Bull. Austral. Math. Soc.
Vol. 73 (2006) [69-78]

REVERSES OF THE SCHWARZ INEQUALITY GENERALISING A KLAMKIN-MCLENAGHAN RESULT

Sever S. Dragomir

New reverses of the Schwarz inequality in inner product spaces that incorporate the classical Klamkin-McLenaghan result for the case of positive n-tuples are given. Applications for Lebesgue integrals are also provided.

1. Introduction

In 2004, the author [1] (see also [3]) proved the following reverse of the Schwarz inequality:

THEOREM 1. Let $(H ;\langle\cdot, \cdot)$ be an inner product space over the real or complex number field \mathbb{K} and $x, a \in H, r>0$ such that

$$
\begin{equation*}
\|x-a\| \leqslant r<\|a\| . \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|x\|\left(\|a\|^{2}-r^{2}\right)^{1 / 2} \leqslant \operatorname{Re}\langle x, a\rangle \tag{1.2}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\|x\|^{2}\|a\|^{2}-[\operatorname{Re}\langle x, a\rangle]^{2} \leqslant r^{2}\|x\|^{2} . \tag{1.3}
\end{equation*}
$$

The case of equality holds in (1.2) or (1.3) if and only if

$$
\begin{equation*}
\|x-a\|=r \quad \text { and } \quad\|x\|^{2}+r^{2}=\|a\|^{2} \tag{1.4}
\end{equation*}
$$

If above one chooses

$$
a=\frac{\Gamma+\gamma}{2} \cdot y \quad \text { and } \quad r=\frac{1}{2}|\Gamma-\gamma|\|y\|
$$

then the condition (1.1) is equivalent to

$$
\begin{equation*}
\left\|x-\frac{\Gamma+\gamma}{2} \cdot y\right\| \leqslant \frac{1}{2}|\Gamma-\gamma|\|y\| \quad \text { and } \quad \operatorname{Re}(\Gamma \bar{\gamma})>0 . \tag{1.5}
\end{equation*}
$$

Therefore, we can state the following particular result as well:

Received 12th September, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 SA2.00+0.00.

Corollary 1. Let $(H ;\langle\cdot, \cdot\rangle)$ be as above, $x, y \in H$ and $\gamma, \Gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})$ >0. If

$$
\begin{equation*}
\left\|x-\frac{\Gamma+\gamma}{2} \cdot y\right\| \leqslant \frac{1}{2}|\Gamma-\gamma|\|y\| \tag{1.6}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\operatorname{Re}\langle\Gamma y-x, x-\gamma y\rangle \geqslant 0, \tag{1.7}
\end{equation*}
$$

then

$$
\begin{align*}
\|x\|\|y\| & \leqslant \frac{\operatorname{Re}[(\bar{\Gamma}+\bar{\gamma})\langle x, y\rangle]}{2 \sqrt{\operatorname{Re}(\bar{\Gamma} \bar{\gamma})}} \tag{1.8}\\
& =\frac{\operatorname{Re}(\Gamma+\gamma) \operatorname{Re}\langle x, y)+\operatorname{Im}(\Gamma+\gamma) \operatorname{Im}\langle x, y)}{2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}} \\
& \left(\leqslant \frac{|\Gamma+\gamma|}{\sqrt{\operatorname{Re}(\bar{\Gamma} \bar{\gamma})}}|\langle x, y\rangle|\right) .
\end{align*}
$$

The case of equality holds in (1.8) if and only if the equality case holds in (1.6) (or (1.7)) and

$$
\begin{equation*}
\|x\|=\sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}\|y\| \tag{1.9}
\end{equation*}
$$

If the restriction $\|a\|>r$ is removed from Theorem 1 , then a different reverse of the Schwarz inequality may be stated [2] (see also [3]):

THEOREM 2. Let $(H ;\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{K} and $x, a \in H, r>0$ such that

$$
\begin{equation*}
\|x-a\| \leqslant r \tag{1.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|x\|\|a\|-\operatorname{Re}\langle x, a\rangle \leqslant \frac{1}{2} r^{2} . \tag{1.11}
\end{equation*}
$$

The equality holds in (1.11) if and only if the equality case is realised in (1.10) and $\|x\|=\|a\|$.

As a corollary of the above, we can state:
COROLLARY 2. Let $(H ;\langle\cdot, \cdot\rangle)$ be as above, $x, y \in H$ and $\gamma, \Gamma \in \mathbb{K}$ with $\Gamma \neq-\gamma$. If either (1.6) or, equivalently, (1.7) hold true, then

$$
\begin{equation*}
\|x\|\|y\|-\frac{\operatorname{Re}(\Gamma+\gamma) \operatorname{Re}\langle x, y\rangle+\operatorname{Im}(\Gamma+\gamma) \operatorname{Im}\langle x, y\rangle}{|\Gamma+\gamma|} \leqslant \frac{1}{4} \cdot \frac{|\Gamma-\gamma|^{2}}{|\Gamma+\gamma|}\|y\|^{2} . \tag{1.12}
\end{equation*}
$$

The equality holds in (1.12) if and only if the equality case is realised in either (1.6) or (1.7) and

$$
\begin{equation*}
\|x\|=\frac{1}{2}|\Gamma+\gamma|\|y\| \tag{1.13}
\end{equation*}
$$

As pointed out in [4], the above results are motivated by the fact that they generalise to the case of real or complex inner product spaces some classical reverses of the Cauchy-Bunyakovsky-Schwarz inequality for positive n-tuples due to Polya and Szegö [8], Cassels [10], Shisha and Mond [9] and Greub and Rheinboldt [6].

The main aim of this paper is to establish a new reverse of Schwarz's inequality similar to the ones in Theorems 1 and 2 which will reduce, for the particular case of positive n-tuples, to the Klamkin and McLenaghan result from [7].

2. The Results

The following result may be stated.
Theorem 3. Let $(H ;\langle\cdot, \cdot\rangle)$ be an inner product space over the real or complex number field \mathbb{K} and $x, a \in H, r>0$ with $\langle x, a\rangle \neq 0$ and

$$
\begin{equation*}
\|x-a\| \leqslant r<\|a\| . \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, a\rangle|}-\frac{|\langle x, a\rangle|}{\|a\|^{2}} \leqslant \frac{2 r^{2}}{\|a\|\left(\|a\|+\sqrt{\|a\|^{2}-r^{2}}\right)} \tag{2.2}
\end{equation*}
$$

with equality if and only if the equality case holds in (2.1) and

$$
\begin{equation*}
\operatorname{Re}\langle x, a\rangle=|\langle x, a\rangle|=\|a\|\left(\|a\|^{2}-r^{2}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

The constant 2 is best possible in (2.2) in the sense that it cannot be replaced by a smaller quantity.

Proof: The first condition in (2.1) is obviously equivalent with

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, a\rangle|} \leqslant \frac{2 \operatorname{Re}\langle x, a\rangle}{|\langle x, a\rangle|}-\frac{\|a\|^{2}-r^{2}}{|\langle x, a\rangle|} \tag{2.4}
\end{equation*}
$$

with equality if and only if $\|x-a\|=r$.
Subtracting from both sides of (2.4) the same quantity $|\langle x, a\rangle| /\|a\|^{2}$ and performing some elementary calculations, we get the equivalent inequality:

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, a\rangle|}-\frac{|\langle x, a\rangle|}{\|a\|^{2}} \leqslant 2 \cdot \frac{\operatorname{Re}\langle x, a\rangle}{|\langle x, a\rangle|}-\left(\frac{|\langle x, a\rangle|^{1 / 2}}{\|a\|}-\frac{\left(\|a\|^{2}-r^{2}\right)^{1 / 2}}{|\langle x, a\rangle|^{1 / 2}}\right)^{2}-\frac{2 \sqrt{\|a\|^{2}-r^{2}}}{\|a\|} . \tag{2.5}
\end{equation*}
$$

Since, obviously

$$
\operatorname{Re}\langle x, a\rangle \leqslant|\langle x, a\rangle| \quad \text { and } \quad\left(\frac{|\langle x, a\rangle|^{1 / 2}}{\|a\|}-\frac{\left(\|a\|^{2}-r^{2}\right)^{1 / 2}}{|\langle x, a\rangle|^{1 / 2}}\right)^{2} \geqslant 0
$$

hence, by (2.5) we get

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, a\rangle|}-\frac{|\langle x, a\rangle|}{\|a\|^{2}} \leqslant 2\left(1-\frac{\sqrt{\|a\|^{2}-r^{2}}}{\|a\|}\right) \tag{2.6}
\end{equation*}
$$

with equality if and only if

$$
\begin{equation*}
\|x-a\|=r, \quad \operatorname{Re}\langle x, a\rangle=|\langle x, a\rangle| \quad \text { and } \quad|\langle x, a\rangle|=\|a\|\left(\|a\|^{2}-r^{2}\right)^{1 / 2} \tag{2.7}
\end{equation*}
$$

Observe that (2.6) is equivalent with (2.2) and the first part of the theorem is proved.
To prove the sharpness of the constant, let us assume that there is a $C>0$ such that

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, a\rangle|}-\frac{|\langle x, a\rangle|}{\|a\|^{2}} \leqslant \frac{C r^{2}}{\|a\|\left(\|a\|+\sqrt{\|a\|^{2}-r^{2}}\right)} \tag{2.8}
\end{equation*}
$$

provided $\|x-a\| \leqslant r<\|a\|$.
Now, consider $\varepsilon \in(0,1)$ and let $r=\sqrt{\varepsilon}, a, e \in H,\|a\|=\|e\|=1$ and $a \perp e$. Define $x:=a+\sqrt{\varepsilon} e$. We observe that $\|x-a\|=\sqrt{\varepsilon}=r<1=\|a\|$, which shows that the condition (2.1) of the theorem is satisfied. We also observe that

$$
\|x\|^{2}=\|a\|^{2}+\varepsilon\|e\|^{2}=1+\varepsilon, \quad\langle x, a\rangle=\|a\|^{2}=1
$$

and utilising (2.8) we get

$$
1+\varepsilon-1 \leqslant \frac{C \varepsilon}{(1+\sqrt{1-\varepsilon})}
$$

giving $1+\sqrt{1-\varepsilon} \leqslant C$ for any $\varepsilon \in(0,1)$. Letting $\varepsilon \rightarrow 0+$, we get $C \geqslant 2$, which shows that the constant 2 in (2.2) is best possible.

Remark 1. In a similar manner, one can prove that if $\operatorname{Re}\langle x, a\rangle \neq 0$ and if (2.1) holds true, then:

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\operatorname{Re}\langle x, a\rangle|}-\frac{|\operatorname{Re}\langle x, a\rangle|}{\|a\|^{2}} \leqslant \frac{2 r^{2}}{\|a\|\left(\|a\|+\sqrt{\|a\|^{2}-r^{2}}\right)} \tag{2.9}
\end{equation*}
$$

with equality if and only if $\|x-a\|=r$ and

$$
\begin{equation*}
\operatorname{Re}\langle x, a\rangle=\|a\|\left(\|a\|^{2}-r^{2}\right)^{1 / 2} \tag{2.10}
\end{equation*}
$$

The constant 2 is best possible in (2.9).
Remark 2. Since (2.2) is equivalent with

$$
\begin{equation*}
\|x\|^{2}\|a\|^{2}-|\langle x, a\rangle|^{2} \leqslant \frac{2 r^{2}\|a\|^{2}}{\|a\|\left(\|a\|+\sqrt{\|a\|^{2}-r^{2}}\right)}|\langle x, a\rangle| \tag{2.11}
\end{equation*}
$$

and (2.9) is equivalent to

$$
\begin{equation*}
\|x\|^{2}\|a\|^{2}-[\operatorname{Re}\langle x, a\rangle]^{2} \leqslant \frac{2 r^{2}\|a\|^{2}}{\|a\|\left(\|a\|+\sqrt{\|a\|^{2}-r^{2}}\right)}|\operatorname{Re}\langle x, a\rangle| \tag{2.12}
\end{equation*}
$$

hence (2.12) is a tighter inequality than (2.11), because in complex spaces, in general $|\langle x, a\rangle|>|\operatorname{Re}(x, a\rangle|$.

The following corollary is of interest.
Corollary 3. Let $(H ;\langle\cdot, \cdot\rangle)$ be a real or complex inner product space and $x, y \in H$ with $\langle x, y\rangle \neq 0, \gamma, \Gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})>0$. If either (1.6) or, equivalently (1.7) holds true, then

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, y\rangle|}-\frac{|\langle x, y\rangle|}{\|y\|^{2}} \leqslant|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})} \tag{2.13}
\end{equation*}
$$

The equality holds in (2.13) if and only if the equality case holds in (1.6) (or in (1.7)) and

$$
\begin{equation*}
\operatorname{Re}[(\Gamma+\gamma)\langle x, y\rangle]=|\Gamma+\gamma||\langle x, y\rangle|=|\Gamma+\gamma| \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}\|y\|^{2} \tag{2.14}
\end{equation*}
$$

Proof: We use the inequality (2.2) in its equivalent form

$$
\frac{\|x\|^{2}}{|\langle x, a\rangle|}-\frac{|\langle x, a\rangle|}{\|a\|^{2}} \leqslant \frac{2\left(\|a\|-\sqrt{\|a\|^{2}-r^{2}}\right)}{\|a\|} .
$$

Choosing $a=(\Gamma+\gamma / 2) \cdot y$ and $r=|\Gamma-\gamma| / 2\|y\|$, we have

$$
\begin{aligned}
& \frac{\|x\|^{2}}{|(\Gamma+\gamma) / 2||(x, y\rangle|}-\frac{|(\Gamma+\gamma) / 2||\langle x, y\rangle|}{|(\Gamma+\gamma) / 2|^{2}\|y\|^{2}} \\
& \leqslant \frac{2\left(\left|\frac{\Gamma+\gamma}{2}\right|\|y\|-\sqrt{|(\Gamma+\gamma) / 2|^{2}\|y\|^{2}-(1 / 4)|\Gamma-\gamma|^{2}\|y\|^{2}}\right)}{|(\Gamma-\gamma) / 2|\|y\|}
\end{aligned}
$$

which is equivalent to (2.13).
Remark 3. The inequality (2.13) has been obtained in a different way in [5, Theorem 2]. However, in [5] the authors did not consider the equality case which may be of interest for applications.

REMARK 4. If we assume that $\Gamma=M \geqslant m=\gamma>0$, which is very convenient in applications, then

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\langle x, y\rangle|}-\frac{|\langle x, y\rangle|}{\|y\|^{2}} \leqslant(\sqrt{M}-\sqrt{m})^{2} \tag{2.15}
\end{equation*}
$$

provided that either

$$
\begin{equation*}
\operatorname{Re}\langle M y-x, x-m y\rangle \geqslant 0 \tag{2.16}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left\|x-\frac{m+M}{2} y\right\| \leqslant \frac{1}{2}(M-m)\|y\| \tag{2.17}
\end{equation*}
$$

holds true.

The equality holds in (2.15) if and only if the equality case holds in (2.16) (or in (2.17)) and

$$
\begin{equation*}
\operatorname{Re}\langle x, y\rangle=|\langle x, y\rangle|=\sqrt{M m}\|y\|^{2} \tag{2.18}
\end{equation*}
$$

The multiplicative constant $C=1$ in front of $(\sqrt{M}-\sqrt{m})^{2}$ cannot be replaced in general with a smaller positive quantity.

Now for a non-zero complex number z, we define $\operatorname{sgn}(z):=z /|z|$.
The following résult may be stated:
Proposition 1. Let $(H ;\langle\cdot, \cdot\rangle)$ be a real or complex inner product space and $x, y \in H$ with $\operatorname{Re}\langle x, y\rangle \neq 0$ and $\gamma, \Gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})>0$. If either (2.6) or, equivalently, (2.7) hold true, then

$$
\begin{align*}
(0 & \left.\leqslant\|x\|^{2}\|y\|^{2}-|\langle x, y\rangle|^{2} \leqslant\right)\|x\|^{2}\|y\|^{2}-\left[\operatorname{Re}\left(\operatorname{sgn}\left(\frac{\Gamma+\gamma}{2}\right) \cdot\langle x, y\rangle\right)\right]^{2} \tag{2.19}\\
& \leqslant(|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})})\left|\operatorname{Re}\left(\operatorname{sgn}\left(\frac{\Gamma+\gamma}{2}\right) \cdot\langle x, y\rangle\right)\right|\|y\|^{2} \\
& \left.\leqslant(|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})})|\langle x, y\rangle|\|y\|^{2}\right)
\end{align*}
$$

The equality holds in (2.19) if and only if the equality case holds in (2.6) (or in (2.7)) and

$$
\operatorname{Re}\left[\operatorname{sgn}\left(\frac{\Gamma+\gamma}{2}\right) \cdot\langle x, y\rangle\right]=\sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}\|y\|^{2}
$$

Proof: The inequality (2.9) is equivalent with:

$$
\|x\|^{2}\|a\|^{2}-[\operatorname{Re}\langle x, a\rangle]^{2} \leqslant 2\left(\|a\|-\sqrt{\|a\|^{2}-r^{2}}\right) \cdot|\operatorname{Re}(x, a\rangle|\|a\|
$$

If in this inequality we choose $a=(\Gamma+\gamma) / 2 \cdot y$ and $r=|\Gamma-\gamma| / 2 \mid y$, we have

$$
\begin{aligned}
&\|x\|^{2}\left|\frac{\Gamma+\gamma}{2}\right|^{2}\|y\|^{2}-\left(\operatorname{Re}\left[\left(\frac{\Gamma+\gamma}{2}\right) \cdot\langle x, y\rangle\right]\right)^{2} \\
& \leqslant 2\left(\left|\frac{\Gamma+\gamma}{2}\right|\|y\|-\sqrt{\left|\frac{\Gamma+\gamma}{2}\right|^{2}\|y\|^{2}-\frac{1}{4}|\Gamma-\gamma|^{2}\|y\|^{2}}\right) \\
& \times \left.\times \operatorname{Re}\left[\left(\frac{\Gamma+\gamma}{2}\right) \cdot\langle x, y\rangle\right]| | \frac{\Gamma+\gamma}{2} \right\rvert\,\|y\|
\end{aligned}
$$

which, on dividing by $|(\Gamma+\gamma) / 2|^{2} \neq 0$ (since $\operatorname{Re}(\Gamma \bar{\gamma})>0$), is clearly equivalent to (2.19).

Remark 5. If we assume that x, y, m, M satisfy either (2.16) or, equivalently (2.17), then

$$
\begin{equation*}
\frac{\|x\|^{2}}{|\operatorname{Re}\langle x, y)|}-\frac{|\operatorname{Re}\langle x, y\rangle|}{\|y\|^{2}} \leqslant(\sqrt{M}-\sqrt{m})^{2} \tag{2.20}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\|x\|^{2}\|y\|^{2}-[\operatorname{Re}(x, y)]^{2} \leqslant(\sqrt{M}-\sqrt{m})^{2}|\operatorname{Re}(x, y\rangle|\|y\|^{2} . \tag{2.21}
\end{equation*}
$$

The equality holds in (2.20) (or (2.21)) if and only if the case of equality is valid in (2.16) (or (2.17)) and

$$
\begin{equation*}
\operatorname{Re}\langle x, y\rangle=\sqrt{M m}\|y\|^{2} \tag{2.22}
\end{equation*}
$$

3. Applications for Integrals

Let (Ω, Σ, μ) be a measure space consisting of a set Ω, a σ-algebra of parts Σ and a countably additive and positive measure μ on Σ with values in $\mathbb{R} \cup\{\infty\}$.

Denote by $L_{\rho}^{2}(\Omega, \mathbb{K})$ the Hilbert space of all \mathbb{K}-valued functions f defined on Ω that are 2 - ρ-integrable on Ω, that is, $\int_{\Omega} \rho(t)|f(s)|^{2} d \mu(s)<\infty$, where $\rho: \Omega \rightarrow[0, \infty)$ is a measurable function on Ω.

The following proposition contains a reverse of the Cauchy-Bunyakovsky-Schwarz integral inequality:

Proposition 2. Let $f, g \in L_{\rho}^{2}(\Omega, \mathbb{K}), r>0$ be such that

$$
\begin{equation*}
\int_{\Omega} \rho(t)|f(t)-g(t)|^{2} d \mu(t) \leqslant r^{2}<\int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t) \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{align*}
\int_{\Omega} \rho(t)|f(t)|^{2} d \mu(t) & \int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)-\left|\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)\right|^{2} \tag{3.2}\\
\leqslant & 2\left(\int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)\right)^{1 / 2}\left|\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)\right| \\
& \times\left[\left(\int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)\right)^{1 / 2}-\left(\int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)-r^{2}\right)^{1 / 2}\right]
\end{align*}
$$

The constant 2 is sharp in (3.2).
The proof follows from Theorem 3 applied for the Hilbert space $\left(L_{\rho}^{2}(\Omega, \mathbb{K}),(\cdot, \cdot\rangle_{\rho}\right)$ where

$$
\langle f, g\rangle_{\rho}:=\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)
$$

REMARK 6. We observe that if $\int_{\Omega} \rho(t) d \mu(t)=1$, then a simple sufficient condition for (3.1) to hold is

$$
\begin{equation*}
|f(t)-g(t)| \leqslant r<|g(t)| \text { for } \mu \text {-almost every } t \in \Omega \tag{3.3}
\end{equation*}
$$

The second general integral inequality is incorporated in:
Proposition 3. Let $f, g \in L_{\rho}^{2}(\Omega, \mathbb{K})$ and $\Gamma, \gamma \in \mathbb{K}$ with $\operatorname{Re}(\Gamma \bar{\gamma})>0$. If either

$$
\begin{equation*}
\int_{\Omega} \operatorname{Re}[(\Gamma g(t)-f(t))(\overline{f(t)}-\bar{\gamma} \overline{g(t)})] \rho(t) d \mu(t) \geqslant 0 \tag{3.4}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left(\int_{\Omega} \rho(t)\left|f(t)-\frac{\Gamma+\gamma}{2} g(t)\right|^{2} d \mu(t)\right)^{1 / 2} \leqslant \frac{1}{2}|\Gamma-\gamma|\left(\int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

holds, then

$$
\begin{align*}
\int_{\Omega} \rho(t)|f(t)|^{2} d \mu(t) \int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)-\left|\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)\right|^{2} \tag{3.6}\\
\leqslant[|\Gamma+\gamma|-2 \sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}]\left|\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)\right| \int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)
\end{align*}
$$

The proof is obvious by Corollary 3.
Remark 7. A simple sufficient condition for the inequality (3.4) to hold is:

$$
\begin{equation*}
\operatorname{Re}[(\Gamma g(t)-f(t))(\overline{f(t)}-\bar{\gamma} \overline{g(t)})] \geqslant 0 \tag{3.7}
\end{equation*}
$$

for μ-almost every $t \in \Omega$.
A more convenient result that may be useful in applications is:
Corollary 4. If $f, g \in L_{\rho}^{2}(\Omega, \mathbb{K})$ and $M \geqslant m>0$ such that either

$$
\begin{equation*}
\int_{\Omega} \operatorname{Re}[(M g(t)-f(t))(\overline{f(t)}-m \overline{g(t)})] f(t) d \mu(t) \geqslant 0 \tag{3.8}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left(\int_{\Omega} \rho(t)\left|f(t)-\frac{M+m}{2} g(t)\right|^{2} d \mu(t)\right)^{1 / 2} \leqslant \frac{1}{2}(M-m)\left(\int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)\right)^{1 / 2} \tag{3.9}
\end{equation*}
$$

holds, then

$$
\begin{align*}
& \int_{\Omega} \rho(t)|f(t)|^{2} d \mu(t) \int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)-\left|\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)\right|^{2} \tag{3.10}\\
& \leqslant(\sqrt{M}-\sqrt{m})^{2}\left|\int_{\Omega} \rho(t) f(t) \overline{g(t)} d \mu(t)\right| \int_{\Omega} \rho(t)|g(t)|^{2} d \mu(t)
\end{align*}
$$

Remark 8. Since, obviously,

$$
\begin{aligned}
\operatorname{Re}[(M g(t)-f(t))(\overline{f(t)}-m \overline{g(t)})]= & (M \operatorname{Re} g(t)-\operatorname{Re} f(t))(\operatorname{Re} f(t)-m \operatorname{Re} g(t)) \\
& +(M \operatorname{Im} g(t)-\operatorname{Im} f(t))(\operatorname{Im} f(t)-m \operatorname{Im} g(t))
\end{aligned}
$$

for any $t \in \Omega$, hence a very simple sufficient condition that can be useful in practical applications for (3.8) to hold is:

$$
M \operatorname{Re} g(t) \geqslant \operatorname{Re} f(t) \geqslant m \operatorname{Re} g(t)
$$

and

$$
M \operatorname{Im} g(t) \geqslant \operatorname{Im} f(t) \geqslant m \operatorname{Im} g(t)
$$

for μ-almost every $t \in \Omega$.
If the functions are in $L_{\rho}^{2}(\Omega, \mathbb{R})$ (here $\left.\mathbb{K}=\mathbb{R}\right)$, and $f, g \geqslant 0, g(t) \neq 0$ for μ-almost every $t \in \Omega$, then one can state the result:

$$
\begin{align*}
& \int_{\Omega} \rho(t) f^{2}(t) d \mu(t) \int_{\Omega} \rho(t) g^{2}(t) d \mu(t)-\left(\int_{\Omega} \rho(t) f(t) g(t) d \mu(t)\right)^{2} \tag{3.11}\\
& \leqslant(\sqrt{M}-\sqrt{m})^{2} \int_{\Omega} \rho(t) f(t) g(t) d \mu(t) \int_{\Omega} \rho(t) g^{2}(t) d \mu(t)
\end{align*}
$$

provided

$$
\begin{equation*}
0 \leqslant m \leqslant \frac{f(t)}{g(t)} \leqslant M<\infty \quad \text { for } \mu \text { - almost every } t \in \Omega \tag{3.12}
\end{equation*}
$$

Remark 9. We notice that (3.11) is a generalisation for the abstract Lebesgue integral of the Klamkin-McLenaghan inequality [7]

$$
\begin{equation*}
\frac{\sum_{k=1}^{n} w_{k} x_{k}^{2}}{\sum_{k=1}^{n} w_{k} x_{k} y_{k}}-\frac{\sum_{k=1}^{n} w_{k} x_{k} y_{k}}{\sum_{k=1}^{n} w_{k} y_{k}^{2}} \leqslant(\sqrt{M}-\sqrt{m})^{2} \tag{3.13}
\end{equation*}
$$

provided the nonnegative real numbers $x_{k}, y_{k}(k \in\{1, \ldots, n\})$ satisfy the assumption

$$
\begin{equation*}
0 \leqslant m \leqslant \frac{x_{k}}{y_{k}} \leqslant M<\infty \text { for each } k \in\{1, \ldots, n\} \tag{3.14}
\end{equation*}
$$

and $w_{k} \geqslant 0, k \in\{1, \ldots, n\}$.
We also remark that Klamkin-McLenaghan inequality (3.13) is a generalisation in its turn of the Shisha-Mond inequality obtained earlier in [9]:

$$
\frac{\sum_{k=1}^{n} a_{k}^{2}}{\sum_{k=1}^{n} a_{k} b_{k}}-\frac{\sum_{k=1}^{n} a_{k} b_{k}}{\sum_{k=1}^{n} b_{k}^{2}} \leqslant\left(\sqrt{\frac{A}{b}}-\sqrt{\frac{a}{B}}\right)^{2}
$$

provided

$$
0<a \leqslant a_{k} \leqslant A, \quad 0<b \leqslant b_{k} \leqslant B
$$

for each $k \in\{1, \ldots, n\}$.

References

[1] S.S. Dragomir, 'Reverse of Schwarz, triangle and Bessel inequalities in inner product spaces', JIPAM J. Inequal. Pure Appl. Math. 5 (2004), Art. 76. Online: http://jipam.vu.edu.au/article.php?sid=432.
[2] S.S. Dragomir, 'New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces', Aust. J. Math. Anal. Appl. 1 (2004), Art. 1. Online: http://ajmaa.org/cgibin/paper.pl?string=nrstbiips.tex .
[3] S.S. Dragomir, Advances in inequalities of the Schwarz, Grüss and Bessel type in inner product spaces (Nova Science Publishers Inc., New York, 2005).
[4] S.S. Dragomir, 'Reverses of the Cauchy-Bunyakovsky-Schwarz inequality for n-tuples of complex numbers', Bull. Austral. Math. Soc. 69 (2004), 465-480.
[5] N. Elezović, L. Marangunić and J. Pečarić, 'Unified treatment of complemented Schwarz and Gruss inequalities in inner product spaces', Math. Ineqal. Appl. 8 (2005), 223-232.
[6] W. Greub and W. Rheinboldt, 'On a generalisation of an inequality of L.V. Kantorovich', Proc. Amer. Math. Soc. 10 (1959), 407-415.
[7] M.S. Klamkin and K.G. McLenaghan, 'An ellipse inequality,', Math. Mag. 50 (1977), 261-263.
[8] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis 1 (Springer-Verlag, Berlin, 1925).
[9] O. Shisha and B. Mond, 'Bounds on differences of means', in Inequalities I (Academic Press, New York-London, 1967), pp. 293-308.
[10] G.S. Watson, 'Serial correlation in regression analysis I', Biometrika 42 (1955), 327-342.
School of Computer Science and Mathematics
Victoria University
PO Box 14428
Melbourne City, VIC 8001
Australia
e-mail: sever.dragomir@vu.edu.au

