular components can be released more effectively, resulting in increased dissolution of active and nutritional ingredients. We used four classic established in vitro antioxidant systems to evaluate the antioxidant properties of PYEDE. Our study found that PYEDE had significant scavenging abilities on DPPH, ABTS, hydroxyl, and superoxide radicals, proving that PYEDE has antioxidant potential. This activity can be attributed to the composition of PYEDE. Previous studies have explored the ability of \textit{P. yezoensis} polysaccharides to prevent acute chemical liver injury induced by CCl\(_4\) in mice \(^{11}\). Previous investigations have verified that C-phycoerythrin is involved in the amelioration of diabetic complications by significant reductions in oxidative stress \(^{12}\). In addition, some phenolic compounds have strong antioxidant properties \(^{23}\).

To further confirm the potential of PYEDE as an antioxidant, we established an aging model by subcutaneous injections of D-gal into female ICR mice for 10 weeks to investigate the protective effect of PYEDE on brain injury and neurodegenerative diseases induced by D-gal. Previous studies have shown that the most easily assessed features of the aging process are the morphological changes in appearance, and D-gal can accelerate these features \(^{34}\). In our study, before the intervention treatment, the...
body weight of normal mice was higher than the D-gal-treated-mice, and we were able to effectively alleviate weight loss after PYEDE intervention treatment. The D-gal-induced aging model group showed slow weight loss, which was similar to the results of previous studies (32, 35). The brain is an important part of the central nervous system and the main regulator of vital functions. In addition, the spleen and thymus are considered to be indispensable immune organs, and spleen and thymus indexes can reflect the immune function of the body and are precise indicators of biological aging (36). There were significant decreases in body weight and organ indexes of brain, spleen, and thymus indexes after administration of D-gal, and similar consequences have been found in previous studies (28, 37). In our study, PYEDE effectively alleviated weight loss and organ atrophy, suggesting that PYEDE protected the brain from atrophy and slowed aging by strengthening immune functions.

Oxidative stress caused by ROS is the major driving force of brain damage, as it may directly oxidize lipids and proteins and indirectly induce oxidant/antioxidant imbalances by disrupting the activity of enzymes (28). It is well documented that D-gal-induced oxidative damage can be evaluated by measuring the activities of antioxidant enzymes (GSH-Px, SOD, MAO, and T-AOC) and the levels of MDA, PC, and GSH (3, 8, 38). As one of the most important members of the antioxidant defense system, SOD can catalyze the superoxide radical to form \(\text{H}_2\text{O}_2 \), which can be further metabolized by GSH-Px. GSH is a significant antioxidant and free radical scavenger in the body; it can react with \(\text{H}_2\text{O}_2 \) to form GSSH under the catalysis of GSH-Px and remove peroxide and hydroxyl radicals produced by cellular respiratory metabolism (30, 39). T-AOC has comprehensive antioxidant capacities, whereas MDA is a by-product of lipid peroxidation induced by free radicals, and its content indirectly reflects the level of lipid peroxidation in the body. The generation of PC is an important marker of the oxidative modification of protein molecules by free radicals. The level of PC is closely related to aging, and is often used to indicate the extent of oxidative damage in proteins (29, 40). In the present study, after treatment with PYEDE, MDA and PC levels were clearly reduced and the content of GSH remarkably elevated in serum. Serum is the most intuitive indicator of physical status, suggesting that PYEDE could protect the mice...
against D-gal-induced oxidative stress. Oxidative damages is a crucial factor which contributing to brain aging and senile dementia (2). Furthermore, we observed that administration of PYEDE improved the antioxidant activities of GSH-Px, SOD, and T-AOC and the level of GSH, as well as reduced MDA and PC levels in the brain. These results were similar to those of a study on carnosine and taurine (40) in which PYEDE substantially inhibited the occurrence of oxidative damage in the brain. In addition, the protective antioxidant effects of a P. yezonensis polysaccharide in CCl4 hepatotoxicity have been reported (11). These data provide evidence that the bioactivities of P. yezonensis could be used to prevent oxidative stress.

NO is considered as an important diffusion signal in brain development, learning, and memory, but excessive production of NO is cytotoxic, causing nerve damage and encephalopathy (41). NO is synthesized by at least three isozymes (inducible NOS, neuronal NOS, and endothelial NOS). In contrast to neuronal NOS (nNOS) and endothelial NOS (eNOS), which are known as constitutive NOS (cNOS), inducible NOS (iNOS) is not expressed in the brain under normal physiological conditions and has been proven to be an inhibitory molecule of neuron regeneration in the hippocampus (42, 43). Our study demonstrated that iNOS activity and NO content were upregulated in D-gal-induced mice. In addition, histopathological analysis revealed a reduction of the pyramidal cell layer and severe damage to neurons, accompanied by irregular nerve fibers in the hippocampus CA1 region in D-gal treated mice brain, and the findings were consistent with previous studies (5, 36). PYEDE treatment can effectively inhibit the activity of iNOS, reduce the content of NO, and alleviate damage to the hippocampus and brain atrophy, possibly by renewing the ability of the brain to scavenge ROS (in vitro) and reducing lipid peroxidation and protein carbonylation. Previous studies have shown that inhibition of iNOS and NO generation can attenuate hippocampal neuronal apoptosis, and an ethanol extract of P. yezonensis promoted the development of hippocampal neurons by enhancing the rates of early neuronal differentiation and axodendritic arborization (44, 45). Another study demonstrated that D-gal affected inflammatory markers, such as iNOS, causing them to activate the NF-κB pathway (3). At present, the pathogenesis and etiology of many
neurodegenerative diseases are not fully understood; however, many researchers believe that a reduction of neurons is one of the main pathogeneses, and this mechanism is targeted in the search for improved methods and drugs.

The metabolism of neurotransmitters plays a crucial role in the regulation of the neuroendocrine network, and alterations in multiple neurotransmitter systems may be associated with the pathogenesis of age-related brain degenerative disorders such as Alzheimer’s disease (2, 46). The complex etiology of Alzheimer’s disease has encouraged active research into developing multi-target drugs with two or more complementary biological activities. The development novel inhibitors of AchE and MAO is a promising direction for the treatment of Alzheimer’s disease (47). AchE and MAO are enzymes relevant to cholinergic and monoaminergic neurotransmitters, respectively. AchE is an important regulatory enzyme that controls the transmission of nerve impulses across cholinergic synapses by hydrolyzing Ach to choline and acetate (48). Increased activity of AchE is associated with the formation of amyloid plaques in the brain, and increased levels of beta-amyloid (Aβ) can, eventually, cause degeneration of cholinergic nerve terminal function in the hippocampus and cholinergic neuron atrophy, causing disruption of neurotransmission and eventually triggering Alzheimer’s disease (49-51). MAO is an important enzyme of the outer mitochondrial membrane and the central nervous system that catalyzes the degradation of a wide range of monoamine neurotransmitters, including DA and NE (29, 35). It is assumed that activation of MAO is associated with the generation of free radicals in the involution of the nervous tissue (52).

In the present study, increased AchE and MAO activities led to a reduction of Ach and monoamine neurotransmitters in the brains of D-gal-induced mice, whereas PYEDE reduced the activities of AchE and MAO and increased the contents of Ach, DA, and NE. Thus, the neuroprotective effects of PYEDE involved modulation of the activities of enzymes related to neurotransmitter metabolism. Numerous studies have also shown that improvements in learning and memory of aged mice were achieved by increasing NE and DA levels and decreasing the activity of AchE (53-55). The polysaccharides of PYEDE might have played a role in the neuroprotective effects, and this is supported by previous studies (56) that found that oligosaccharides or sulphated oligosaccharides...
extracted from seaweed, such as GV-971, captured Aβ at multiple sites, and inhibited Aβ fibrils formation, and improved cognitive impairment. Moreover, oxidative damage induced by free radicals was an important factor in neuronal degeneration and promoted the appearance of Aβ and neurofibrillary changes (39). Thus, the neuroprotective effects of PYEDE were also achieved by reversing the decline of the antioxidant defense, which was confirmed by the data above. However, the imbalance in neurotransmitters which are synthesized within the neurons, led to synaptic damage and neuronal cell loss relevant to memory function (54), which is similar to the phenomenon observed in our study. Therefore, it seems that PYEDE ameliorated the cell components of the oxidative damaged brain and restored neuronal activity, including the synthesis and transport of neurotransmitters and enzymes, which is consistent with hippocampal pathology.

5. Conclusions

In summary, the results of our study support the hypothesis that treatment with PYEDE could alleviate oxidative-stress-induced damage in neurodegenerative diseases. Our findings demonstrated that PYEDE exerted a strong antioxidant effect in vitro and effectively protected against brain injury in D-gal-treated mice. The underlying protective mechanisms might involve the improvement in organ atrophy, inhibition of lipid peroxidation and protein carbonylation, renewal of antioxidant enzymes activities, amelioration of hippocampal neuronal apoptosis and damage, and beneficial modulation of multiple neurotransmitter systems. This study provides novel insights into PYEDE as an effective mediator of age-related cognitive deficits and supports the use of a multitarget approach in the treatment of neurodegenerative diseases.

Acknowledgment

we are grateful to Professor Jingfeng Wang for providing experimental sites and experimental technical guidance for animal feeding.

Financial Support

This work was funded by Qingdao Marine biological medicine science and technology innovation center construction project (2017-CXZX01-4-6).
Conflict of Interest

The authors declare that they have no conflict of interest. All authors confirmed the manuscript authorship and agreed to submit it for peer review.

Authorship

Designed the experiments: Chun Wang, Zhaopeng Shen and Xiaolu Jiang. Prepared the extracts: Chun Wang, Jieru Yang, Fei Meng. Performed the experiments: Chun Wang, Zhaopeng Shen, Jieru Yang, Fei Meng. Drafted and revised the manuscript: Chun Wang, Zhaopeng Shen, Changliang Zhu. Funding acquisition and project administration: Xiaolu Jiang, Changliang Zhu, Zhaopeng Shen.

Ethics statements

All animal treatments were strictly in accordance with the Ethical Committee of Experimental Animal Care at Ocean University of China (certificate no. SYXK2012014). All animal experiments were conducted in accordance with the line of legislation and ethical guidelines of People’s Republic of China.
References

23 Singh JP, Kaur A, Singh N et al. (2016) In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT-Food Sci Technol

34 James EL, Michalek RD, Pitiyage GN et al. (2015) Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. *J Proteome*
Accepted manuscript

Res 14, 1854-1871.

41 Suzuki N, Motohashi N, Uezumi A et al. (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117, 2468-2476.

Schmatz R, Mazzanti CM, Spanevello R et al. (2009) Resveratrol prevents memory

Figures

Figure 1 Scavenging activities on DPPH radical (A), ABTS radical (B), hydroxyl radical (C) and superoxide radical (D) of PYEDE and VC to determine the antioxidant activity of PYEDE in vitro, VC was used for comparison purposes. Date are presented as mean ± SD of triplicates.
Figure 2 Effect of PYEDE on body weight (A) and organ indexes (B) on D-gal-induced aging mice. Data are given as mean ± SD (n=12). #P < 0.05 and ##P < 0.01 vs blank control group. *P < 0.05 and **P < 0.01 vs D-gal model group.
Figure 3 Effects of PYEDE treatment on the levels of MDA (A), PC (B) and GSH (C) content in serum. Data are given as mean ± SD (n=12). *P < 0.05 and **P < 0.01 vs blank control group. #P < 0.05 and ##P < 0.01 vs D-gal model group.
Figure 4 The neurodegenerative changes in CA1 region of the hippocampus (A) Photomicrographs of H&E staining in CA1 region of the hippocampus (H&E staining, magnification 200×) (n=3). Apoptosis and irregular neurons were marked by the blank and orange arrow respectively. (B) The iNOS activity and NO content in the hippocampus. Data are given as mean ± SD (n=9). #P < 0.01 vs blank control group. *P < 0.05 and **P < 0.01 vs D-gal model group.
Figure 5 Effect of PYEDE on activities of AchE (A), MAO (C) and contents of Ach (B), DA (D), NE (E) in the brain of D-gal-induced mice. Data are given as mean ± SD (n=9). *P < 0.05 and **P < 0.01 vs blank control group. *P < 0.05 and **P < 0.01 vs D-gal model group.