PROLONGATIONS OF LINEAR CONNECTIONS TO THE FRAME BUNDLE

Luis A. Cordero and Manuel de Leon

Abstract

In this paper we construct the prolongation of a linear connection Γ on a manifold M to the bundle space $F M$ of its frame bundle, and show that such prolongated connection coincides with the so-called complete lift of Γ to $\underset{=}{F M}$.

Introduction

The purpose of the present paper is to construct the prolongation of a linear connection on a manifold M to the bundle space $\underline{\underline{F} M}$ of the frame bundle of M. To do this, we use Morimoto's general theory of prolongations to tangential fibre bundles of p^{r}-jets of M [6] particularized when $r=1$, as well as some result stated in [2].

In §1, we briefly recall some results which will be used in the remaining sections. In $\S 2$, the prolongation of a connection on a principal fibre bundle P to the principal bundle $J_{p}^{1} p$ of p^{l}-jets of P is constructed. In §3, we apply the results in $\S 2$ for the case of linear connections and construct the prolongation $\tilde{\Gamma}$ to $\underset{=}{ } M$ of a linear connection Γ on M, proving moreover that $\tilde{\Gamma}$ coincides with the socalled complete lift Γ^{c} of Γ defined by Mok in [5]. Finally, in 84 we show that connections adapted to G-structures on M prolongate to

Received 18 July 1983.

[^0]connections adapted to the corresponding prolongations of these $G-$ structures introduced in [2].

In this paper all manifolds and mappings are assumed to be differentiable of class C^{∞}, entries of matrices are written as a_{j}^{i}, i being the row index and j the column index, and summation over repeated index is always implied.

1. Preliminaries

Let M be an n-dimensional manifold, R^{p} the Euclidean p-space and $J_{p}^{1} M$ the set of l-jets at $0 \in R^{p}$ of all differentiable mappings $6: R^{p} \rightarrow M$ defined on some open neighborhood of $0 \in R^{p}$; if $j^{1}(6)$ denotes the 1 -jet of 6 at 0 , the target map $\pi: J_{p}^{1} M \rightarrow M$ is defined by $\pi\left(j^{\perp}(6)\right)=f(0)$ and is in fact a projection map from $J_{p}^{1} M$ onto M.

On $J_{p}^{1} M$ there exists a structure of $(n+p n)$-dimensional manifold, canonically induced from the manifold structure of M, which is given as follows: let $\left(U, x^{i}\right)$ be a coordinate system in M, U being the coordinate neighborhood and $\left\{x^{i}\right\}$ the coordinate functions on u; then, on $J_{p}^{1} U=\pi^{-1}(U)$ we define a family of coordinate functions $\left\{x^{i}, x_{\alpha}^{i}\right\}$ by setting

$$
x^{i}\left(j^{1}(\delta)\right)=x^{i}(6(0)), x_{\alpha}^{i}\left(j^{1}(6)\right)=\left.\frac{\partial\left(x^{i} \circ \sigma\right)}{\partial t^{\alpha}}\right|_{0}
$$

$(1 \leq i \leq n, 1 \leq \alpha \leq p)$ for any $f^{1}(6) \in J_{p}^{1} u$, and where $\left(t^{l}, \ldots, t^{p}\right)$ are the canonical coordinate functions on R^{p}. Then $\left(J_{p}^{1} u, x^{i}, x_{\alpha}^{i}\right)$ is a coordinate system in $J_{p}^{l} U$ which will be said to be induced by $\left(U, x^{i}\right)$ in M.

Let $h: M \rightarrow N$ be a differentiable map; then $h^{1}: J_{p}^{1} M \rightarrow J_{p}^{1} N$ will
denote the map canonically induced by h and given by
$h^{1}\left(j^{1}(6)\right)=j^{1}(h \circ 6)$ for any $j^{1}(6) \in J_{p}^{1} M$. If $\left(u, x^{i}\right),\left(u^{\prime}, y^{j}\right)$ are local coordinate systems in M and N respectively, and if we assume $h: u \rightarrow U^{\prime}$ expressed by $y^{j}=h^{j}\left(x^{1}, \ldots, x^{n}\right)$ then, with respect to the induced coordinate systems $\left(J_{p}^{1} u, x^{i}, x_{\alpha}^{i}\right),\left(J_{p}^{1} u^{\prime}, y^{j}, y_{\alpha}^{j}\right), h^{l}$ is expressed by

$$
h^{1}: y^{j}=h^{j}\left(x^{1}, \ldots, x^{n}\right), y_{\alpha}^{j}=\frac{\partial h^{j}}{\partial x^{k}} x_{\alpha}^{k}
$$

where $l \leq k \leq \operatorname{dim} M, l \leq j \leq \operatorname{dim} N$ and $l \leq \alpha \leq p$.
Let G be a Lie group; then $J_{p}^{1} G$ has also a Lie group structure, its product being defined as follows: for any $j^{l}(f), j^{l}(g) \in J^{l} G$, $j^{1}(f) \cdot j^{l}(g)=j^{l}(6 g)$, where $6 g: R^{p} \rightarrow G$ is defined by $(f g)(t)=f(t) g(t), t \in \operatorname{dom} f n \operatorname{dom} g$. The unit element e_{p} of $J_{p}^{I} G$ is then the l-jet at $0 \in R^{p}$ of the constant map from R^{p} into the unit element e of G.

Next, we shall recall some results to be used later.
(1) Assume $p=n=\operatorname{dim} M$. Then the bundle space $F M$ of the principal fibre bundle of linear frames over M (briefly, the frame bundle of M) is an open (dense) submanifold of $\int_{n}^{l} M$, and the induced structure on $\underset{=}{F M}$ is the usual one with respect to which $\pi_{M}: F_{M} \rightarrow M$ is a $G 1(n)$ principal bundle, $G l(n)$ denoting the general linear group. If $\left(U, x^{i}\right)$ is a local coordinate system in M, the induced coordinate functions on $\mathrm{F} U=\left(\pi_{M}\right)^{-1}(U)$ will be written as $\left(x^{i}, x_{j}^{i}\right)$ if there is no confusion.
(2) Assume $p=1$. Then $\pi: J_{1}^{1} M \rightarrow M$ is nothing but the tangent bundle $\pi_{M}: T M \rightarrow M$. In this case, if $\left(U, x^{i}\right)$ is a local coordinate system in M, the induced coordinate functions on $T U=\left(\pi_{M}\right)^{-1}(U)$ will be
written as $\left(x^{i} ; \dot{x}^{i}\right)$. Note that the linear structure of this vector bundle is locally given as follows: let X, Y be tangent vectors at $x=\left(x^{1}, \ldots, x^{n}\right) \in U$ with coordinates $x=\left(x^{i} ; \dot{x}^{i}\right), y=\left(x^{i} ; \dot{y}^{i}\right)$; then $x+y=\left(x^{i} ; \dot{x}^{i}+\dot{y}^{i}\right)$. If $f: M \rightarrow N$, we shall denote by $T 6: T M \rightarrow T N$ the induced map.
(3) Let $P(M, \pi, G)$ be a principal fibre bundle with bundle space P, base space M, projection π and structure group G. Then $J_{p}^{1} P\left(J_{p}^{1} M, \pi^{1}, J_{p}^{1} G\right)$ is again a principal fibre bundle. In fact, if $\phi_{U}: \pi^{-1}(U) \rightarrow U \times G$ is the trivialization of P over $U \subset M$, then, since $\left(\pi^{1}\right)^{-1}\left(J_{p}^{1} u\right)=J_{p}^{1} \pi^{-1}(u)$, we define $\tilde{\phi}_{U}: J_{p}^{1} \pi^{-1}(u) \rightarrow J_{p}^{1} u \times J_{p}^{1} G$ by setting $\tilde{\phi}_{U}\left(j^{\perp}(\sigma)\right)=\left(j^{1}(\pi \circ \sigma), j^{1}\left(\eta \circ \phi_{U} \circ \sigma\right)\right)$ for any $j^{1}(6) \in J_{p}^{1} \pi^{-1}(u)$, where $\eta: U \times G \rightarrow G$ is the canonical projection.
(4) Let $G=G I(n),\left\{X_{j}^{i}\right\}$ be the canonical coordinates in $G 1(n)$, $\left\{x_{j}^{i}, x_{j \alpha}^{i}\right\}$ the induced coordinates in $J_{n}^{\mathcal{G l}(n)}$ and $\left\{Y_{B}^{A}, 1 \leq A, B \leq n+n^{2}\right\}$ the canonical coordinates in $G I\left(n+n^{2}\right)$; then, there exists a canonical embedding of Lie groups

$$
j_{n}: J_{n}^{\mathrm{G}} \mathrm{Gl}(n) \rightarrow \mathrm{Gl}\left(n+n^{2}\right)
$$

given by

$$
j_{n}\left(\left(x_{j}^{i}, x_{j \alpha}^{i}\right)\right)=\left[\begin{array}{cccc}
\left(x_{j}^{i}\right) & 0 & \cdots & 0 \\
\left(x_{j 1}^{i}\right) & \left(x_{j}^{i}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\left(x_{j n}^{i}\right) & 0 & \cdots & \left(x_{j}^{i}\right)
\end{array}\right]
$$

that is, with respect to the coordinates above j_{n} is expressed by

$$
\begin{aligned}
& y_{j}^{i}=x_{j}^{i}, y_{j_{\alpha}}^{i}=0, \\
& j_{n}: \\
& y_{j}^{i}=x_{j \alpha}^{i}, y_{j_{\beta}}^{i}=\delta_{\beta}^{\alpha} x_{j}^{i},
\end{aligned}
$$

where $i_{\alpha}=\alpha n+i, l \leq i, \alpha \leq n$. If we consider the Lie algebras of $J_{n}^{1} \mathrm{GI}(n)$ and $\mathrm{Gl}\left(n+n^{2}\right)$ identified with the tangent spaces at the respective unit elements e_{n} and e, then the induced homomorphism

$$
j_{n}: T_{e} J_{n}^{J l \mathrm{GI}(n)} \rightarrow T_{e} \mathrm{GI}\left(n+n^{2}\right)
$$

may be written as follows:

$$
j_{n}\left(\left(\delta_{j}^{i}, 0 ; A_{j}^{i}, B_{j \alpha}^{i}\right)\right)=\left(\delta_{B}^{A} ;\left[\begin{array}{cccc}
\left(A_{j}^{i}\right) & 0 & \ldots & 0 \\
\left(B_{j 1}^{i}\right) & \left(A_{j}^{i}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\left(B_{j n}^{i}\right) & 0 & \cdots & \left(A_{j}^{i}\right)
\end{array}\right]\right)
$$

(5) Let $\underset{=N}{F M}\left(M, \pi_{M}, G l(n)\right)$ be the frame bundle of M, $J_{n}^{\underline{F}} M\left(J_{n}^{1} M, \pi_{M}^{1}, J_{n}^{1} \mathrm{Gl}(n)\right)$ the induced $J_{n}^{1} \mathrm{Gl}(n)$-principal bundle and ${ }_{\underline{F}} J_{n}^{1} M\left(J_{n}^{1} M, \pi_{J_{n}^{1} M}, G l\left(n+n^{2}\right)\right)$ the frame bundle of the $\left(n+n^{2}\right)$-dimensional manifold $J_{n}^{n} M$. Then there exists a canonical injective homomorphism of principal bundles [2]

$$
j_{M}: \mathcal{J}_{n}^{1} \mathrm{E} M \rightarrow \underline{\underline{\mathrm{~F}}}_{n}^{\mathrm{J}} \mathrm{M}
$$

over the identity of $J_{n}^{l} M$, with associate Lie group homomorphism j_{n}. The homomorphism j_{M} is locally defined as follows: let $\left(U, x^{i}\right)$ be a local coordinate system in M and consider fibered coordinate functions $\left(x^{i}, x_{\alpha}^{i}, x_{j}^{i}, x_{j \alpha}^{i}\right)$ on $\left(\pi_{M}^{1}\right)^{-1}\left(J_{n}^{1} u\right)$ and $\left(y^{i}, y_{\alpha}^{i}, y_{B}^{A}\right)$ on ${ }_{=J_{n}^{1}}^{1} u$; then, with respect to these coordinates, j_{M} is expressed by

$$
\begin{aligned}
y^{i} & =x^{i}, \quad y_{\alpha}^{i}=x_{\alpha}^{i}, \\
j_{M}: y_{j}^{i} & =x_{j}^{i}, \quad y_{j_{\alpha}}^{i}=0, \\
y_{j}^{i} & =x_{j \alpha}^{i}, y_{j_{\beta}}^{i}=\delta_{\beta}^{\alpha} x_{j}^{i} .
\end{aligned}
$$

Since the restriction $\left.\underset{=}{F} J^{1} M\right|_{\underline{\underline{F}} M}$ of ${\underset{\underline{F}}{n}}^{1} M$ to the open submanifold
 the homomorphism j_{M} above induces an injective homomorphism of principal bundles, noted again $j_{M}:\left.J_{n}^{1} \underline{\underline{F} M}\right|_{\underline{\underline{F}}} \rightarrow \underline{\underline{F F} M}$, over the identity of $\underline{\underline{F} M}$ and with associate Lie group homomorphism j_{n}.
(6) Particularizing the general results of Morimoto ([6], Chapter IV), we can assert: let M be an n-dimensional manifold; then there exist canonical diffeomorphisms

$$
\alpha_{M}^{p, 1}: T J_{p}^{1} M \rightarrow J_{p}^{1} T M, \quad \alpha_{M}^{1, p}: J_{p}^{1} T M \rightarrow T J_{p}^{1} M,
$$

such that $\alpha_{M}^{p, 1}$ and $\alpha_{M}^{1, p}$ are mutually inverse. Locally, $\alpha_{M}^{p, 1}$ is given as follows: let $\left(U, x^{i}\right)$ be a local coordinate system in M and let $\left(x^{i}, x_{\alpha}^{i} ; \dot{x}^{i}, \dot{x}_{\alpha}^{i}\right),\left(y^{i}, \dot{y}^{i},\left(y^{i}\right)_{\alpha},\left(\dot{y}^{i}\right)_{\alpha}\right)$ be the induced coordinate functions on $T J_{p}^{l} U$ and $J_{p}^{l} T U$ respectively. Then

$$
\alpha_{M}^{p, 1}: y^{i}=x^{i}, \quad \dot{y}^{i}=\dot{x}^{i}, \quad\left(y^{i}\right)_{\alpha}=x_{\alpha}^{i}, \quad\left(\dot{y}^{i}\right)_{\alpha}=\dot{x}_{\alpha}^{i},
$$

with $1 \leq i \leq n, I \leq \alpha \leq p$. The local expression of $\alpha_{M}^{l, p}$ is obvious. Moreover, if $6: M \rightarrow N$ is a differentiable map, then the following diagram is commutative

2. Prolongation of connections

Let $P(M, \pi, G)$ be a principal fibre bundle and consider on P a connection whose connection form will be denoted by ω. Following Kobayashi [3], we shall consider this form ω as a differentiable map $\omega: T P \rightarrow T G$ which is a linear map of the tangent space $T_{u} P$ with values in the tangent space $T_{e} G$ for each point $u \in P$, and satisfying:

$$
\begin{aligned}
& \omega(u \cdot \bar{s})=s^{-1} \cdot \bar{s}, \\
& \omega(\bar{u} \cdot s)=s^{-1} \cdot \omega(\bar{u}) \cdot s,
\end{aligned}
$$

for every $u \in P, s \in G, \bar{u} \in T_{u}^{P}$ and $\bar{s} \in T_{\Delta} G$, and where by definition $\bar{u} \cdot s=T R_{s}(\bar{u}), u \cdot \bar{s}=T L_{u}(\bar{s}), R_{s}: P \rightarrow P$ and $L_{u}: G \rightarrow P$ being the canonical maps.

Let $\omega: T P \rightarrow T G$ be a connection form on $P(M, \pi, G)$ and define a differentiable map $\omega_{1}: T J_{p}^{I} P \rightarrow T J_{p}^{I} G$ by setting

$$
\begin{equation*}
\omega_{1}=\alpha_{G}^{1, p} \circ \omega^{1} \circ \alpha_{p}^{p, 1} \tag{2.1}
\end{equation*}
$$

Then, from Morimoto's general results [6], we know that

$$
\begin{aligned}
& \operatorname{Im} \omega_{1} \subset T_{e_{p}}^{J_{p}^{1} G}, \\
& \omega_{1}(\tilde{u} \cdot \tilde{s})=\tilde{s}^{-1} \cdot \tilde{\bar{s}}, \\
& \omega_{1}(\tilde{\bar{u}} \cdot \tilde{s})=\tilde{s}^{-1} \cdot \omega_{1}(\tilde{\bar{u}}) \cdot \tilde{s},
\end{aligned}
$$

for every $\tilde{s} \in J_{p}^{1} G, \tilde{u} \in J_{p}^{1} P, \tilde{\bar{s}} \in \tau_{\tilde{s}} J_{p}^{1} G$ and $\tilde{\bar{u}} \in T_{\tilde{u}}^{\tilde{p}} J_{p}^{1} P$. Hence, to prove that ω_{1} is actually a connection form on the principal bundle $J_{p}^{1} P\left(J_{p}^{1} M, \pi^{1}, J_{p}^{I} G\right)$ it suffices to prove that $\omega_{1}: T_{\tilde{u}} J_{p}^{1} P \rightarrow T_{e} J_{p}^{1} G$ is a linear map for any $\tilde{u} \in J_{p}^{l} P$.

To do this we proceed as follows.
Let $\left\{u, x^{i}\right\},\left(u^{\prime}, y^{a}\right)$ be local coordinate systems in P and G, respectively, with $u=\pi(\tilde{u}) \in U, \quad e \in U^{\prime}$ and $1 \leq i \leq \operatorname{dim} P$, $1 \leq a \leq \operatorname{dim} G$. Then, with respect to the induced coordinate systems $\left(T U, x^{i}, \dot{x}^{i}\right),\left(T U, y^{a}, \dot{y}^{a}\right)$ in $T P$ and $T G$ respectively, ω is expressed by

$$
\omega: y^{a}=\omega^{a}\left(x^{i} ; \dot{x}^{i}\right)=y^{a}(e), \quad \dot{y}^{a}=\dot{\omega}^{a}\left(x^{i} ; \dot{x}^{i}\right),
$$

and, therefore, for any i and a,

$$
\begin{equation*}
\frac{\partial \omega^{a}}{\partial x^{i}}=\frac{\partial \omega^{a}}{\partial \dot{x}^{i}}=0 \tag{2.2}
\end{equation*}
$$

On the other hand, if $\bar{u}, \bar{u}^{\prime} \in T_{u} P$ are given by $\bar{u}=\left(x^{i} ; \dot{x}^{i}\right)$, $\bar{u}^{\prime}=\left(x^{i} ; \dot{x}^{\prime}\right)$ then the linearity of $\omega: T_{u} P \rightarrow T_{e} G$ implies

$$
\begin{equation*}
\dot{\omega}^{a}\left(x^{i} ; \dot{x}^{i}+\dot{x}, i\right)=\dot{\omega}^{a}\left(x^{i} ; \dot{x}^{i}\right)+\dot{\omega}^{a}\left(x^{i} ; \dot{x}^{, i}\right) \tag{2.3}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& \frac{\partial \dot{\omega}^{a}}{\partial x^{i}}\left(x^{i} ; \dot{x}^{i}+\dot{x}^{i}\right)=\frac{\partial \dot{\omega}^{a}}{\partial x^{i}}\left(x^{i} ; \dot{x}^{i}\right)+\frac{\partial \dot{\omega}^{a}}{\partial x^{i}}\left(x^{i} ; \dot{x}^{i}\right) \tag{2.4}\\
& \frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}}\left(x^{i} ; \dot{x}^{i}+\dot{x}^{i}\right)=\frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}}\left(x^{i} ; \dot{x}^{i}\right)+\frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}}\left(x^{i} ; \dot{x}^{i}\right) \\
& \text { Now, let }\left(x^{i}, x_{\alpha}^{i} ; \dot{x}^{i}, \dot{x}_{\alpha}^{i}\right),\left(y^{a}, y_{\alpha}^{a} ; \dot{y}^{a}, \dot{y}_{\alpha}^{a}\right) \text { be the induced }
\end{align*}
$$

coordinate functions on $T J_{p}^{1} U$ and $T J_{p}^{1} U^{\prime}$ respectively. Then, taking into account the local expressions of $\alpha_{p}^{p, l}, \alpha_{G}^{l}, p$ and ω^{l} as well as (2.2), a
direct computation leads to the following local expression of ω_{1} :

$$
\begin{aligned}
y^{a} & =y^{a}(e), y_{\alpha}^{a}=0, \\
\omega_{1}: \dot{y}^{a} & =\dot{\omega}^{a}\left(x^{i} ; \dot{x}^{i}\right), \\
\dot{y}_{\alpha}^{a} & =\frac{\partial \dot{\omega}^{a}}{\partial x^{k}}\left(x^{i} ; \dot{x}^{i}\right) \cdot x_{\alpha}^{k}+\frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{k}}\left(x^{i} ; \dot{x}^{i}\right) \cdot \dot{x}_{\alpha}^{k} .
\end{aligned}
$$

Therefore, if $\tilde{u} \in J_{p}^{1} U$ has coordinates $\tilde{u}=\left(x^{i}, x_{\alpha}^{i}\right)$ and $\tilde{\bar{u}}, \tilde{\bar{u}}, \in T_{\tilde{u}} J_{p}^{1} u$ are given by $\tilde{\bar{u}}=\left(x^{i}, x_{\alpha}^{i} ; \dot{x}^{i}, \dot{x}_{\alpha}^{i}\right), \tilde{\bar{u}},=\left(x^{i}, x_{\alpha}^{i} ; \dot{x}^{i}, \dot{x}_{\alpha}^{\prime}\right)$ then $\tilde{\bar{u}}+\tilde{\bar{u}}^{\prime}=\left(x^{i}, x_{\alpha}^{i} ; \dot{x}^{i}+\dot{x}^{\prime}, \dot{x}_{\alpha}^{i}+\dot{x}_{\alpha}^{\prime}\right)$ and a straightforward computation, using (2.3) and (2.4), leads to

$$
\begin{aligned}
& \dot{y}^{a}\left(\omega_{1}\left(\tilde{\bar{u}}+\tilde{\bar{u}}^{\prime}\right)\right)=\dot{y}^{a}\left(\omega_{1}(\tilde{\bar{u}})\right)+\dot{y}^{a}\left(\omega_{1}(\tilde{\bar{u}} ')\right), \\
& \dot{y}_{\alpha}^{a}\left(\omega_{1}(\tilde{\bar{u}}+\tilde{\bar{u}})\right)=\dot{\dot{y}}_{\alpha}^{a}\left(\omega_{1}(\tilde{\bar{u}})\right)+\dot{y}_{\alpha}^{a}\left(\omega_{1}\left(\tilde{\bar{u}}^{\prime}\right)\right) .
\end{aligned}
$$

Thus we have proved the following
THEOREM 2.1. Let $\omega: T P \rightarrow T G$ be a connection form on a principal fibre bundle $P(M, \pi, G)$. Then $\omega_{1}: T J_{p}^{1} P \rightarrow T J_{p}^{l} G$ given by (2.1) is a connection form on the principal fibre bundle $J_{p}^{1} P\left(J_{p}^{1} M, \pi^{1}, J_{p}^{1} G\right)$. We shall call ω_{1} the prolongation of the connection ω to $J_{p}^{1} p$.

We remark that, for $p=1, \omega_{1}$ coincides with the connection tangential to ω due to Kobayashi ([3], p. 152), also obtained by Morimoto in [7].
3. Prolongation of linear connections to the frame bundle

In this section we apply the result in the previous section to the linear connections on a manifold. From now on the indices $h, i, j, k, \ldots, \alpha, \beta, \gamma, \ldots$ have range in $\{1,2, \ldots, n\}$, A, B, C, \ldots in $\left\{1,2, \ldots, n+n^{2}\right\}$ and i_{α} stands for $\alpha n+i$.

Let $\underset{=}{ } M\left(M, \pi_{M}, G l(n)\right)$ and $\underline{\underline{F F}} M\left(\underline{\underline{F}} M, \mathbb{K}_{\underline{F M}}, G l\left(n+n^{2}\right)\right)$ be the frame bundles of M and $\underset{=}{F M}$ respectively.

THEOREM 3.1. Let Γ be a linear connection on a manifold M. Then there exists canonically a linear connection $\tilde{\Gamma}$ on the frame bundle $\underline{\underline{F M}}$ of M, which will be called the prolongation of Γ to $F M$.

Proof. Let ω be the connection form on $\underset{\underline{F M} \text { defining the connection }}{ }$ Γ. The prolongation ω_{1} of ω is a connection form on $J_{n}^{I}=M$, $\dot{n}=\operatorname{dim} M$. Then, using the bundle homomorphism $j_{M}:\left.J_{n=}^{1} \underset{\underline{\underline{F}} M}{ }\right|_{\underline{\underline{F}}} \rightarrow \underline{\underline{F F} M}$ described in §l, (5), we canonically obtain a connection $\tilde{\Gamma}$ on the principal fibre bundle FFM.

Next, we shall compute the local components $\tilde{\Gamma}_{B C}^{A}$ of the prolongation $\tilde{\Gamma}$ of Γ to $\underset{=}{F M}$.

Let $\omega: T_{\underline{\underline{F}}} M \rightarrow T_{G l}(n)$ be the connection form of $\Gamma,\left(U, x^{i}\right)$ a local coordinate system in $M,\left(x^{i}, x_{j}^{i}\right)$ the induced coordinate functions on $\mathrm{F}^{U},\binom{y_{j}^{i}}{y^{\prime}}$ the canonical coordinates in $\mathrm{Gl}(n)$ and $\left(x^{i}, x_{j}^{i} ; \dot{x}^{i}, \dot{x}_{j}^{i}\right)$, $\left(y_{j}^{i} ; \dot{y}_{j}^{i}\right)$ the induced coordinate functions on $T \underline{\underline{F} U}$ and $T G l(n)$, respectively. Then ω is locally expressed by

$$
\omega: \begin{aligned}
\dot{y}_{j}^{i} & =\omega_{j}^{i}\left(x^{h}, x_{k}^{h} ; \dot{x}^{h}, \dot{x}_{k}^{h}\right)=\delta_{j}^{i}, \\
\dot{y}_{j}^{i} & =\dot{\omega}_{j}^{i}\left(x^{h}, x_{k}^{h} ; \dot{x}^{h}, x_{k}^{h}\right),
\end{aligned}
$$

and thus, if $\left\{e_{i}^{j}\right\}$ denotes the canonical basis of $g l(n) \equiv T_{e} G l(n)$, we can set

$$
\omega\left(x^{h}, x_{k}^{h} ; \dot{x}^{h}, x_{k}^{h}\right)=\dot{\omega}_{j}^{i}\left(x^{h}, x_{k}^{h} ; \dot{x}^{h}, x_{k}^{h}\right) e_{i}^{j} \in T_{e} G l(n)
$$

Let $\sigma: U \rightarrow \underset{\underline{F} M}{ }$ be the natural cross section of $\underset{\underline{F} M}{ }$ over U, that is $\sigma(x)=\left(x^{i}, \delta_{j}^{i}\right)$ for any $x=\left(x^{1}, \ldots, x^{n}\right) \in U$, and set $\omega_{U}=\sigma^{\star} \omega$.

Then ω_{U} defines the local components $\Gamma_{j k}^{i}$ of Γ on u by the equation $\omega_{u}=\left(\Gamma_{j k}^{i} d x^{j}\right) e_{i}^{k}$ and, using Proposition 7.3 in [4], one easily finds

$$
\dot{\omega}_{j}^{i}\left(x^{h}, x_{k}^{h} ; \dot{x}^{h}, \dot{x}_{k}^{h}\right)=y_{k}^{i} \Gamma_{h 2}^{k} x_{j}^{2} \dot{x}^{h}+y_{h}^{i} \dot{x}_{j}^{h}
$$

where $\left(y_{k}^{i}\right)=\left(x_{k}^{i}\right)^{-1}$. Consequently, at the point $q=\left(x^{h}, x_{k}^{h} ; \dot{x}^{h}, x_{k}^{h}\right)$ we have

$$
\begin{aligned}
& \frac{\partial \dot{\omega}_{j}^{i}}{\partial x^{k}}(q)=y_{l}^{i}\left(\partial_{k} \Gamma_{h m}^{Z}\right) x_{j}^{m \cdot h}, \\
& \frac{\partial \dot{\omega}_{j}^{i}}{\partial x_{k}^{h}}(q)=-y_{h}^{i} x_{i}^{k} \Gamma_{m r}^{z} x_{j}^{r} \dot{x}^{m}+y_{Z}^{i} \Gamma_{m h}^{z} \dot{x}^{m} \delta_{k}^{j}-y_{h}^{i} x_{m}^{k} x_{j}^{m}, \\
& \frac{\partial \dot{\omega}_{j}^{i}}{\partial \dot{x}^{k}}(q)=y_{Z}^{i} \Gamma_{k \hbar}^{Z} \dot{X}_{j}^{h}, \\
& \frac{\partial \dot{\omega}_{j}^{i}}{\partial \dot{X}_{k}^{h}}(q)=y_{h}^{i} \delta_{k}^{j} .
\end{aligned}
$$

Now, let $\tilde{\omega}$ denote the connection form of the extension of ω_{1} to
 $\sigma^{1}: J_{n}^{1} U \rightarrow J_{n}^{1} F M$ denotes the cross-section of $J_{n}^{1} \underset{=}{F M}$ induced by $\sigma: U \rightarrow F M$, then the composition $\tilde{\sigma}=j_{M} \circ \sigma^{1}$ is easily proved to be the natural cross-section of $\mathrm{F}_{n}^{l} M$ over $J_{n}^{l} U$.

Let $\left\{\tilde{\Gamma}_{B C}^{A}\right\}$ still denote the local components of the linear connection on $J_{n}^{1} M$ which is defined by $\tilde{\omega}$, with respect to the induced coordinate system $\left(J_{n}^{I} U, x^{j}, x_{\alpha}^{j}\right)$. Then, if $\left\{E_{B}^{A}\right\}$ denotes the canonical basis of $g 1\left(n+n^{2}\right) \equiv T_{e} G 1\left(n+n^{2}\right)$, we have

$$
\left.\tilde{\omega}\left(\left(\frac{\partial}{\partial x^{j}}\right)_{\tilde{u}}\right)=\tilde{\Gamma}_{j B}^{A} E_{A}^{B}, \quad \tilde{\omega}\left(\left(\frac{\partial}{\partial x_{\alpha}^{j}}\right)\right) \tilde{\tilde{u}}\right)=\tilde{\Gamma}_{j_{\alpha} B_{A} E_{A}^{B},}
$$

$\tilde{u}=\tilde{\sigma}(u)$ for any point $u \in J_{n}^{1} u$. On the other hand, setting $u_{1}=\sigma^{1}(u)$,

$$
\left(T j_{M}\right)\left(\left(\frac{\partial}{\partial x^{j}}\right)_{u_{1}}\right)=\left(\frac{\partial}{\partial x^{j}}\right)_{\tilde{u}}, \quad\left(T_{j_{M}}\right)\left(\left(\frac{\partial}{\partial x_{\alpha}^{j}}\right)_{u_{1}}\right)=\left(\frac{\partial}{\partial x_{\alpha}^{j}}\right)_{\tilde{u}}
$$

and hence

$$
\begin{aligned}
& \tilde{\omega}\left(\left(\frac{\partial}{\partial x^{j}}\right) \tilde{\tilde{u}}\right)=j_{n}\left(\omega_{1}\left(\left(\frac{\partial}{\partial x^{j}}\right)_{u_{1}}\right)\right) \\
& \tilde{\omega}\left(\left(\frac{\partial}{\partial x_{\alpha}^{j}}\right)_{\tilde{u}}\right)=j_{n}\left(\omega_{1}\left(\left(\frac{\partial}{\partial x_{\alpha}^{j}}\right)_{u_{1}}\right)\right)
\end{aligned}
$$

Then, if $u=\left(x^{j}, x_{\alpha}^{j}\right)$, we have

$$
\begin{aligned}
\omega_{1}\left(\left(\frac{\partial}{\partial x^{j}}\right)_{u_{1}}\right) & =\omega_{1}\left(x^{i}, I, x_{\alpha}^{i}, 0 ; \delta_{j}^{i}, 0,0,0\right) \\
& =\left(I, 0 ; \dot{\omega}_{i}^{h}\left(x^{i}, I ; \delta_{j}^{i}, 0\right), \frac{\partial \omega_{i}^{h}}{\partial x^{k}} x_{\alpha}^{k}\right) \\
& =\left(I, 0 ; \Gamma_{j i}^{h}, x_{\alpha}^{k}\left(\partial_{k} \Gamma_{j i}^{h}\right)\right), \\
\omega_{1}\left(\left(\frac{\partial}{\partial x_{\gamma}^{j}}\right)_{u_{1}}\right) & =\omega_{1}\left(x^{i}, I, x_{\alpha}^{i}, 0 ; 0,0, \delta_{\gamma}^{\alpha} \delta_{j}^{i}, 0\right) \\
& =\left(I, 0 ; \dot{\omega}_{i}^{h}\left(x^{i}, I ; 0,0\right), \frac{\omega_{i}^{i h}}{\partial \dot{x}^{k}} \delta_{j}^{k} \delta_{\gamma}^{\alpha}\right) \\
& =\left(I, 0 ; 0, \delta_{\gamma}^{\alpha}{ }_{\gamma}^{h}\right),
\end{aligned}
$$

where I and 0 denote the unit matrix and the zero matrix, respectively. Therefore

$$
\begin{aligned}
\tilde{\omega}\left(\left(\frac{\partial}{\partial x^{j}}\right)_{\tilde{u}}\right) & =\Gamma_{j i}^{h} E_{h}^{i}+x_{\alpha}^{k}\left(\partial_{k} \Gamma_{j i}^{h}\right) E_{h}^{i}+\delta_{\beta}^{\alpha} \Gamma_{j i}^{h} E_{h}^{i}{ }_{\alpha}^{i} \\
\tilde{\omega}\left(\left(\frac{\partial}{\partial x_{\gamma}^{j}}\right)_{\tilde{u}}\right) & =\delta_{\gamma}^{\alpha} \Gamma_{j i}^{h} E_{\alpha}^{i}
\end{aligned}
$$

and, restricting to $\underset{=}{F M}$, that is to the coordinate neighborhood $\underline{=} U$, we obtain the local components of the prolongation $\tilde{\Gamma}$ of Γ to $\underline{\underline{F}}$:

$$
\begin{aligned}
& \tilde{\Gamma}_{j i}^{h}=\Gamma_{j i}^{h}, \tilde{\Gamma}_{j i_{\beta}}^{h}=0, \tilde{\sim}_{\Gamma_{\gamma}}^{h}=0, \tilde{\Gamma}_{j_{\gamma}}^{h}=0, \tilde{\Gamma}_{j_{\beta}}^{h}=0, \\
& \tilde{\Gamma}_{j i}^{h}=x_{\alpha}^{k}\left(\partial_{k} \Gamma_{j i}^{h}\right), \quad \tilde{\Gamma}_{j i}^{h_{\alpha}}=\delta_{\beta}^{\alpha} \Gamma_{j i}^{\alpha}, \quad \tilde{\Gamma}_{j_{\beta}}^{h}=\delta_{\beta}^{\alpha} \Gamma_{j i}^{h} .
\end{aligned}
$$

Now, comparing with Mok's result in ([5], p. 81), we deduce
THEOREM 3.2. Let Γ be a linear connection on M. Then the prolongation $\tilde{\Gamma}$ of Γ to the frame bundle $F M$ of M coincides with the complete lift Γ^{C} of Γ to \underline{I}^{C} defined by Mok [5].

4. Prolongation of connections adapted to G-structures

We begin this section proving a lemma.
LEMMA 4.1. Let $P(M, \pi, G)$ be a reduced bundle of the principal fibre bundle $P^{\prime}\left(M, \pi, G^{\prime}\right)$, and let ω^{\prime} be a connection form on p^{\prime} reducible to the connection form ω on P. Then $J_{p}^{1} p\left(J_{p}^{1} M, \pi^{1}, J_{p}^{1} G\right)$ is a reduced bundle of $J_{p}^{1} p^{\prime}\left(J_{p}^{1} M, \pi^{1}, J_{p}^{1} G^{\prime}\right)$, and the prolongation ω_{1}^{\prime} of ω^{\prime} to $J_{p}^{1} p^{\prime}$ is reducible to the prolongation ω_{1} of ω to $J_{p}^{1} p$.

Proof. Let $\sigma: P \rightarrow P^{\prime}$ be the injective homomorphism of principal bundles which yields the reduction of G^{\prime} to G, and denote also by $6: G \rightarrow G^{\prime}$ the corresponding Lie group homomorphism. Then a straightforward computation shows that the induced bundle homomorphism $6^{1}: J_{p}^{1} p \rightarrow J_{p}^{1} p^{\prime}$ yields a reduction of $J_{p}^{1} G^{\prime}$ to $J_{p}^{l} G$ whose associate Lie group homomorphism is the induced one, $f^{l}: J_{p}^{l} G \rightarrow J_{p}^{l} G^{\prime}$. On the other
hand, that ω^{\prime} is reducible to ω means that the following diagram commutes:

Therefore, from (6) in §l we obtain a new commutative diagram

which implies that ω_{1}^{\prime} is reducible to ω_{1}. \#
Let G be a Lie subgroup of $\operatorname{Gl}(n)$ and denote $\tilde{G}=j_{n}\left(J_{n}^{I} G\right) \subset G \mathcal{G}\left(n+n^{2}\right)$. Assume that $P(M, \pi, G) \quad$ is a reduced bundle of
 G-structure on M. In [2] we have defined the prolongation of the G-structure P on M to a \tilde{G}-structure \tilde{P} on $\underline{\underline{F} M}$ as follows: we consider the injective bundle homomorphism $i^{l}: J_{n}^{l} P \rightarrow J_{n}^{I} \underline{=}$ induced by $i: P \rightarrow \underline{\underline{F} M}$ and define $\tilde{P}=\left.\left(j_{M} \circ i^{1}\right)\left(J_{n}^{1} P\right)\right|_{\underline{\underline{F}} M}$.

As usually, we say that a linear connection Γ on M is adapted to the G-structure $P(M, \pi, G)$ on M if Γ is reducible to a connection on P. Then, taking into account Lemma 4.1 and the results in the previous section, we easily deduce

THEOREM 4.2. Let Γ be a linear connection on M adapted to a G-structure $P(M, \pi, G)$ on M. Then the prolongation $\tilde{\Gamma}$ of Γ to $\underset{\underline{F} M}{ }$ is adapted to the \tilde{G}-structure $\tilde{P}(\mathcal{F M}, \pi, \tilde{G})$ on $F M$, prolongation of \bar{P} to FM .

We remark that Theorem 4.2 improves some particular results in [1] and
[5] where only the prolongations (or complete lift) of G-structures on M defined by tensor fields of types $(0, s)$ and $(1, s)$ have been considered.

References

[1] Luis A. Cordero and Manuel de Leon, "Lifts of tensor fields to the frame bundle", Rend. Cir. Mat. Palermo (to appear).
[2] Luis A. Cordero and Manuel de Leon, "Prolongations of G-structures to the frame bundle", submitted.
[3] S. Kobayashi, "Theory of connections", Ann. Mat. Pura AppZ. 43 (1957), 119-194.
[4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I (Interscience, New York, 1963).
[5] K.P. Mok, "Complete lifts of tensor fields and connections to the frame bundle", Proc. London Math. Soc. (2) 32 (1979), 72-88.
[6] A. Morimoto, "Prolongation of geometric structures" (Mathematical Institut, Nagoya University, Japan, 1969).
[7] A. Morimoto, "Prolongation of connections to tangential fibre bundles of higher order", Nagoya Math. J. 40 (1970), 85-97.

Departamento de Geometria y Topologia, Facultad de Matematicas,
Universidad de Santiago de Compostela, Spain.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $\$ A 2.00+0.00$.

