BULL. AUSTRAL. MATH. SOC. VOL. 7 (1972), 443-445.

Bounded approximate identities and tensor products

J.R. Holub

The question has been raised [R.J. Loy, Bull. Austral. Math. Soc. 2 (1970), 253-260] as to whether the existence of a bounded (left) approximate identity in the tensor product $A \otimes_{\alpha} B$ of Banach algebras A and B (for α a crossnorm on $A \otimes B$) implies the existence of a bounded (left) approximate identity in A and B. This is known [David A. Robbins, Bull. Austral. Math. Soc. 6 (1972), 443-445] to be the case for α equal to the greatest crossnorm. This paper answers the general question affirmatively.

Let A and B denote Banach algebras, α a crossnorm $\geq \lambda$ (λ the "least" crossnorm [4]) and $A \otimes_{\alpha} B$ the completion of $A \otimes B$ with respect to α . The purpose of this note is to prove the following

THEOREM. If $A \otimes_{\alpha} B$ has a bounded (left) approximate identity then each of A and B has a bounded (left) approximate identity.

This theorem answers the problem posed by Loy in [2] and extends the result of [3] in which the special case of the theorem when α is the greatest crossnorm is proved.

Let (Z_n) be a bounded left approximate identity in $A \otimes_{\alpha} B$,

say $\sup_{n} \|Z_{n}\|_{\alpha} \leq K$. Then for each n, $Z_{n} = \sum_{i=1}^{\infty} t_{i}^{(n)}$ where

Received 8 August 1972. The research was supported by a grant from the National Science Foundation of the USA.

 $t_i^{(n)} \in A \otimes B$ and the series is absolutely convergent in $A \otimes_{\alpha} B$, [1]. In the interest of simplicity of notation we suppress several indices which might help in identification and write $t_i^{(n)} = \sum_{j=1}^{K(i)} x_j \otimes y_j$.

Fix $a \in A$ with $||a||_A = 1$ and let $f \in A^*$ be such that $||f|| = 1 = \langle f, a \rangle$. Define the operator $T_a : A + A$ by $T_a(x) = x \cdot a$. It is clear that $||T_a|| \le 1$. Let *I* denote the identity operator on *B* and $T_a \otimes I$ the tensor product of the maps T_a and *I*. Then $T_a \otimes I$ is continuous on $A \otimes_{\lambda} B$ and $||T_a \otimes I||_{\lambda} \le 1$, [4].

It follows that

$$\left\|T_{a} \otimes I\left(t_{i}^{(n)}\right)\right\|_{\lambda} = \left\|\sum_{j=1}^{K(i)} x_{j} \cdot a \otimes y_{j}\right\|_{\lambda} \leq \left\|t_{i}^{(n)}\right\|_{\lambda},$$

and by definition

$$\left\|\sum_{j=1}^{K(i)} \langle f, x_j \cdot a \rangle y_j\right\|_{B} \leq \left\|\sum_{j=1}^{K(i)} x_j \cdot a \otimes y_j\right\|_{\lambda}.$$

Therefore

$$\left\|\sum_{j=1}^{K(i)} \langle f, x_j^* a \rangle y_j \right\|_B \leq \left\| t_i^{(n)} \right\|_{\lambda}$$

for all i and so

$$\sum_{i=1}^{\infty} \left\|\sum_{j=1}^{K(i)} \langle f, x_{j}^{*a} \rangle y_{j}\right\|_{B} \leq \sum_{i=1}^{\infty} \left\|t_{i}^{(n)}\right\|_{\lambda} \leq \sum_{i=1}^{\infty} \left\|t_{i}^{(n)}\right\|_{\alpha} \leq K.$$

In particular, then, $\sum_{i=1}^{\infty} \sum_{j=1}^{K(i)} \langle f, x_j^* a \rangle y_j$ converges in B, say to q_n , and $\sup_n \|q_n\|_B \leq K$. We claim (q_n) is a bounded left approximate identity in B.

To see this, let $b \in B$. Then $a \otimes b \in A \otimes_{\alpha} B$, so by assumption given $\varepsilon > 0$ there is an n_0 such that if $n \ge n_0$ then

$$\|Z_n \cdot (a \otimes b) - a \otimes b\|_{\alpha} < \varepsilon .$$

Let $n \ge n_0$. Then

$$\left\|Z_{n}^{\bullet}(a\otimes b) - a\otimes b\right\|_{\lambda} \leq \left\|Z_{n}^{\bullet}(a\otimes b) - a\otimes b\right\|_{\alpha} \leq \varepsilon,$$

implying

$$\left\|\sum_{i=1}^{\infty} \sum_{j=1}^{K(i)} \langle f, x_j \cdot a \rangle y_j \cdot b - \langle f, a \rangle b\right\|_B < \varepsilon.$$

Since $\langle f, a \rangle = 1$ we have $||q_n \cdot b - b||_B < \varepsilon$ for $n \ge n_0$, implying (q_n) is a left approximate identity in B for which $\sup_{n \to \infty} ||q_n||_B \le K$.

Trivial modifications of the proof show that A also has a bounded left approximate identity and that the theorem holds with "left" replaced by "right".

References

- [1] Jesús Gil de Lamadrid, "Measures and tensors", Trans. Amer. Math. Soc.114 (1965), 98-121.
- [2] R.J. Loy, "Identities in tensor products of Banach algebras", Bull. Austral. Math. Soc. 2 (1970), 253-260.
- [3] David A. Robbins, "Existence of a bounded approximate identity in a tensor product", Bull. Austral. Math. Soc. 6 (1972), 443-445.
- [4] Robert Schatten, A theory of cross-spaces (Annals of Mathematics Studies, 26. Princeton University Press, Princeton, New Jersey; 1950).

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.