PROLONGATIONS OF LINEAR CONNECTIONS TO THE FRAME BUNDLE

LUIS A. CORDERO AND MANUEL DE LEON

In this paper we construct the prolongation of a linear connection Γ on a manifold M to the bundle space $\underline{F}M$ of its frame bundle, and show that such prolongated connection coincides with the so-called complete lift of Γ to $\underline{F}M$.

Introduction

The purpose of the present paper is to construct the prolongation of a linear connection on a manifold M to the bundle space $\underline{F}M$ of the frame bundle of M. To do this, we use Morimoto's general theory of prolongations to tangential fibre bundles of p^r -jets of M [6] particularized when r = 1, as well as some result stated in [2].

In §1, we briefly recall some results which will be used in the remaining sections. In §2, the prolongation of a connection on a principal fibre bundle P to the principal bundle $J_p^1 P$ of p^1 -jets of P is constructed. In §3, we apply the results in §2 for the case of linear connections and construct the prolongation $\tilde{\Gamma}$ to FM of a linear connection Γ on M, proving moreover that $\tilde{\Gamma}$ coincides with the so-called complete lift Γ^c of Γ defined by Mok in [5]. Finally, in §4 we show that connections adapted to G-structures on M prolongate to

Received 18 July 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 \$A2.00 + 0.00.

connections adapted to the corresponding prolongations of these G-structures introduced in [2].

In this paper all manifolds and mappings are assumed to be differentiable of class c^{∞} , entries of matrices are written as a^i_j , i being the row index and j the column index, and summation over repeated index is always implied.

1. Preliminaries

Let M be an *n*-dimensional manifold, \mathcal{A}^p the Euclidean *p*-space and $J_p^1 \mathcal{M}$ the set of 1-jets at $0 \in \mathcal{R}^p$ of all differentiable mappings $\delta : \mathcal{R}^p \neq \mathcal{M}$ defined on some open neighborhood of $0 \in \mathcal{R}^p$; if $j^1(\delta)$ denotes the 1-jet of δ at 0, the target map $\pi : J_p^1 \mathcal{M} \neq \mathcal{M}$ is defined by $\pi(j^1(\delta)) = \delta(0)$ and is in fact a projection map from $J_p^1 \mathcal{M}$ onto \mathcal{M} .

On $J_p^1 M$ there exists a structure of (n+pn)-dimensional manifold, canonically induced from the manifold structure of M, which is given as follows: let (U, x^i) be a coordinate system in M, U being the coordinate neighborhood and $\{x^i\}$ the coordinate functions on U; then, on $J_p^1 U = \pi^{-1}(U)$ we define a family of coordinate functions $\{x^i, x^i_\alpha\}$ by setting

$$x^{i}(j^{1}(\mathfrak{f})) = x^{i}(\mathfrak{f}(0))$$
, $x^{i}_{\alpha}(j^{1}(\mathfrak{f})) = \frac{\partial(x^{i}\circ\mathfrak{f})}{\partial t^{\alpha}}\Big|_{0}$

 $(1 \le i \le n, 1 \le \alpha \le p)$ for any $j^{1}(\mathbf{f}) \in J_{p}^{1}U$, and where $\{\mathbf{t}^{1}, \ldots, \mathbf{t}^{p}\}$ are the canonical coordinate functions on \mathbb{R}^{p} . Then $\left(J_{p}^{1}U, \mathbf{x}^{i}, \mathbf{x}_{\alpha}^{i}\right)$ is a coordinate system in $J_{p}^{1}U$ which will be said to be induced by (U, \mathbf{x}^{i}) in \mathbb{M} .

Let $h: M \to N$ be a differentiable map; then $h^{1}: J_{p}^{1}M \to J_{p}^{1}N$ will

denote the map canonically induced by h and given by $h^{1}(j^{1}(f)) = j^{1}(h \circ f)$ for any $j^{1}(f) \in J_{p}^{1}M$. If $(u, x^{\hat{i}}), (u', y^{\hat{j}})$ local coordinate systems in M and N respectively, and if we assume

 $h: U \rightarrow U'$ expressed by $y^{j} = h^{j}(x^{1}, ..., x^{n})$ then, with respect to the induced coordinate systems $\left(J_{p}^{1}U, x^{i}, x_{\alpha}^{i}\right), \left(J_{p}^{1}U', y^{j}, y_{\alpha}^{j}\right), h^{1}$ is expressed by

$$h^{\perp}: y^{j} = h^{j}(x^{\perp}, \ldots, x^{n}) , \quad y^{j}_{\alpha} = \frac{\partial h^{j}}{\partial x^{k}} x^{k}_{\alpha} ,$$

where $1 \leq k \leq \dim M$, $1 \leq j \leq \dim N$ and $1 \leq \alpha \leq p$.

Let G be a Lie group; then $J_p^1 G$ has also a Lie group structure, its product being defined as follows: for any $j^1(f)$, $j^1(g) \in J^1 G$, $j^1(f) \cdot j^1(g) = j^1(fg)$, where $fg : \mathbb{R}^p \to G$ is defined by (fg)(t) = f(t)g(t), $t \in \text{dom } f \cap \text{dom } g$. The unit element e_p of $J_p^1 G$ is then the 1-jet at $0 \in \mathbb{R}^p$ of the constant map from \mathbb{R}^p into the unit element e of G.

Next, we shall recall some results to be used later.

(1) Assume $p = n = \dim M$. Then the bundle space $\underline{F}M$ of the principal fibre bundle of linear frames over M (briefly, the frame bundle of M) is an open (dense) submanifold of $J_n^1 M$, and the induced structure on $\underline{F}M$ is the usual one with respect to which $\pi_M : \underline{F}M \to M$ is a Gl(n)-principal bundle, Gl(n) denoting the general linear group. If (U, x^i) is a local coordinate system in M, the induced coordinate functions on $\underline{F}U = (\pi_M)^{-1}(U)$ will be written as $\begin{pmatrix} x^i, & x^i \\ j \end{pmatrix}$ if there is no confusion.

(2) Assume p = 1. Then $\pi : J_1^1 M \to M$ is nothing but the tangent bundle $\pi_M : TM \to M$. In this case, if (U, x^i) is a local coordinate system in M, the induced coordinate functions on $TU = (\pi_M)^{-1}(U)$ will be

are

written as $(x^i; \dot{x}^i)$. Note that the linear structure of this vector bundle is locally given as follows: let X, Y be tangent vectors at $x = (x^1, \ldots, x^n) \in U$ with coordinates $X = (x^i; \dot{x}^i)$, $Y = (x^i; \dot{y}^i)$; then $X + Y = (x^i; \dot{x}^i + \dot{y}^i)$. If $b: M \neq N$, we shall denote by $T_b: TM \neq TN$ the induced map.

(3) Let $P(M, \pi, G)$ be a principal fibre bundle with bundle space P, base space M, projection π and structure group G. Then $J_p^1 P \left(J_p^1 M, \pi^1, J_p^1 G \right)$ is again a principal fibre bundle. In fact, if $\phi_{\mathcal{U}} : \pi^{-1}(\mathcal{U}) \neq \mathcal{U} \times G$ is the trivialization of P over $\mathcal{U} \subset M$, then, since $(\pi^1)^{-1} \left(J_p^1 \mathcal{U} \right) = J_p^1 \pi^{-1}(\mathcal{U})$, we define $\tilde{\phi}_{\mathcal{U}} : J_p^1 \pi^{-1}(\mathcal{U}) \neq J_p^1 \mathcal{U} \times J_p^1 \mathcal{G}$ by setting $\tilde{\phi}_{\mathcal{U}} (j^1(\mathfrak{f})) = \left(j^1(\pi \circ \mathfrak{f}), j^1(\mathfrak{n} \circ \phi_{\mathcal{U}} \circ \mathfrak{f}) \right)$ for any $j^1(\mathfrak{f}) \in J_p^1 \pi^{-1}(\mathcal{U})$, where $\mathfrak{n} : \mathcal{U} \times G + G$ is the canonical projection.

(4) Let G = Gl(n), $\{X_{j}^{i}\}$ be the canonical coordinates in Gl(n), $\{X_{j}^{i}, X_{j\alpha}^{i}\}$ the induced coordinates in $\mathcal{I}_{n}^{1}Gl(n)$ and $\{Y_{B}^{A}, 1 \leq A, B \leq n+n^{2}\}$ the canonical coordinates in $Gl(n+n^{2})$; then, there exists a canonical embedding of Lie groups

$$j_n : J_n^{1} \operatorname{Gl}(n) \rightarrow \operatorname{Gl}(n+n^2)$$

given by

$$j_{n}\left(\left(x_{j}^{i}, x_{j\alpha}^{i}\right)\right) = \begin{bmatrix} \left(x_{j}^{i}\right) & 0 & \dots & 0\\ \left(x_{j1}^{i}\right) & \left(x_{j}^{i}\right) & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \left(x_{jn}^{i}\right) & 0 & \dots & \left(x_{j}^{i}\right) \end{bmatrix}$$

that is, with respect to the coordinates above j_n is expressed by

$$\begin{array}{c} y_{j}^{i} = X_{j}^{i} , \quad y_{j\alpha}^{i} = 0 , \\ j_{n} : \\ y_{j}^{i\alpha} = X_{j\alpha}^{i} , \quad y_{j\beta}^{i\alpha} = \delta_{\beta}^{\alpha} X_{j}^{i} , \end{array}$$

where $i_{\alpha} = \alpha n + i$, $1 \le i$, $\alpha \le n$. If we consider the Lie algebras of $J_n^1 \text{Gl}(n)$ and $\text{Gl}(n+n^2)$ identified with the tangent spaces at the respective unit elements e_n and e, then the induced homomorphism

$$j_n : T_{e_n} J_n^{l} Gl(n) \rightarrow T_e Gl(n+n^2)$$

may be written as follows:

$$j_{n}\left(\left(\delta_{j}^{i}, 0; A_{j}^{i}, B_{j\alpha}^{i}\right)\right) = \begin{pmatrix} A_{B}^{i}, \begin{bmatrix} \left(A_{j}^{i}\right) & 0, \dots & 0\\ \left(B_{j1}^{i}\right) & \left(A_{j}^{i}\right) & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \left(B_{jn}^{i}\right) & 0 & \dots & \left(A_{j}^{i}\right) \end{bmatrix} \end{pmatrix}$$

(5) Let $\underline{F}M(M, \pi_M, Gl(n))$ be the frame bundle of M, $J_n^1 \underline{F}M(J_n^1 M, \pi_M^1, J_n^1 Gl(n))$ the induced $J_n^1 Gl(n)$ -principal bundle and $\underline{F}J_n^1 M(J_n^1 M, \pi_{J_n^1 M}, Gl(n+n^2))$ the frame bundle of the $(n+n^2)$ -dimensional manifold $J_n^1 M$. Then there exists a canonical injective homomorphism of principal bundles [2]

$$j_{\mathsf{M}} : J_{\mathsf{n}}^{\mathsf{l}} \to \mathbb{F} J_{\mathsf{n}}^{\mathsf{l}} \mathsf{M}$$

over the identity of $J_n^1 M$, with associate Lie group homomorphism j_n . The homomorphism j_M is locally defined as follows: let (U, x^i) be a local coordinate system in M and consider fibered coordinate functions $\left(x^i, x^i_{\alpha}, x^j_{j}, x^i_{j\alpha}\right)$ on $\left(\pi^1_M\right)^{-1} \left(J_n^1 U\right)$ and $\left(y^i, y^i_{\alpha}, Y^A_B\right)$ on $\underline{F}_n^1 U$; then, with respect to these coordinates, j_M is expressed by

$$y^{i} = x^{i} , \quad y^{i}_{\alpha} = x^{i}_{\alpha} ,$$

$$j_{M} : \quad y^{i}_{j} = x^{i}_{j} , \quad y^{i}_{j\alpha} = 0 ,$$

$$y^{i}_{j\alpha} = x^{i}_{j\alpha} , \quad y^{i}_{j\beta} = \delta^{\alpha}_{\beta} x^{i}_{j}$$

Since the restriction $\mathbb{E}J_n^{1}M\Big|_{\mathbb{F}M}$ of $\mathbb{E}J_n^{1}M$ to the open submanifold

 $\underline{F}^{M} \subset J_{n}^{1}M$ is canonically isomorphic to the frame bundle \underline{FF}^{M} of \underline{F}^{M} , then the homomorphism j_{M} above induces an injective homomorphism of principal bundles, noted again $j_{M} : \left. J_{n}^{1}\underline{F}^{M} \right|_{\underline{F}^{M}} \rightarrow \underline{FF}^{M}$, over the identity of \underline{F}^{M} and with associate Lie group homomorphism j_{n} .

(6) Particularizing the general results of Morimoto ([6], Chapter IV), we can assert: let M be an *n*-dimensional manifold; then there exist canonical diffeomorphisms

$$\alpha_{M}^{p,1} : TJ_{p}^{1}M \rightarrow J_{p}^{1}TM , \alpha_{M}^{1,p} : J_{p}^{1}TM \rightarrow TJ_{p}^{1}M ,$$

such that $\alpha_M^{p,1}$ and $\alpha_M^{1,p}$ are mutually inverse. Locally, $\alpha_M^{p,1}$ is given as follows: let (U, x^i) be a local coordinate system in M and let $\left(x^i, x^i_{\alpha}; \dot{x}^i, \dot{x}^i_{\alpha}\right), \left(y^i, \dot{y}^i, (y^i)_{\alpha}, (\dot{y}^i)_{\alpha}\right)$ be the induced coordinate functions on TJ^1_pU and J^1_pTU respectively. Then

$$\alpha_{M}^{p,l}: y^{i} = x^{i}, \quad \dot{y}^{i} = \dot{x}^{i}, \quad (y^{i})_{\alpha} = x_{\alpha}^{i}, \quad (\dot{y}^{i})_{\alpha} = \dot{x}_{\alpha}^{i},$$

with $1 \le i \le n$, $1 \le \alpha \le p$. The local expression of $\alpha_M^{1,p}$ is obvious. Moreover, if $f: M \to N$ is a differentiable map, then the following diagram is commutative

2. Prolongation of connections

Let $P(M, \pi, G)$ be a principal fibre bundle and consider on P a connection whose connection form will be denoted by ω . Following Kobayashi [3], we shall consider this form ω as a differentiable map $\omega : TP \rightarrow TG$ which is a linear map of the tangent space T_{u}^{P} with values in the tangent space $T_{o}G$ for each point $u \in P$, and satisfying:

$$\omega(u \cdot \overline{s}) = s^{-1} \cdot \overline{s} ,$$

$$\omega(\overline{u} \cdot s) = s^{-1} \cdot \omega(\overline{u}) \cdot s$$

for every $u \in P$, $s \in G$, $\overline{u} \in T_u^P$ and $\overline{s} \in T_s^G$, and where by definition $\overline{u} \cdot s = TR_s(\overline{u})$, $u \cdot \overline{s} = TL_u(\overline{s})$, $R_s : P \to P$ and $L_u : G \to P$ being the canonical maps.

Let $\omega : TP \rightarrow TG$ be a connection form on $P(M, \pi, G)$ and define a differentiable map $\omega_1 : TJ_p^1P \rightarrow TJ_p^1G$ by setting

(2.1)
$$\omega_{l} = \alpha_{G}^{l,p} \circ \omega^{l} \circ \alpha_{p}^{p,l} .$$

Then, from Morimoto's general results [6], we know that

$$\operatorname{Im} \omega_{1} \subset \mathcal{T}_{e_{p}} J_{p}^{1} G ,$$
$$\omega_{1}(\tilde{u} \cdot \tilde{\delta}) = \tilde{\delta}^{-1} \cdot \tilde{\delta} ,$$
$$\omega_{1}(\tilde{\tilde{u}} \cdot \tilde{\delta}) = \tilde{\delta}^{-1} \cdot \omega_{1}(\tilde{\tilde{u}}) \cdot \tilde{\delta}$$

for every $\tilde{s} \in J_p^{\perp}G$, $\tilde{u} \in J_p^{\perp}P$, $\tilde{\tilde{s}} \in T_{\tilde{s}}J_p^{\perp}G$ and $\tilde{\tilde{u}} \in T_{\tilde{u}}J_p^{\perp}P$. Hence, to prove that ω_1 is actually a connection form on the principal bundle $J_p^{\perp}P\left(J_p^{\perp}M, \pi^{\perp}, J_p^{\perp}G\right)$ it suffices to prove that $\omega_1 : T_{\tilde{u}}J_p^{\perp}P \neq T_{e_p}J_p^{\perp}G$ is a linear map for any $\tilde{u} \in J_p^{\perp}P$.

To do this we proceed as follows.

Let (U, x^i) , (U', y^a) be local coordinate systems in P and G, respectively, with $u = \pi(\tilde{u}) \in U$, $e \in U'$ and $1 \leq i \leq \dim P$, $1 \leq a \leq \dim G$. Then, with respect to the induced coordinate systems (TU, x^i, \dot{x}^i) , (TU', y^a, \dot{y}^a) in TP and TG respectively, ω is expressed by

$$\omega : y^{a} = \omega^{a}(x^{i}; x^{i}) = y^{a}(e) , \quad y^{a} = \omega^{a}(x^{i}; x^{i})$$

and, therefore, for any i and a,

(2.2)
$$\frac{\partial \omega^a}{\partial x^i} = \frac{\partial \omega^a}{\partial x^i} = 0$$

On the other hand, if $\bar{u}, \bar{u}' \in T_u^P$ are given by $\bar{u} = (x^i; \dot{x}^i)$, $\bar{u}' = (x^i; \dot{x}'^i)$ then the linearity of $\omega : T_u^P \to T_e^G$ implies

(2.3)
$$\dot{\omega}^{a}(x^{i}; \dot{x}^{i}+\dot{x}^{\prime}) = \dot{\omega}^{a}(x^{i}; \dot{x}^{i}) + \dot{\omega}^{a}(x^{i}; \dot{x}^{\prime})$$

and therefore

$$(2.4) \qquad \qquad \frac{\partial \dot{\omega}^{a}}{\partial x^{i}} \left(x^{i}; \dot{x}^{i} + \dot{x}^{\prime i}\right) = \frac{\partial \dot{\omega}^{a}}{\partial x^{i}} \left(x^{i}; \dot{x}^{i}\right) + \frac{\partial \dot{\omega}^{a}}{\partial x^{i}} \left(x^{i}; \dot{x}^{\prime i}\right) ,$$

$$\frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}} \left(x^{i}; \dot{x}^{i} + \dot{x}^{\prime i}\right) = \frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}} \left(x^{i}; \dot{x}^{i}\right) + \frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}} \left(x^{i}; \dot{x}^{\prime i}\right) .$$

$$\left(\dot{x} + \dot{x}^{\prime i} + \dot{x}^{\prime i}\right) \left(\dot{x} + \dot{x}^{\prime i}\right) = \frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}} \left(\dot{x}^{i}; \dot{x}^{\prime i}\right) + \frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{i}} \left(\dot{x}^{i}; \dot{x}^{\prime i}\right) .$$

Now, let $(x^{\iota}, x^{\iota}_{\alpha}; \dot{x}^{\iota}, \dot{x}^{\iota}_{\alpha}), (y^{a}, y^{a}_{\alpha}; \dot{y}^{a}, \dot{y}^{a}_{\alpha})$ be the induced coordinate functions on $TJ^{l}_{p}U$ and $TJ^{l}_{p}U'$ respectively. Then, taking into account the local expressions of $\alpha^{p,l}_{p}, \alpha^{l,p}_{G}$ and ω^{l} as well as (2.2), a

direct computation leads to the following local expression of ω_1 :

$$y^{a} = y^{a}(e) , \quad y^{a}_{\alpha} = 0 ,$$

$$\omega_{1} : \dot{y}^{a} = \dot{\omega}^{a}(x^{i}; \dot{x}^{i}) ,$$

$$\dot{y}^{a}_{\alpha} = \frac{\partial \dot{\omega}^{a}}{\partial x^{k}} (x^{i}; \dot{x}^{i}) \cdot x^{k}_{\alpha} + \frac{\partial \dot{\omega}^{a}}{\partial \dot{x}^{k}} (x^{i}; \dot{x}^{i}) \cdot \dot{x}^{k}_{\alpha} .$$

Therefore, if $\tilde{u} \in J_p^1 \mathcal{U}$ has coordinates $\tilde{u} = \begin{pmatrix} x^i, x^i_{\alpha} \end{pmatrix}$ and $\tilde{\tilde{u}}, \tilde{\tilde{u}}' \in T_{\tilde{u}} J_p^1 \mathcal{U}$ are given by $\tilde{\tilde{u}} = \begin{pmatrix} x^i, x^i_{\alpha}; \dot{x}^i, \dot{x}^i_{\alpha} \end{pmatrix}, \tilde{\tilde{u}}' = \begin{pmatrix} x^i, x^i_{\alpha}; \dot{x}'^i, \dot{x}'^i_{\alpha} \end{pmatrix}$ then $\tilde{\tilde{u}} + \tilde{\tilde{u}}' = \begin{pmatrix} x^i, x^i_{\alpha}; \dot{x}^i + \dot{x}'^i, \dot{x}^i_{\alpha} + \dot{x}'^i_{\alpha} \end{pmatrix}$ and a straightforward computation, using (2.3) and (2.4), leads to

$$\dot{y}^{a} \left(\omega_{1}(\tilde{\tilde{u}} + \tilde{\tilde{u}}') \right) = \dot{y}^{a} \left(\omega_{1}(\tilde{\tilde{u}}) \right) + \dot{y}^{a} \left(\omega_{1}(\tilde{\tilde{u}}') \right) ,$$

$$\dot{y}^{a}_{\alpha} \left(\omega_{1}(\tilde{\tilde{u}} + \tilde{\tilde{u}}') \right) = \dot{y}^{a}_{\alpha} \left(\omega_{1}(\tilde{\tilde{u}}) \right) + \dot{y}^{a}_{\alpha} \left(\omega_{1}(\tilde{\tilde{u}}') \right) .$$

Thus we have proved the following

THEOREM 2.1. Let ω : TP + TG be a connection form on a principal fibre bundle $P(M, \pi, G)$. Then ω_1 : $TJ_p^1P + TJ_p^1G$ given by (2.1) is a connection form on the principal fibre bundle $J_p^1P(J_p^1M, \pi^1, J_p^1G)$. We shall call ω_1 the prolongation of the connection ω to J_p^1P .

We remark that, for p = 1, ω_1 coincides with the connection tangential to ω due to Kobayashi ([3], p. 152), also obtained by Morimoto in [7].

3. Prolongation of linear connections to the frame bundle

In this section we apply the result in the previous section to the linear connections on a manifold. From now on the indices $h, i, j, k, \ldots, \alpha, \beta, \gamma, \ldots$ have range in $\{1, 2, \ldots, n\}$, A, B, C, \ldots in $\{1, 2, \ldots, n+n^2\}$ and i_{α} stands for $\alpha n + i$.

Let $\underline{F}M(M, \pi_M, Gl(n))$ and $\underline{\underline{FF}M}(\underline{\underline{F}M}, \pi_{\underline{\underline{F}M}}, Gl(n+n^2))$ be the frame bundles of M and $\underline{\underline{F}M}$ respectively.

THEOREM 3.1. Let Γ be a linear connection on a manifold M. Then there exists canonically a linear connection $\tilde{\Gamma}$ on the frame bundle $\underline{F}M$ of M, which will be called the prolongation of Γ to $\underline{F}M$.

Proof. Let ω be the connection form on $\underline{F}M$ defining the connection Γ . The prolongation ω_1 of ω is a connection form on $J_n^1 \underline{F}M$, $n = \dim M$. Then, using the bundle homomorphism $j_M : J_n^1 \underline{F}M \Big|_{\underline{F}M} \rightarrow \underline{F}\underline{F}M$ described in §1, (5), we canonically obtain a connection Γ on the principal fibre bundle $\underline{F}\underline{F}M$. #

Next, we shall compute the local components $\tilde{\Gamma}^A_{BC}$ of the prolongation $\tilde{\Gamma}$ of Γ to <u>FM</u>.

Let $\omega : T\underline{F}M \to TGl(n)$ be the connection form of Γ , (U, x^i) a local coordinate system in M, $\begin{pmatrix} x^i, x^i_j \end{pmatrix}$ the induced coordinate functions on $\underline{F}U$, $\begin{pmatrix} y^i_j \end{pmatrix}$ the canonical coordinates in Gl(n) and $\begin{pmatrix} x^i, x^i_j; \dot{x}^i, \dot{x}^j_j \end{pmatrix}$, $\begin{pmatrix} y^i_j; \dot{y}^i_j \end{pmatrix}$ the induced coordinate functions on $T\underline{F}U$ and TGl(n), respectively. Then ω is locally expressed by

$$\begin{aligned} y_{j}^{i} &= \omega_{j}^{i} \left(x^{h}, x_{k}^{h}; \dot{x}^{h}, \dot{x}_{k}^{h} \right) = \delta_{j}^{i} , \\ \omega &: \\ \dot{y}_{j}^{i} &= \dot{\omega}_{j}^{i} \left(x^{h}, x_{k}^{h}; \dot{x}^{h}, \dot{x}_{k}^{h} \right) , \end{aligned}$$

and thus, if $\{e_i^j\}$ denotes the canonical basis of $gl(n) \equiv T_eGl(n)$, we can set

$$\omega \left(x^h, \ x^h_k; \ \dot{x}^h, \ \dot{x}^h_k \right) = \dot{\omega}^i_j \left(x^h, \ x^h_k; \ \dot{x}^h, \ \dot{x}^h_k \right) e^j_i \in T_{e^{\text{Gl}}}(n) \ .$$

Let $\sigma : \mathcal{U} \to \underline{FM}$ be the natural cross section of \underline{FM} over \mathcal{U} , that is $\sigma(x) = \begin{pmatrix} x^i, \delta^i_j \end{pmatrix}$ for any $x = (x^1, \dots, x^n) \in \mathcal{U}$, and set $\omega_{\mathcal{U}} = \sigma^* \omega$.

Then $\omega_{\mathcal{U}}$ defines the local components Γ_{jk}^{i} of Γ on \mathcal{U} by the equation $\omega_{\mathcal{U}} = \left(\Gamma_{jk}^{i} dx^{j}\right) e_{i}^{k}$ and, using Proposition 7.3 in [4], one easily finds

$$\overset{i}{\omega}_{j}^{i} \left(x^{h}, x_{k}^{h}; \overset{i}{x}^{h}, \overset{k}{x}_{k}^{h} \right) = Y_{k}^{i} \Gamma_{hl}^{k} X_{j}^{l} \overset{i}{x}^{h} + Y_{h}^{i} \overset{k}{X}_{j}^{h}$$

where $\begin{pmatrix} y_k^i \end{pmatrix} = \begin{pmatrix} x_k^i \end{pmatrix}^{-1}$. Consequently, at the point $q = \begin{pmatrix} x^h, x_k^h; x^h, x_k^h \end{pmatrix}$ we have

$$\begin{split} \frac{\partial \omega_{j}^{i}}{\partial x^{k}}(q) &= Y_{l}^{i} \left(\partial_{k} \Gamma_{hm}^{l}\right) X_{j}^{m} \dot{x}^{h} , \\ \frac{\partial \omega_{j}^{i}}{\partial x^{h}_{k}}(q) &= -Y_{h}^{i} X_{l}^{k} \Gamma_{mn}^{l} X_{j}^{n} \dot{x}^{m} + Y_{l}^{i} \Gamma_{mh}^{l} \dot{x}^{m} \delta_{k}^{j} - Y_{h}^{i} X_{m}^{k} \dot{x}_{j}^{m} , \\ \frac{\partial \omega_{j}^{i}}{\partial x^{k}_{k}}(q) &= Y_{l}^{i} \Gamma_{kh}^{l} \dot{x}_{j}^{h} , \\ \frac{\partial \omega_{j}^{i}}{\partial x^{k}_{k}}(q) &= Y_{h}^{i} \delta_{k}^{j} . \end{split}$$

Now, let $\tilde{\omega}$ denote the connection form of the extension of ω_1 to $\underline{F}_n^{J_1}M$ via the homomorphism $j_M : J_n^{J_1}\underline{F}M \to \underline{F}_n^{J_1}M$; then $j_M^*\tilde{\omega} = j_n \circ \omega_1$. If $\sigma^1 : J_n^{J_1}U \to J_n^{J_1}\underline{F}M$ denotes the cross-section of $J_n^{J_1}\underline{F}M$ induced by $\sigma : U \to \underline{F}M$, then the composition $\tilde{\sigma} = j_M \circ \sigma^1$ is easily proved to be the natural cross-section of $\underline{F}J_n^{J_1}M$ over $J_n^{J_1}U$.

Let $\left\{\tilde{\Gamma}_{BC}^{A}\right\}$ still denote the local components of the linear connection on $J_{n}^{1}M$ which is defined by $\tilde{\omega}$, with respect to the induced coordinate system $\left(J_{n}^{1}U, x^{j}, x_{\alpha}^{j}\right)$. Then, if $\left\{E_{B}^{A}\right\}$ denotes the canonical basis of $gl(n+n^{2}) \equiv T_{o}Gl(n+n^{2})$, we have

$$\widetilde{\omega}\left(\left(\frac{\partial}{\partial x^{j}}\right)_{\widetilde{u}}\right) = \widetilde{\Gamma}_{jB}^{A} E_{A}^{B} , \quad \widetilde{\omega}\left(\left(\frac{\partial}{\partial x_{\alpha}^{j}}\right)_{\widetilde{u}}\right) = \widetilde{\Gamma}_{j_{\alpha}B}^{A} E_{A}^{B} ,$$

 $\tilde{u} = \tilde{\sigma}(u)$ for any point $u \in J_n^1 U$. On the other hand, setting $u_1 = \sigma^1(u)$,

$$(Tj_{M})\left(\left(\frac{\partial}{\partial x^{j}}\right)_{u_{1}}\right) = \left(\frac{\partial}{\partial x^{j}}\right)_{\tilde{u}}, \quad (Tj_{M})\left(\left(\frac{\partial}{\partial x^{j}_{\alpha}}\right)_{u_{1}}\right) = \left(\frac{\partial}{\partial x^{j}_{\alpha}}\right)_{\tilde{u}},$$

and hence

$$\begin{split} \widetilde{\omega} \left(\left(\frac{\partial}{\partial x^{j}} \right)_{\widetilde{u}} \right) &= j_{n} \left[\omega_{1} \left(\left(\frac{\partial}{\partial x^{j}} \right)_{u_{1}} \right) \right] , \\ \widetilde{\omega} \left(\left(\frac{\partial}{\partial x^{j}} \right)_{\alpha} \right) &= j_{n} \left[\omega_{1} \left(\left(\frac{\partial}{\partial x^{j}} \right)_{u_{1}} \right) \right] . \end{split}$$

Then, if
$$u = \left(x^{j}, x_{\alpha}^{j}\right)$$
, we have

$$\begin{aligned}
\omega_{1}\left(\left(\frac{\partial}{\partial x^{j}}\right)_{u_{1}}\right) &= \omega_{1}\left(x^{i}, I, x_{\alpha}^{i}, 0; \delta_{j}^{i}, 0, 0, 0\right) \\
&= \left(I, 0; \psi_{i}^{h}\left(x^{i}, I; \delta_{j}^{i}, 0\right), \frac{\partial_{u}^{i}}{\partial x^{k}} x_{\alpha}^{k}\right) \\
&= \left(I, 0; \Gamma_{ji}^{h}, x_{\alpha}^{k}\left(\partial_{k}\Gamma_{ji}^{h}\right)\right), \\
&\omega_{1}\left(\left(\frac{\partial}{\partial x_{\gamma}^{j}}\right)_{u_{1}}\right) &= \omega_{1}\left(x^{i}, I, x_{\alpha}^{i}, 0; 0, 0, \delta_{\gamma}^{\alpha}\delta_{j}^{i}, 0\right) \\
&= \left(I, 0; \psi_{i}^{h}\left(x^{i}, I; 0, 0\right), \frac{\partial_{u}^{i}}{\partial x^{k}} \delta_{j}^{k}\delta_{\gamma}^{n}\right) \\
&= \left(I, 0; 0, \delta_{\gamma}^{\alpha}\Gamma_{ji}^{h}\right),
\end{aligned}$$

where I and 0 denote the unit matrix and the zero matrix, respectively. Therefore

$$\begin{split} \widetilde{\omega} \left[\left(\frac{\partial}{\partial x^{j}} \right)_{\widetilde{u}} \right] &= \Gamma_{ji}^{h} E_{h}^{i} + x_{\alpha}^{k} \left(\partial_{k} \Gamma_{ji}^{h} \right) E_{h_{\alpha}}^{i} + \delta_{\beta}^{\alpha} \Gamma_{ji}^{h} E_{h_{\alpha}}^{i} , \\ \widetilde{\omega} \left[\left(\frac{\partial}{\partial x_{\gamma}^{j}} \right)_{\widetilde{u}} \right] &= \delta_{\gamma}^{\alpha} \Gamma_{ji}^{h} E_{h_{\alpha}}^{i} , \end{split}$$

and, restricting to $\underline{F}M$, that is to the coordinate neighborhood $\underline{F}U$, we obtain the local components of the prolongation $\tilde{\Gamma}$ of Γ to $\underline{F}M$:

$$\tilde{\Gamma}_{ji}^{h} = \Gamma_{ji}^{h}, \quad \tilde{\Gamma}_{ji\beta}^{h} = 0, \quad \tilde{\Gamma}_{j\gamma i}^{h} = 0, \quad \tilde{\Gamma}_{j\gamma i\beta}^{h} = 0, \quad \tilde{\Gamma}_{j\beta i\gamma}^{h} = 0, \quad \tilde{\Gamma}_{j\gamma i\gamma}^{h} = 0, \quad$$

Now, comparing with Mok's result in ([5], p. 81), we deduce

THEOREM 3.2. Let Γ be a linear connection on M. Then the prolongation $\tilde{\Gamma}$ of Γ to the frame bundle $\underline{F}M$ of M coincides with the complete lift Γ^{C} of Γ to $\underline{F}M$ defined by Mok [5].

4. Prolongation of connections adapted to G-structures

We begin this section proving a lemma.

LEMMA 4.1. Let $P(M, \pi, G)$ be a reduced bundle of the principal fibre bundle $P'(M, \pi, G')$, and let ω' be a connection form on P'reducible to the connection form ω on P. Then $J_p^1 P \left(J_p^1 M, \pi^1, J_p^1 G \right)$ is a reduced bundle of $J_p^1 P' \left(J_p^1 M, \pi^1, J_p^1 G' \right)$, and the prolongation ω'_1 of ω' to $J_p^1 P'$ is reducible to the prolongation ω_1 of ω to $J_p^1 P$.

Proof. Let $\S : P \to P'$ be the injective homomorphism of principal bundles which yields the reduction of G' to G, and denote also by $\S : G \to G'$ the corresponding Lie group homomorphism. Then a straightforward computation shows that the induced bundle homomorphism $\S^1 : J_p^1 P \to J_p^1 P'$ yields a reduction of $J_p^1 G'$ to $J_p^1 G$ whose associate Lie group homomorphism is the induced one, $\S^1 : J_p^1 G \to J_p^1 G'$. On the other hand, that ω' is reducible to ω means that the following diagram commutes:

Therefore, from (6) in §1 we obtain a new commutative diagram

which implies that ω_1' is reducible to ω_1 . #

Let G be a Lie subgroup of Gl(n) and denote $\widetilde{G} = j_n \left(J_n^1 G \right) \subset Gl(n+n^2)$. Assume that $P(M, \pi, G)$ is a reduced bundle of the frame bundle $\underline{FM}(M, \pi_M, Gl(n))$ of M, $n = \dim M$, that is P is a G-structure on M. In [2] we have defined the prolongation of the G-structure P on M to a \widetilde{G} -structure \widetilde{P} on \underline{FM} as follows: we consider the injective bundle homomorphism $\dot{\iota}^1 : J_n^1 P \neq J_n^1 \underline{FM}$ induced by $\dot{\iota} : P \neq \underline{FM}$ and define $\widetilde{P} = \left(j_M \circ \dot{\iota}^1 \right) \left(J_n^1 P \right) \Big|_{\underline{FM}}$.

As usually, we say that a linear connection Γ on M is adapted to the G-structure $P(M, \pi, G)$ on M if Γ is reducible to a connection on P. Then, taking into account Lemma 4.1 and the results in the previous section, we easily deduce

THEOREM 4.2. Let Γ be a linear connection on M adapted to a G-structure $P(M, \pi, G)$ on M. Then the prolongation $\tilde{\Gamma}$ of Γ to $\underline{F}M$ is adapted to the \tilde{G} -structure $\tilde{P}(\underline{F}M, \pi, \tilde{G})$ on FM, prolongation of P to $\underline{F}M$.

We remark that Theorem 4.2 improves some particular results in [1] and

[5] where only the prolongations (or complete lift) of G-structures on M defined by tensor fields of types (0, s) and (1, s) have been considered.

References

- [1] Luis A. Cordero and Manuel de Leon, "Lifts of tensor fields to the frame bundle", *Rend. Cir. Mat. Palermo* (to appear).
- [2] Luis A. Cordero and Manuel de Leon, "Prolongations of G-structures to the frame bundle", submitted.
- [3] S. Kobayashi, "Theory of connections", Ann. Mat. Pura Appl. 43 (1957), 119-194.
- [4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.
 I (Interscience, New York, 1963).
- [5] K.P. Mok, "Complete lifts of tensor fields and connections to the frame bundle", Proc. London Math. Soc. (2) 32 (1979), 72-88.
- [6] A. Morimoto, "Prolongation of geometric structures" (Mathematical Institut, Nagoya University, Japan, 1969).
- [7] A. Morimoto, "Prolongation of connections to tangential fibre bundles of higher order", Nagoya Math. J. 40 (1970), 85-97.

Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad de Santiago de Compostela, Spain.

https://doi.org/10.1017/S0004972700021092 Published online by Cambridge University Press