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Abstract. We define open index pairs of an isolated invariant set, prove their existence
and compute the fixed point index of an isolating neighbourhood in terms of the
Lefschetz number of a certain map associated with the open index pair. We use
this to establish rationality of zeta functions and Lefschetz zeta functions.

0. Introduction
The Conley index [2] of an isolated invariant set of a flow has become an important
tool in the qualitative study of flows and differential equations. Recently Fried [7]
observed that the Conley theory can be successfully applied to extend Manning's
theorem [9] on the rationality of the zeta function of a basic set of an Axiom A
diffeomorphism to the case of a C1 diffeomorphism and its expansive, isolated
invariant set with nondegenerate periodic points. Fried's proof is based on a lemma
concerning the rationality of Lefschetz zeta functions. In order to show this lemma
the diffeomorphism is suspended to obtain a C1 flow and then the Conley-Easton
theorem [3] on the existence of smooth isolating blocks for flows is used. This allows
the fixed point (Lefschetz) indices to be expressed in terms of traces of certain
matrices.

In this paper we prove the rationality of the Lefschetz zeta function for an isolated
invariant set of maps of compact attraction on an arbitrary metric ANR, which
generalizes Fried's lemma. As a consequence we also obtain a generalization of
Manning's theorem. The proof goes along similar lines as in Fried's paper [7] with
one important difference: we cannot use suspension because otherwise we could
obtain a space which is not an ANR. Thus we have to use a substitute of the
Conley-Easton theorem for discrete time dynamical systems. In the discrete case it
seems natural to consider index pairs instead of isolating blocks. In particular, this
approach was chosen in [12] and [13] to carry over the Conley index from the
continuous to the discrete case. In order to be able to consider the fixed point index
we have to ensure the existence of index pairs being ANRs. Since the existence of
such index pairs seems to be settled only in case of smooth flows and diffeomorph-
isms, we introduce open index pairs and prove their existence. Then we extend the
fixed point index formula established for the case of compact ANR index pairs in
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[11] (see also [10]) to the case of open index pairs. This formula, which is interesting
in itself (see [11] for details) expresses the fixed point index of an isolated invariant
set in terms of the (global) Lefschetz number of a certain map associated with the
index pair. This is all that is needed to accomplish the proof of our generalization
of Fried's lemma and Manning's theorem along Fried's lines.

1. Preliminaries
In this paper we assume the notation introduced in [11]. We briefly recall the main
definitions.

Let X be a metric ANR and let / : X -* X be a continuous map. The map / is
said to be locally compact iff for every xe X there exists a neighbourhood U of x
such that cl/( U) is compact. It is called a map of compact attraction if it is locally
compact and there exists an attracting compact for f i.e. a compact subset A<^X
such that for every xe X the positive trajectory •ny(x) has a cluster point in A or,
equivalently, the positive limit set io^(x) intersects A.

Obviously, if X is compact, then every continuous map / : X -» X is a map of
compact attraction.

Recall (see [4, Lemma (2.1)] and also compare [5, I, Lemmas 5.1 and 5.II, the
argument in Theorem 2.1]) that if A is an attracting compact for/ then there exists
an open neighbourhood U of A such that/({/)£ U and cl/( t /) is compact. From
this one can easily obtain the following.

PROPOSITION 1. Iff is a map of compact attraction then for all neNf is also a map
of compact attraction. •

The map / : (X, A) -»(X, A) will be called a map of compact attraction iff both
fx and fA are maps of compact attraction, where fx:X^X and fA: A -» A denote
the restrictions o f / t o (X, </>) and (A, <f>) respectively.

We recall that (j> = {</>,}, the endomorphism of a graded vector space E over the
field of rational numbers, is called a Leray endomorphism (cf. [8]), iff E':= E/ N(<f>),
where N(<£) '•= U {<£~"(0)| n = 1, 2,...} is of finite type. If <j> is a Leray endomorph-
ism then we define its Lefschetz number by A((/>)'•= A(<f>'), where <t>': E'-*• E' denotes
the induced map. Note that if <j> is a Leray endomorphism, so are any of its iterates.

The following proposition is a straightforward consequence of [8, Lemma 2.1].

PROPOSITION 2. Assume 4> and t// are two endomorphisms of graded vector spaces such
that <j> = gh, if) = hg for some morphisms /»:£-» F, g: F -> E. (This is in particular
satisfied if <f> and i/> are conjugated.) If one of them is a Leray endomorphism then so
is the other and A(<j>k) = A(i//) for all natural k.

We recall that if f:(X, A)-*(X, A) is a continuous map of a pair (X, A) of
topological spaces into itself such that /,., the map induced in singular homology,
is a Leray endomorphism, then / is said to be a Lefschetz map and in such a case
the Lefschetz number of/ is given by A(/):= A(/#).

The following proposition follows directly from [4, Lemma (4.1)] and [5.1,
Theorem 2.1].
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PROPOSITION 3. Assume X and A are metric ANRs and f: (X, A) -* (X, A) is a map
of compact attraction. Then f fx, fA are Lefschetz maps and

2. Open index pairs
The function a:Z->X is called a solution to/iff/(<r(0) = <r(i + 1) for all i eZ. For
N c X denote by Sltn (/, N) the set of all solutions a to / such that <x(Z)c N.
Sltn (/, X) will be shortened to Sltn ( /) .

We define Inv N, the invariant part of N, as the set of those xe N which admit
a ae Sltn (/, N) such that o-(O) = x. The set S g X is invariant (with respect to / )
iff S = Inv S. Obviously, if/ is a homeomorphism, then S is invariant iff S =/(S) =
/ " ' ( 5 ) .

A compact set S is an isolated invariant set iff it is the largest invariant set in
some its neighbourhood N. In such a situation N is said to isolate S. If N is closed,
it is called an isolating neighbourhood for 5. We say that S is of Rybakowski type
if it admits an isolating neighborhood N such that for every pair of sequences
{xn}n = Uac^N and{/nn}n = l 0 C cZ + such that {/'(*„) 1«=0, l,...,mn}^ N and mn^>
oo, the sequence {f""(xn)}n=]x is relatively compact.

Notice that if S is an isolated invariant set then the set of fixed points of/ in
S is isolated.

A straightforward consequence of Theorem 2 in [11] is the following

THEOREM 1. For every isolated invariant set S of Rybakowski type there exists an open
neighbourhood V of S and continuous functions cf>, y: V-»[0, oo] such that
(1)
(2)
(3) S = d>-'(0)ny-l(0).

Definition 1. Assume (M, N) is a pair of subsets of X such that \ s M , The pair
(M, N) will be called an open index pair for 5 or briefly (in this paper only) an
index pair iff M, N are open and the following conditions are satisfied
(4) xeN,f(x)eM=$>f(x)eN,
(5) X G M , / ( X ) ^ M = > X € N ,

(6) 5 = Invcl(M\N)cint(M\N).
We say that the index pair (M, N) is regular iff the following conditions are

satisfied
(7) there exists an open set U such that clMJV^ U and/( t / \N)c N.
(8) Cl(/(N)\M)ncl(M\N) = 0.

THEOREM 2. Assume that S is an isolated invariant set of Rybakowski type. Then for
every neighbourhood U of S there exists a regular open index pair (M, N) for S such
that McU.

Proof. Choose V, <j>, y as in Theorem 1. Taking restrictions, if necessary, we can
assume that cl V is an isolating neighbourhood for S. Put W:= Un Vnf~\V)n
/~2( V). Then W is an open neighbourhood of S and Wuf( W) u / 2 ( W) c V. Find
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eeO such that </>~'([O, e])n y~'([O, e])c W. Put

M := </,-'([O, e)) n y-([O, e)), 7V:= {xe M| y(/(x))> e/2}.

We will show that (M, TV) is an open regular index pair for S.
First observe that M and TV are open in X. Assume x e TV and /(x)€ M. Then

y(/(x))>e/2, hence we get from (2) that y(/2(x))> y((x))> e/2, i.e. /(x)eTV.
Suppose x e M, /(x) g M. Since /(x) e V, we have </>(/(x)) < $(x) < e, thus it must
be y(/(x))> e > e/2, which means x e TV and (4), (5) are proved.

Since S c { x e W|0(x)<e, y(/(x))<e/2}cint (M\N), we have

5 = Inv S c inv int (M\N)^ Inv cl (M\N) c Inv V = S

and (6) is proved. Put U-= (TVu/~'(TV))n M. Then 1/ is open and/(l/\TV)c TV.
7akeyec\MN. If ye JV then ye U. If y g TV then y(y)^e, <f>(y)^e, y{f(y)) = e/2
and by (5) f(y)eM. There is also y(f2(y))> y(f(y)) = e/2, which shows that
/ (y )e N. Thus yef~\N) and we have proved (7).

In order to prove (8) assume it is not true. Then there exists yecl (M\N)n
cl(/(/V)\M). In particular we have y( / (y) )«e /2 and y(f(y))> y(y)^ e/2, a
contradiction. •

From the above theorem and Theorem 1 in [11] we get the following

COROLLARY 1. Every compact isolated invariant set S of a locally compact map (in
particular of a map of compact attraction) admits regular, open index pairs arbitrarily
close to S.

The following proposition follows easily from (4), (5), (8) and the excision
property of singular homology (see [16, Ch. 4, § 6, Corr. 5]).

PROPOSITION 4. Assume (M, N) is a regular index pair for K. Then f maps the pair
(M, N) into the pair (Mu/(JV), N u / ( N ) ) and the inclusion iM N :(M, N)->
( M u / ( N ) , NKjf(N)) induces an isomorphism in homology.

3. Index maps and the fixed point index formula
Let /M,N denote the mapping / considered as a mapping of the pair (M, N) into
the pair (Mu/(7V), TV u/(/V)). Similarly as in the case of closed index pairs (see
[11]), Proposition 4 enables us to define an endomorphism 7MN ://^(M, N)-»
H^M, TV) by

*M,N ' = ( ' M . N ) * °(/M.N)J(C-

We will call this map the index map of the index pair (M, TV).
In the sequel Fix /will denote the set of fixed points of/and ind(/ V) will stand

for the fixed point index as defined by Granas in [8, Theorem 12.1] with the
normalization property in the form proved in [4, Proposition 3.5].
The main result of this paragraph is the following

THEOREM 3. Assume X is a metric ANR andf: X -> X is a map of compact attraction.
If {M, TV) is a regular open index pair, then IM N is a Leray endomorphism and for
every neN

ind(/",int(M\N)) =
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A similar theorem for closed index pairs is proved in [11, Theorem 4]. Unfortu-
nately the proof in the case of closed index pairs does not carry over directly to the
case of open index pairs.

In course of the proof of Theorem 3, we will need the following

LEMMA 1. Assume X, A are metric ANRs, A £ X andf: (X, A) -»(X, A) is a map of
compact attraction, such that Fix/nbd/4 = 0 . Then
(9) ind(f,X\c\A) = A(fx)-A(fA) = A(f).

Proof. Put U'-int A, V:=X\c\A. Using the argument of Fournier [5, I, Lemma
5.1; 5, II, Theorem 2.1] we can find W open in A such that Fix/A £ W, cl/( W) is
a compact subset of W and
(10) A(fA) = A(fw).

Let W':= WnintA. The normalization, excision and commutativity properties
of the fixed point index imply
(11) A(fw) = ind(W,fw, W) = ind(W,fw., W) = ind (X,fw., W') = ind {X,f U).

From the additivity property of the fixed point index we get
(12) A(fx) = ind(X,f,X) = ind(X,f V) + ind (X, f U).

Hence (9) follows from (10), (11) and (12). •

Proof of Theorem 3. Let / := [0,1], J := (-*, |), Jo := ( - U ) , h := (i, !)• Put

Y is an ANR as an open subset of X x J. Let U be open such that TV c (J c M,
clM7V£ (/ and f(U\N)cN. Let W:=cly ((M\[/)x/0) and Z:= TVx J u X x / , .
Let a : V-» / be a continuous function such that a| w = 0, a|clz = 1. Define the map

g:(Y,Z)3(x,t)^(f(x),a(x,t))e(Y,Z).

This map is well defined as one can see from the following properties based on the
definition of the index pair

g(W)czMx{0},

We will prove that g is a map of compact attraction. Let (x, t) e Y. There exists a
neighborhood V of x and a compact KgX, such that /(V) c /£. Then

g ( V x J ) c / ( V ) x a ( y ) c J ( x / ,

which shows that gY and gz are locally compact. Assume A is a compact set in X
such that for every x e X (co^)(x) nA^0.

Put A':=Ax{l}, A"--{ln\+c\(M\N)nA)x{0}. (We recall that for CgX
Inv+C:={xeC|/ '(x)GC for all ieN}). Obviously A' and A" are compact. We
have also

A ' c X x { l } c Z c y, A ' sMx{0}cy .

Take (x, t)e Y. Then g"(x, t) has the form (/"(x), sn(x)) for some sn(x)e /. The
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following properties follow easily from the definition of g.

sn(x)>0=$>sm(x) = 1 for all m>n,

sn(x) = 0 forall/i€No(7r/)(x)

Let y e (o>^)(x). If for some n<=N, sn(x) > 0, in particular if (x, t) e Z, then (y, 1) e

(wg)(x, t)n A'. Otherwise

(irf)(x)cM\U, cl (777 ) (x)sc l (M\t / )

and

y e (»;>(x) = Inv+ (w/)(x) <= Inv+ (cl (ir/Xx)) £ Inv+ (cl (M\N)),

i.e.(y,0)6A"x(»;)(xi0.
Thus A' is an attracting compact with respect to gz and A' u A" is an attracting

compact with respect to gY- This means that g is a map of compact attraction.

Put Q-NxJ, P-= M XJOKJ Q. P and Q are open subsets of Y, thus they are

ANRs. An easy computation shows that (P, Q) is a regular index pair for g. Put

R:=int(M\U), R:=R xjo = int (P\Q),
V:=f-"{R)nR, V':=VxJ0,

Applying the commutativity property of the fixed point index to /A ° g" | R and v we
get from fi°g"\R° v=f\R and v° fi ° g" |R=g"|v that

ind(/", i?) = ind(g", V).

However

Fix/" n R = Fix/" n int (M\N),

Fix g"nV'= Fix g" nint (P\Q),

thus we get from the additivity and excision properties of the fixed point index that
(13) ind (/", int (M\N)) = ind (g", int (P\Q)).
By Proposition 1 g" is a map of compact attraction. It follows from Proposition 3
that g" is a Lifschitz map and, since P\Q= Y\Z, we have by Lemma 1 applied
to g"
(14) ind (g", int (P\Q)) = ind (g", int (Y\Z)) = A(g") = A((gJ").

Consider now the following commutative diagram

f '>*

H*(M, N) . H^{Muf(N), Nuf(N)) • HJM, N)

in which jt:(P,Q)-*(Y,Z) and j2:(Pug(Q),Q<jg(Q))-*(Y,Z) are inclusions
and
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are projections. Since cl (Y\P)^c\ (X x j o )c int Z, we see that j , is an excision,
thus y,* is an isomorphism. By Proposition 4 applied to (P, Q), (»>,(?)# is an
isomorphism. This shows that g* and IPQ are conjugate and since g* is a Lefschetz
map, we see by Proposition 2 that IPQ is also a Lefschetz map and
(15) A((g]|!)-) = A((/p.o)").
One can easily verify that the mapping (M, N)sx-> (x, 0) s (P, Q) is the homotopy
inverse of p,, thus/?,.,. is an isomorphism. This shows that IMN and IPQ are conjugate
and since /P(? is a Lefschetz map, so is IM N and
(16) A((/p.o)

n) = A((/M,N)").
The thesis follows now from (13), (14), (15) and (16). •

4. Zeta functions
Following Artin-Mazur [1] we define the zeta function of a m a p / on its isolated
invariant set S as the formal power series

£(/):= exp f I Nnt"/n),

where Nn := card S n Fix/". It is well defined whenever Nn<<x> for all n e N.
Similarly the Lefschetz zeta function Z,(/) , called in Smale's paper [15] the false

zeta function, is given by

Zs(/):=exp

where Ln := ind (/", U) for any open U isolating 5. It is defined if X is an ANR
and / is locally compact.

The following theorem concerning the relationality of the Lefschetz zeta function
generalizes the Lemma in [7] and also Proposition 5.13 in [6].

THEOREM 4. Assume X is a metric ANR and Sg X is an isolated invariant set of a
map of compact attraction f: X -* X. Then for any open regular index pair (M, N) of
S the Lefschetz zeta function Zs(f) is a rational function given by

ZAf)= II det(Id-Jt/)
(-"'+1

k=0

where J:={IMtN)':H*(M,N)/N{IM_N)^H*(M,N)/N{IM<N) is an induced map,
N ( / M , N ) denotes the generalized kernel of IM N, m =dim H^{M, N)/N{IMN) and
Id 15 the corresponding identity map.

Proof. We have by an algebraic identity (see [6, Lemma 5.2]) that

Since by Theorem 4

LH = ind (/", int (M\N)) = A(J"),
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we obtain

Z,(/) = exp ( | Lnt"/n\ = exp ( ^ A(/")/"/«)

( l ( l (-O'trC/JV/

= fi exp( I tr (Jkyf/n) = fi det (id-W11"'.
k=0 \n=l / fc=O

We will say that f:X^>X is expansive iff there exists an e > 0 such that for any
two solutions cr, T e Sltn (/)

It is straightforward to verify that the above definition coincides with the standard
definition of expansiveness in the case when / is a homeomorphism.

PROPOSITION 5. f is expansive iff the diagonal A^XxXisan isolated invariant set
with respect tofxf. •

Note that if / is expansive then the periodic points of / of a given period are
isolated. If x is an isolated n-periodic point of/ we put i{f", x) := i{f, V), where
V is any neighborhood of x isolating it from other periodic points.

Definition 2. We say that an n-periodic point x of / is nondegenerate if i(f, x) is
1 or - 1 .

Obviously, if / is a C1 map of a C1 manifold and x is an n-periodic point of/
such that the graph of / " is transversal to the diagonal at x then i(f", x) =
sgn det ( I d - D x F"), i.e. x is nondegenerate.

The following theorem generalizes the result of Fried [4]. The proof is essentially
the same but we use Theorem 3 instead of the lemma in [4]. We include the proof
for sake of completeness.

THEOREM 5. Assume X, S and f: X -» X are as in Theorem 4. Iff\s is expansive and
all periodic points of fin S are nondegenerate, then £,(/) is rational.

Proof. By Proposition 5 the diagonal A in S x 5 is an isolated invariant set with
respect to / | v x/ |v . Obviously Sx S is an isolated invariant set with respect tofxf,
hence so is A.

Fixed points of/" xf in A are of the form (x, x), where x is a fixed point of
/" . Hence expansiveness of/|v implies that/" xf" has only finite number of fixed
points in A. Moreover, by the multiplicativity property of the fixed point index,

ind(/"x/" , (x,x)) = ind( /" ,x) 2 =l ,

because / has nondegenerate periodic points in S. It follows that C&(fxf) =
Z A ( /x / ) . (Here A denotes the diagonal in S x S.) Since obviously £s(/) = ^ ( / x / ) ,

https://doi.org/10.1017/S0143385700005745 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005745


Open index pairs 563

we get Cs(f) = Z^fxf). Obviously, if/ is a map of compact attraction, so is fxf,
hence the assertion follows from Theorem 4. •

COROLLARY 2. Let f be a C1 map of compact attraction on a C1 manifold and S an
isolated invariant set with respect to f with nondegenerate periodic points. If f\s is
expansive then £,(/) is rational. •

Remark The above corollary could be proved without introducing open index pairs
if one were able to show that the functions <)>, y in Theorem 1 can be chosen C\
This is possible in case of a flow [18, Theorem 2.1] and a diffeomorphism [13,
Theorem 5.3] but seems to be an open problem for semiflows and C' maps, because
the proofs in [18] and [13] rely essentially on the symmetry of the flow or the
diffeomorphism with respect to the time variable. (Compare also [14, the third
paragraph of Remarks on p. 359] and [17, Remark on p. 422]).

Example. Take M = B2xSl, where B2:={zeC| |z |<l} and S':={zeC| |z| = l}.
Consider the mapping

f:MB{x,y)-*(x/4,y2)eM.

The map / is C' but it is not a diffeomorphism. Since M is compact, / is a map of
compact attraction. It has nondegenerate periodic points and S := {(x, y) e M \ x = 0}
is an isolated invariant set. Obviously f\s is expansive and Corollary 2 shows that
£,(/) is rational.
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