ON DIVISIBILITY OF BINOMIAL COEFFICIENTS

ZHI-WEI SUN
(Received 4 July 2011; accepted 21 March 2012; first published online 19 September 2012)
In memory of Professor Alf van der Poorten

Abstract

In this paper, motivated by Catalan numbers and higher-order Catalan numbers, we study factors of products of at most two binomial coefficients.

2010 Mathematics subject classification: primary 11B65; secondary 05A10, 11A07.
Keywords and phrases: binomial coefficients, divisibility, congruences, Catalan numbers.

1. Introduction

There are many papers on the divisibility of sums of binomial coefficients. See, for example, $[2-4,7,8,10]$.

Bober (see [1]) made sophisticated use of the theory of hypergeometric series to determine all positive integers $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r+1}$ such that

$$
a_{1}+\cdots+a_{r}=b_{1}+\cdots+b_{r+1}
$$

and

$$
\frac{\left(a_{1} n\right)!\cdots\left(a_{r} n\right)!}{\left(b_{1} n\right)!\cdots\left(b_{r+1} n\right)!}
$$

is an integer for any $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$. In particular, if $k, l \in \mathbb{Z}^{+}$, then

$$
\begin{aligned}
& \frac{\binom{l n}{n}\binom{k l n}{l n}}{\binom{k n}{n}}=\frac{(k l n)!((k-1) n)!}{(k n)!((l-1) n)!((k-1) \ln)!} \in \mathbb{Z} \quad \forall n \in \mathbb{Z}^{+} \\
& \Longleftrightarrow k=l \quad \text { or }\{k, l\} \cap\{1,2\} \neq \emptyset \quad \text { or }\{k, l\}=\{3,5\} .
\end{aligned}
$$

In this paper we study factors of products of at most two binomial coefficients. Our methods are elementary and combinatorial and the proofs may be easily understood.

[^0]Recall that for $n \in \mathbb{N}=\{0,1,2, \ldots\}$ the nth (usual) Catalan number is given by

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1} .
$$

The Catalan numbers arise naturally in many enumeration problems in discrete mathematics (see, for example, [6, pp. 219-229]). For $h, n \in \mathbb{N}$ the nth (generalized) Catalan number of order h is defined to be

$$
C_{n}^{(h)}=\frac{1}{h n+1}\binom{(h+1) n}{n}=\binom{(h+1) n}{n}-h\binom{(h+1) n}{n-1} .
$$

We extend the basic fact that $(h n+1) \left\lvert\,\binom{(h+1) n}{n}\right.$ in the following theorem.
Theorem 1.1. Let $k, l, n \in \mathbb{Z}^{+}$. Then

$$
\begin{equation*}
\left.\frac{\ln +1}{\operatorname{gcd}(k, \ln +1)} \right\rvert\,\binom{ k n+\ln }{k n}, \tag{1.1}
\end{equation*}
$$

where $\operatorname{gcd}(k, \ln +1)$ denotes the greatest common divisor of k and $\ln +1$. In particular, $(l n+1) \left\lvert\,\binom{ k n+l n}{k n}\right.$ if l is divisible by all the prime factors of k.

The following conjecture seems difficult to prove.
Conjecture 1.2. Let k and l be positive integers. If $(l n+1) \left\lvert\,\binom{ k n+l n}{k n}\right.$ for all sufficiently large positive integers n, then each prime factor of k divides l. In other words, if k has a prime factor not dividing l, then there are infinitely many positive integers n such that $(l n+1) \nmid\binom{k n+l n}{k n}$.

In order to study Conjecture 1.2 we introduce a new function $f: \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{N}$ as follows. For positive integers k and l, if $(l n+1) \left\lvert\,\binom{ k n+l n}{k n}\right.$ for all $n \in \mathbb{Z}^{+}$(which happens if all prime factors of k divide l), then we set $f(k, l)=0$. Otherwise we define $f(k, l)$ to be the smallest positive integer n such that $(\ln +1) \nmid\binom{k n+l n}{k n}$. We have computed the following values of f using Mathematica.

$$
\begin{gathered}
f(7,36)=279, f(10,192)=362, f(11,100)=1187, f(22,200)=6462 \\
f(74,62)=885, f(213,3)=3384, f(223,93)=13368, f(307,189)=31915 .
\end{gathered}
$$

Wee turn to our results on the factors of products of two binomial coefficients. They are related to either Catalan numbers or higher-order Catalan numbers. Note that $n C_{n}^{(h)}=\binom{(h+1) n}{n-1}$ for all $h, n \in \mathbb{Z}^{+}$. Recall that the odd part of an integer k is the largest odd divisor of k.

Theorem 1.3. Let $k, n \in \mathbb{Z}^{+}$.
(i) Then

$$
\binom{k n}{n} \left\lvert\,(2 k-1) C_{n}\binom{2 k n}{2 n} .\right.
$$

Moreover,

$$
(2 k-1) C_{n}\binom{2 k n}{2 n} /\binom{k n}{n}
$$

is odd if and only if $n+1$ is a power of two.
(ii) Let $(k+1)^{\prime}$ be the odd part of $k+1$. Then

$$
\binom{2 n}{n} \left\lvert\,(k+1)^{\prime} C_{n}^{(k-1)}\binom{2 k n}{k n} .\right.
$$

Moreover,

$$
(k+1)^{\prime} C_{n}^{(k-1)}\binom{2 k n}{k n} /\binom{2 n}{n}
$$

is odd if and only if $(k-1) n+1$ is a power of two.
By Theorem 1.3(ii), if $n \in \mathbb{Z}^{+}$and $k=2^{l}-1$ for some $l \in \mathbb{N}$, then

$$
\binom{2 n}{n}\left|\binom{2 k n}{k n} C_{n}^{(k-1)} \Longleftrightarrow n\binom{2 n}{n}\right|\binom{k n}{n-1}\binom{2 k n}{k n} .
$$

Using Mathematica we find that this result can be further strengthened.
Theorem 1.4. For every $k, n \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
2^{k-1}\binom{2 n}{n} \left\lvert\,\binom{ 2\left(2^{k}-1\right) n}{\left(2^{k}-1\right) n} C_{n}^{\left(2^{k}-2\right)}\right. \tag{1.2}
\end{equation*}
$$

A key step in our proof of Theorem 1.4 is to prove the first assertion in the following conjecture for prime values of m.

Conjecture 1.5. Let m be an integer greater than 1 and let k and n be positive integers. Then the sum of all digits in the expansion of $\left(m^{k}-1\right) n$ in base m is at least $k(m-1)$. Also, the expansion of $n\left(m^{k}-1\right) /(m-1)$ in base m has at least k nonzero digits.

The following result relies on certain particular properties of the integers 3 and 5.
Theorem 1.6. For every $n \in \mathbb{Z}^{+}$,

$$
(6 n+1)\binom{5 n}{n} \left\lvert\,\binom{ 3 n-1}{n-1} C_{3 n}^{(4)}\right.
$$

and

$$
\binom{3 n}{n} \left\lvert\,\binom{ 5 n-1}{n-1} C_{5 n}^{(2)}\right.
$$

We define two new sequences $\left\{s_{n}\right\}_{n \geq 1}$ and $\left\{t_{n}\right\}_{n \geq 1}$ of integers by
and

$$
t_{n}=\frac{\binom{5 n-1}{n-1} C_{5 n}^{(2)}}{\binom{3 n}{n}}=\frac{\binom{5 n-1}{n-1}\binom{15 n}{5 n}}{(10 n+1)\binom{3 n}{n}}=\frac{\binom{5 n}{n}\binom{15 n}{5 n-1}}{25 n\binom{3 n}{n}}
$$

It would be interesting to find recursion formulae or combinatorial interpretations for s_{n} and t_{n}.

Based on our computations using Mathematica, we formulate the following conjecture about the sequence $\left\{t_{n}\right\}_{n \geq 1}$.

Conjecture 1.7. Let $n \in \mathbb{Z}^{+}$. Then $(10 n+3) \mid 21 t_{n}$.
If p is a prime, then the p-adic valuation of an integer m is given by

$$
v_{p}(m)=\sup \left\{a \in \mathbb{N}: p^{a} \mid m\right\}
$$

For a rational number $x=m / n$ where $m \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$, we set $v_{p}(x)=v_{p}(m)-v_{p}(n)$ for any prime p.

The following lemma is fundamental for our approach in this paper.

Lemma 1.8.

(i) A rational number x is an integer if and only if $v_{p}(x) \geq 0$ for all primes p.
(ii) (Legendre's theorem) If p is prime and $n \in \mathbb{N}$, then

$$
v_{p}(n!)=\sum_{i=1}^{\infty}\left\lfloor\frac{n}{p^{i}}\right\rfloor=\frac{n-\rho_{p}(n)}{p-1}
$$

where $\rho_{p}(n)$ is the sum of the digits in the expansion of n in base p.
(iii) Let n be a positive integer. Then $v_{2}(n!) \leq n-1$. Also $v_{2}(n$!) $=n-1$ if and only if n is a power of two.
Proof. Part (i) is obvious. Part (ii) is well known and may be found in [5, pp. 22-24]. Part (iii) follows immediately from part (ii); see also [9, Lemma 4.1].

Example 1.9. Let $m \in \mathbb{N}$ and $n \in \mathbb{Z}^{+}$and set

$$
Q(m, n):=\frac{\binom{2 n}{n}\binom{2 m+2 n}{2 n}}{2\binom{m+n}{n}} .
$$

Then

$$
Q(m, n)=\frac{2^{n-1}}{n!} \prod_{j=1}^{n}(2 m+2 j-1)=(-1)^{n} 2^{2 n-1}\binom{-m-1 / 2}{n}
$$

Applying Lemma 1.8, we see that $Q(m, n) \in \mathbb{Z}$ and that $2 \nmid Q(m, n)$ if and only if n is a power of two. When $n>1$ we see that

$$
\frac{\binom{2 n}{n}\binom{2 m+2 n}{2 n-1}}{8\binom{m+n}{n}}=Q(m+1, n-1) \in \mathbb{Z} .
$$

Also,

$$
\binom{2 n}{n}\binom{2 m+2 n}{2 n-1} /\left(8\binom{m+n}{n}\right)
$$

is odd if and only if $n-1$ is a power of two.
By Example 1.9 we see that $\binom{k n}{n} \left\lvert\,\binom{ 2 n}{n}\binom{2 k n}{2 n-1}\right.$ for any $k, n \in \mathbb{Z}^{+}$. In view of this and Theorems 1.3, 1.4 and 1.6, we raise the following conjecture.
Conjecture 1.10. Let k and l be integers greater than one. If $\binom{k n}{n} ।\binom{(n n}{n}\binom{k l n}{l n-1}$ for all $n \in \mathbb{Z}^{+}$, then $k=l$ or $l=2$ or $\{k, l\}=\{3,5\}$. If $\binom{k n}{n} \left\lvert\,\binom{ l n}{n-1}\binom{k l n}{l n}\right.$ for all $n \in \mathbb{Z}^{+}$, then $k=2$ and $l+1$ is a power of two.

We will prove Theorems 1.1 and 1.3 in the next section. Section 3 is devoted to the sophisticated proofs of Theorems 1.4 and 1.6. Throughout this paper, for a real number x we let $\{x\}=x-\lfloor x\rfloor$ denote the fractional part of x.

2. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Clearly (1.1) holds if and only if $(l n+1) \left\lvert\, k\binom{k n+l n}{k n}\right.$. For any prime p, we calculate

$$
\begin{aligned}
v_{p}\left(\frac{k\binom{k n+l n}{k n}}{\ln +1}\right) & =v_{p}\left(\frac{(k n+l n)!k!}{(k n)!(l n+1)!(k-1)!}\right) \\
& =\sum_{j=1}^{\infty}\left(\left\lfloor\frac{k n+l n}{p^{j}}\right\rfloor-\left\lfloor\frac{k n}{p^{j}}\right\rfloor-\left\lfloor\frac{\ln +1}{p^{j}}\right\rfloor+\left\lfloor\frac{k}{p^{j}}\right\rfloor-\left\lfloor\frac{k-1}{p^{j}}\right\rfloor\right)
\end{aligned}
$$

So it suffices to show that for any $m \in \mathbb{Z}^{+}$the inequality

$$
\begin{equation*}
\left\lfloor\frac{k n+l n}{m}\right\rfloor-\left\lfloor\frac{k n}{m}\right\rfloor-\left\lfloor\frac{l n+1}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor-\left\lfloor\frac{k-1}{m}\right\rfloor \geq 0 \tag{2.1}
\end{equation*}
$$

is satisfied. If $m \nmid k n$, then

$$
\left\lfloor\frac{k n}{m}\right\rfloor+\left\lfloor\frac{l n+1}{m}\right\rfloor=\left\lfloor\frac{k n-1}{m}\right\rfloor+\left\lfloor\frac{l n+1}{m}\right\rfloor \leq\left\lfloor\frac{(k n-1)+(l n+1)}{m}\right\rfloor .
$$

If $m \nmid(l n+1)$, then

$$
\left\lfloor\frac{k n}{m}\right\rfloor+\left\lfloor\frac{l n+1}{m}\right\rfloor=\left\lfloor\frac{k n}{m}\right\rfloor+\left\lfloor\frac{l n}{m}\right\rfloor \leq\left\lfloor\frac{k n+l n}{m}\right\rfloor
$$

When $m \mid k n$ and $m \mid(l n+1)$, clearly $\operatorname{gcd}(m, n)=1, m \mid k$ and hence

$$
\left\lfloor\frac{k n+\ln }{m}\right\rfloor-\left\lfloor\frac{k n}{m}\right\rfloor-\left\lfloor\frac{\ln +1}{m}\right\rfloor+\left\lfloor\frac{k}{m}\right\rfloor-\left\lfloor\frac{k-1}{m}\right\rfloor=0
$$

Therefore inequality (2.1) holds and this concludes the proof.

Lemma 2.1. Let $m \in \mathbb{Z}^{+}$and $k, n \in \mathbb{Z}$. Then

$$
\begin{equation*}
\left\lfloor\frac{2 k n}{m}\right\rfloor-\left\lfloor\frac{k n}{m}\right\rfloor+\left\lfloor\frac{(k-1) n}{m}\right\rfloor-\left\lfloor\frac{2(k-1) n}{m}\right\rfloor \geq\left\lfloor\frac{n+1}{m}\right\rfloor-\left\lfloor\frac{2 k-1}{m}\right\rfloor+\left\lfloor\frac{2 k-2}{m}\right\rfloor \tag{2.2}
\end{equation*}
$$

unless $2 \mid m, k \equiv m / 2+1 \bmod m$ and $n \equiv-1 \bmod m$, in which case the left-hand side of inequality (2.2) minus the right-hand side of inequality (2.2) is equal to -1 .
Proof. As $\lfloor x\rfloor=x-\{x\}$ for any rational number x and

$$
2 k n-k n+(k-1) n-2(k-1) n+(2 k-1)-(2 k-2)=n+1,
$$

inequality (2.2) holds if and only if

$$
\begin{equation*}
\left\{\frac{2 k n}{m}\right\}-\left\{\frac{k n}{m}\right\}+\left\{\frac{(k-1) n}{m}\right\}-\left\{\frac{2(k-1) n}{m}\right\}+\left\{\frac{2 k-1}{m}\right\}-\left\{\frac{2 k-2}{m}\right\}<1 \tag{2.3}
\end{equation*}
$$

Clearly inequality (2.3) holds when $m=1$. Below we assume that $m \geq 2$. There are three cases to consider.
Case 1. Either both $\{k n / m\}<1 / 2$ and $\{(k-1) n / m\}<1 / 2$, or both $\{k n / m\} \geq 1 / 2$ and $\{(k-1) n / m\} \geq 1 / 2$.

In this case, the left-hand side of inequality (2.3) is equal to

$$
C:=\left\{\frac{k n}{m}\right\}-\left\{\frac{(k-1) n}{m}\right\}+\left\{\frac{2 k-1}{m}\right\}-\left\{\frac{2 k-2}{m}\right\} .
$$

If $m \nmid(k-1) n$, then

$$
C<\{k n / m\}+1 / m \leq 1 .
$$

If $m \mid(k-1) n$ and $n \not \equiv-1 \bmod m$, then

$$
C \leq\{n / m\}+1 / m<1 .
$$

If $m \mid(k-1) n$ and $n \equiv-1 \bmod m$, then

$$
\{k n / m\}=(m-1) / m \geq 1 / 2>\{(k-1) n / m\}=0,
$$

which leads to a contradiction.
Case 2. In this case

$$
\{k n / m\}<1 / 2 \leq\{(k-1) n / m\}
$$

and thus the left-hand side of inequality (2.3) is equal to

$$
D:=\left\{\frac{k n}{m}\right\}-\left\{\frac{(k-1) n}{m}\right\}+1+\left\{\frac{2 k-1}{m}\right\}-\left\{\frac{2 k-2}{m}\right\} .
$$

If $n \not \equiv-1 \bmod m$, then

$$
\{(k-1) n / m\}-\{k n / m\} \neq 1 / m
$$

and so

$$
D<-1 / m+1+1 / m=1 .
$$

If $n \equiv-1 \bmod m$ and $2 k \equiv 1 \bmod m$, then

$$
D=-1 / m+1-(m-1) / m<1 .
$$

If $n \equiv-1 \bmod m$ and $2 k \not \equiv 1 \bmod m$, then we must have $2 \mid m$ and

$$
k \equiv m / 2+1 \quad \bmod m
$$

since

$$
\{-k / m\}<1 / 2 \leq\{(1-k) / m\} .
$$

If $2 \mid m, k \equiv m / 2+1 \bmod m$ and $n \equiv-1 \bmod m$, then it is easy to verify that the right-hand side of inequality (2.2) minus the left-hand side of inequality (2.2) is equal to 1 .
Case 3. In this case

$$
\{k n / m\} \geq 1 / 2>\{(k-1) n / m\}
$$

and thus the left-hand side of (2.3) is

$$
\left\{\frac{k n}{m}\right\}-1-\left\{\frac{(k-1) n}{m}\right\}+\left\{\frac{2 k-1}{m}\right\}-\left\{\frac{2 k-2}{m}\right\} \leq\left\{\frac{k n}{m}\right\}-1+\frac{1}{m} \leq 0
$$

Thus Lemma 2.1 is satisfied in all cases.
Lemma 2.2. Let $m>2$ be an integer. For any $k, n \in \mathbb{Z}$,

$$
\begin{equation*}
\left\lfloor\frac{2 k n}{m}\right\rfloor+\left\lfloor\frac{n}{m}\right\rfloor+\left\lfloor\frac{k+1}{m}\right\rfloor \geq\left\lfloor\frac{k}{m}\right\rfloor+\left\lfloor\frac{2 n}{m}\right\rfloor+\left\lfloor\frac{k n}{m}\right\rfloor+\left\lfloor\frac{(k-1) n+1}{m}\right\rfloor . \tag{2.4}
\end{equation*}
$$

Proof. As

$$
k+((k-1) n+1)+k n-2 k n+2 n-n=k+1,
$$

inequality (2.4) is equivalent to the inequality $M \geq 0$ where

$$
M:=\left\{\frac{k}{m}\right\}+\left\{\frac{(k-1) n+1}{m}\right\}+\left\{\frac{k n}{m}\right\}-\left\{\frac{2 k n}{m}\right\}+\left\{\frac{2 n}{m}\right\}-\left\{\frac{n}{m}\right\} .
$$

If $\{n / m\}<1 / 2 \leq\{k n / m\}$ or both $\{n / m\}<1 / 2$ and $\{k n / m\}<1 / 2$ or both $\{n / m\} \geq 1 / 2$ and $\{k n / m\} \geq 1 / 2$, then one can easily show that $M \geq 0$.

Below we suppose that $\{k n / m\}<1 / 2 \leq\{n / m\}$. Clearly $m \nmid n$ and

$$
M=\left\{\frac{k}{m}\right\}+\left\{\frac{(k-1) n+1}{m}\right\}-\left\{\frac{k n}{m}\right\}+\left\{\frac{n}{m}\right\}-1
$$

If

$$
(k-1) n+1 \equiv 0 \quad \bmod m,
$$

then

$$
\{(n-1) / m\}=\{k n / m\}<1 / 2 \leq\{n / m\}
$$

and hence m is odd (otherwise $n \equiv m / 2 \bmod m$ and thus $1 \equiv 0 \bmod m / 2$, which is impossible). Moreover,

$$
n \equiv(m+1) / 2 \quad \bmod m,
$$

from which it follows that

$$
k-1 \equiv(k-1) 2 n \equiv-2 \quad \bmod m
$$

and

$$
M=\left\{\frac{k}{m}\right\}-\left\{\frac{n-1}{m}\right\}+\left\{\frac{n}{m}\right\}-1=\left\{\frac{k}{m}\right\}-\frac{m-1}{m}=0
$$

If

$$
(k-1) n+1 \not \equiv 0 \quad \bmod m,
$$

then $\{k n / m\}<\{(n-1) / m\}$ and hence

$$
M=\left\{\frac{k}{m}\right\}+\left(\left\{\frac{k n}{m}\right\}-\left\{\frac{n-1}{m}\right\}+1\right)-\left\{\frac{k n}{m}\right\}+\left\{\frac{n}{m}\right\}-1 \geq \frac{1}{m} .
$$

This concludes the proof.
Proof of Theorem 1.3. To prove part (i) we observe that

$$
Q_{1}:=\frac{(2 k-1) C_{n}\binom{2 k n}{k n}}{\binom{k n}{n}}=\frac{(2 k n)!((k-1) n)!(2 k-1)!}{(n+1)!(k n)!(2(k-1) n)!(2 k-2)!} .
$$

So, for any prime p,

$$
v_{p}\left(Q_{1}\right)=\sum_{i=1}^{\infty} A_{p^{i}}(k, n)
$$

where $A_{m}(k, n)$ denotes the left-hand side of inequality (2.2) minus the right-hand side of inequality (2.2). By Lemma 2.1, $A_{p^{i}}(k, n) \geq 0$ unless $p=2, k \equiv 2^{i-1}+1 \bmod 2^{i}$ and $n \equiv-1 \bmod 2^{i}$ in which case $A_{p^{i}}(k, n)=-1$. Therefore $2 Q_{1} \in \mathbb{Z}$.

Note that

$$
Q_{1}=\frac{2^{n}(2 k-1)}{(n+1)!} \prod_{j=1}^{n}((2 k-2) n+2 j-1)
$$

and thus

$$
v_{2}\left(Q_{1}\right)=n-v_{2}((n+1)!) .
$$

By Lemma 1.8(iii), $Q_{1} \in \mathbb{Z}$, and Q_{1} is odd if and only if $n+1$ is a power of two.
We now prove part (ii). Obviously

$$
Q_{2}:=\frac{(k+1) C_{n}^{(k-1)}\binom{2 k n}{k n}}{\binom{2 n}{n}}=\frac{(k+1)!(2 k n)!n!}{k!(k n)!((k-1) n+1)!(2 n)!} .
$$

As in the proof of part (i), by Lemma 2.2, we have $v_{p}\left(Q_{2}\right) \geq 0$ for any odd prime p.
We now consider $v_{2}\left(Q_{2}\right)$. Set $m=(k-1) n$. Then

$$
Q_{2}=\frac{2^{m}(k+1)}{(m+1)!} \prod_{j=1}^{m}(2 j+2 n-1)
$$

and therefore

$$
v_{2}\left(Q_{2}\right)=v_{2}(k+1)+m-v_{2}((m+1)!)
$$

Applying Lemma 1.8(iii), we see that $v_{2}\left(Q_{2}\right) \geq v_{2}(k+1)$. So $Q_{2} / 2^{v_{2}(k+1)}$ is an integer. With the help of Lemma 1.8(iii), we also see that

$$
\begin{aligned}
& \frac{Q_{2}}{2^{v_{2}(k+1)}}=\frac{(k+1)^{\prime} C_{n}^{(k-1)}\binom{2 k n}{k n}}{\binom{2 n}{n}} \text { is odd } \\
\Longleftrightarrow & v_{2}((m+1)!)=m \\
\Longleftrightarrow & m+1=(k-1) n+1 \text { is a power of two. }
\end{aligned}
$$

This concludes the proof of Theorem 1.3(ii).

3. Proofs of Theorems 1.4 and 1.6

Lemma 3.1. Let p be a prime and let $k \in \mathbb{N}$ and $n \in \mathbb{Z}^{+}$. Then

$$
\begin{equation*}
\frac{\rho_{p}\left(\left(p^{k}-1\right) n\right)}{p-1}=\sum_{j=1}^{\infty}\left\{\frac{\left(p^{k}-1\right) n}{p^{j}}\right\} \geq k \tag{3.1}
\end{equation*}
$$

and hence the expansion of $\left(p^{k}-1\right) n$ in base p has at least k nonzero digits.
Proof. For any $m \in \mathbb{Z}^{+}$, by Lemma 1.8 (ii),

$$
\frac{\rho_{p}(m)}{p-1}=\frac{m}{p-1}-v_{p}(m!)=\sum_{j=1}^{\infty} \frac{m}{p^{j}}-\sum_{j=1}^{\infty}\left\lfloor\frac{m}{p^{j}}\right\rfloor=\sum_{j=1}^{\infty}\left\{\frac{m}{p^{j}}\right\} .
$$

If the expansion of m in base p has less than k nonzero digits, then $\rho_{p}(m)<k(p-1)$. So it remains to show that the inequality in formula (3.1) holds.

Observe that

$$
p^{k}\binom{p^{k} n-1}{n-1}=\binom{p^{k} n}{n}=\frac{\left(p^{k} n\right)!}{n!\left(\left(p^{k}-1\right) n\right)!}
$$

and

$$
\begin{aligned}
& v_{p}\left(\left(p^{k} n\right)!\right)-v_{p}(n!)-v_{p}\left(\left(\left(p^{k}-1\right) n\right)!\right) \\
& \quad=\sum_{j=1}^{\infty}\left\lfloor\frac{p^{k} n}{p^{j}}\right\rfloor-\sum_{j=1}^{\infty}\left\lfloor\frac{n}{p^{j}}\right\rfloor-\sum_{j=1}^{\infty}\left\lfloor\frac{\left(p^{k}-1\right) n}{p^{j}}\right\rfloor \\
& \quad=\sum_{j=1}^{k} p^{k-j} n-\sum_{j=1}^{\infty}\left\lfloor\frac{\left(p^{k}-1\right) n}{p^{j}}\right\rfloor=\sum_{j=1}^{\infty}\left\{\frac{\left(p^{k}-1\right) n}{p^{j}}\right\} .
\end{aligned}
$$

So the inequality in formula (3.1) holds and we are done.

Proof of Theorem 1.4. Since the odd part of $\left(2^{k}-1\right)+1$ is 1 by Theorem 1.3(ii) and its proof, we see that

$$
Q_{3}:=\frac{\binom{2\left(2^{k}-1\right) n}{\left(2^{k}-1\right) n} C_{n}^{\left(2^{k}-2\right)}}{\binom{2 n}{n}} \in \mathbb{Z}
$$

and also that

$$
v_{2}\left(Q_{3}\right)=m-v_{2}((m+1)!)
$$

where $m=\left(\left(2^{k}-1\right)-1\right) n$ is even. We now apply Lemma $1.8($ ii $)$ and Lemma 3.1 with $p=2$ to deduce that

$$
v_{2}\left(Q_{3}\right)=m!-v_{2}(m!)=\rho_{2}(m)=\rho_{2}\left(\left(2^{k-1}-1\right) n\right) \geq k-1 .
$$

Therefore $2^{k-1} \mid Q_{3}$ and hence formula (1.2) holds.
Lemma 3.2. Let x be a real number.
(i) Then

$$
\begin{equation*}
\{12 x\}+\{5 x\}+\{2 x\} \geq\{4 x\}+\{15 x\} . \tag{3.2}
\end{equation*}
$$

(ii) Suppose also that $\{5 x\} \geq\{2 x\} \geq 1 / 2$. Then $\{5 x\} \geq 2 / 3$.

Proof. Since

$$
12 x+5 x+2 x-4 x=15 x
$$

inequality (3.2) reduces to

$$
\{12 x\}+\{5 x\}+\{2 x\}-\{4 x\} \geq 0
$$

which can be easily checked and part (i) is proved.
As $\{5 x\} \geq\{2 x\} \geq 1 / 2$ we can easily see that

$$
\{x\} \in[1 / 3,2 / 5) \cup[3 / 4,4 / 5)
$$

It follows that $\{5 x\} \geq 2 / 3$ and (ii) is proved.
Lemma 3.3. Let $m>1$ and n be integers.
(i) If $3 \nmid m$, then

$$
\begin{equation*}
\left\lfloor\frac{15 n-1}{m}\right\rfloor+\left\lfloor\frac{2}{m}\right\rfloor+\left\lfloor\frac{4 n}{m}\right\rfloor \geq\left\lfloor\frac{12 n+2}{m}\right\rfloor+\left\lfloor\frac{2 n}{m}\right\rfloor+\left\lfloor\frac{5 n-1}{m}\right\rfloor . \tag{3.3}
\end{equation*}
$$

(ii) If $5 \nmid m$, then

$$
\begin{equation*}
\left\lfloor\frac{15 n-1}{m}\right\rfloor+\left\lfloor\frac{2 n}{m}\right\rfloor \geq\left\lfloor\frac{10 n+1}{m}\right\rfloor+\left\lfloor\frac{4 n}{m}\right\rfloor+\left\lfloor\frac{3 n-1}{m}\right\rfloor . \tag{3.4}
\end{equation*}
$$

Proof. First we prove (i). Clearly (3.3) holds when $m=2$. Below we assume that $m>2$ and $3 \nmid m$.

Since $m \mid 15 n$ if and only if $m \mid 5 n$,

$$
\left\{\frac{5 n-1}{m}\right\}-\left\{\frac{15 n-1}{m}\right\}=\left\{\frac{5 n}{m}\right\}-\left\{\frac{15 n}{m}\right\}
$$

and thus inequality (3.3) has the following equivalent form:

$$
\begin{equation*}
\left\{\frac{12 n+2}{m}\right\}+\left\{\frac{5 n}{m}\right\}+\left\{\frac{2 n}{m}\right\}-\left\{\frac{4 n}{m}\right\} \geq\left\{\frac{15 n}{m}\right\}+\frac{2}{m} \tag{3.5}
\end{equation*}
$$

If

$$
12 n+1,12 n+2 \not \equiv 0 \quad \bmod m
$$

then inequality (3.5) is equivalent to the inequality

$$
\{12 x\}+\{5 x\}+\{2 x\}-\{4 x\} \geq\{15 x\}
$$

where $x=n / m$, which holds by Lemma 3.2(i).
Below we assume that

$$
12 n+\delta \equiv 0 \quad \bmod m
$$

for some $\delta \in\{1,2\}$. Clearly m does not divide $3 n$ and inequality (3.5) can be rewritten as

$$
\left\{\frac{5 n}{m}\right\}+\left\{\frac{2 n}{m}\right\}-\left\{\frac{4 n}{m}\right\} \geq\left\{\frac{3 n-\delta}{m}\right\}+\frac{\delta}{m}=\left\{\frac{3 n}{m}\right\} .
$$

(Note that if $m \mid(12 n+2)$ and $m \mid(3 n-1)$, then m divides

$$
12 n+2-4(3 n-1)=6
$$

which contradicts the conditions that $m>2$ and $3 \nmid m$.)
Now it suffices to show that

$$
f(x):=\{5 x\}+\{2 x\}-\{4 x\}-\{3 x\} \geq 0
$$

where $x=\{n / m\}$. Clearly

$$
\begin{aligned}
f(x) & =\lfloor 3 x\rfloor+\lfloor 4 x\rfloor-\lfloor 2 x\rfloor-\lfloor 5 x\rfloor \\
& =\left\lfloor\left\{\frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right\} \cap(0, x\rfloor \left\lvert\,-\left\lfloor\left.\left\{\frac{1}{2}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\} \cap(0, x\rfloor \right\rvert\, .\right.\right.\right.
\end{aligned}
$$

It follows that $f(x)<0$ if and only if

$$
x \in[1 / 5,1 / 4) \cup[3 / 5,2 / 3)
$$

Clearly

$$
a:=12 x+\delta / m \in\{1, \ldots, 11\}
$$

and

$$
x=\frac{a}{12}-\frac{\delta / m}{12} \in\left(\frac{a-1}{12}, \frac{a}{12}\right) .
$$

Note that

$$
\left[\frac{1}{5}, \frac{1}{4}\right) \subseteq\left(\frac{2}{12}, \frac{3}{12}\right) \quad \text { and } \quad\left[\frac{3}{5}, \frac{2}{3}\right) \subseteq\left(\frac{7}{12}, \frac{8}{12}\right) .
$$

Also $a \neq 3$, 8 since 12 divides neither $3 m-\delta$ nor $8 m-\delta$. We have thus proved part (i).

To prove part (ii), suppose that $5 \nmid m$. Then $m \mid 15 n$ if and only if $m \mid 3 n$. Note also that

$$
(10 n+1)-1+3 n+4 n-2 n=15 n
$$

Thus inequality (3.4) has the following equivalent form:

$$
\begin{equation*}
W:=\left\{\frac{10 n+1}{m}\right\}-\frac{1}{m}+\left\{\frac{3 n}{m}\right\}+\left\{\frac{4 n}{m}\right\}-\left\{\frac{2 n}{m}\right\} \geq 0 . \tag{3.6}
\end{equation*}
$$

In the case where $m \mid 3 n$, inequality (3.6) reduces to

$$
\{(n+1) / m\}+\{n / m\} \geq\{2 n / m\}+1 / m
$$

which holds whether m divides $2 n+1$ or not.
Below we assume that $m \nmid 3 n$. Then

$$
W:=\left\{\frac{10 n+1}{m}\right\}+\left\{\frac{3 n-1}{m}\right\}+\left\{\frac{4 n}{m}\right\}-\left\{\frac{2 n}{m}\right\} .
$$

If $\{2 n / m\}<1 / 2$, then

$$
\{4 n / m\}-\{2 n / m\}=\{2 n / m\} \geq 0 .
$$

Moreover, if $\{2 n / m\} \geq 1 / 2$ and $\{(5 n-1) / m\}<\{2 n / m\}$, then

$$
W=\left\{\frac{10 n+1}{m}\right\}+\left\{\frac{3 n-1}{m}\right\}+\left\{\frac{2 n}{m}\right\}-1 \geq\left\{\frac{5 n-1}{m}\right\} \geq 0 .
$$

We now consider the remaining case, that is, when

$$
\{(5 n-1) / m\} \geq\{2 n / m\} \geq 1 / 2
$$

Note that

$$
W=\left\{\frac{10 n+1}{m}\right\}+\left\{\frac{3 n-1}{m}\right\}+\left\{\frac{2 n}{m}\right\}-1=\left\{\frac{10 n+1}{m}\right\}+\left\{\frac{5 n-1}{m}\right\}-1 .
$$

Clearly $W=0$ if $m \mid 5 n$. If $m \mid(10 n+1)$, then $2 \nmid m$,

$$
5 n \equiv(m-1) / 2 \quad \bmod m
$$

and hence $\{(5 n-1) / m\}<1 / 2$.
Now we simply assume that $m \nmid 5 n$ and $m \nmid(10 n+1)$. Then $\{5 x\} \geq\{2 x\} \geq 1 / 2$, where $x=n / m$. Thus

$$
W=2\{5 x\}-1+\{5 x\}-1 \geq 0
$$

by Lemma 3.2(ii). This concludes the proof.
Proof of Theorem 1.6. Observe that

$$
A:=\frac{\binom{3 n-1}{n-1} C_{3 n}^{(4)}}{(6 n+1)\binom{5 n}{n}}=\frac{(15 n-1)!2!(4 n)!}{(12 n+2)!(2 n)!(5 n-1)!}
$$

and

$$
B:=\frac{\binom{5 n-1}{n-1} C_{5 n}^{(2)}}{\binom{3 n}{n}}=\frac{(15 n-1)!(2 n)!}{(10 n+1)!(4 n)!(3 n-1)!} .
$$

By Lemma 3.3, $v_{p}(A) \geq 0$ for any prime $p \neq 3$, and $v_{p}(B) \geq 0$ for any prime $p \neq 5$. Thus it suffices to show that $v_{3}(A) \geq 0$ and $v_{5}(B) \geq 0$. In fact

$$
\frac{C_{3 n}^{(4)}}{(6 n+1)\binom{5 n}{n}}=\frac{1}{(6 n+1)(12 n+1)} \prod_{\substack{j=1 \\ 3 \nmid j}}^{3 n} \frac{12 n+j}{j}
$$

is a 3-adic integer and

$$
\frac{C_{5 n}^{(2)}}{\binom{3 n}{n}}=\frac{1}{10 n+1} \prod_{\substack{j=1 \\ 5 \nmid j}}^{5 n} \frac{10 n+j}{j}
$$

is a 5-adic integer. We are done.

Acknowledgements

The author wishes to thank Dr. H. Q. Cao, Q. H. Hou, H. Pan and the referee for helpful comments.

References

[1] J. W. Bober, 'Factorial ratios, hypergeometric series, and a family of step functions', J. Lond. Math. Soc. 79 (2009), 422-444.
[2] N. J. Calkin, 'Factors of sums of powers of binomial coefficients', Acta Arith. 86 (1998), 17-26.
[3] H. Q. Cao and H. Pan, 'Factors of alternating binomial sums', Adv. in Appl. Math. 45 (2010), 96-107.
[4] V. J. W. Guo, F. Jouhet and J. Zeng, 'Factors of alternating sums of products of binomial and q-binomial coefficients', Acta Arith. 127 (2007), 17-31.
[5] P. Ribenboim, The Book of Prime Number Records, 2nd edn (Springer, New York, 1989).
[6] R. P. Stanley, Enumerative Combinatorics, Vol. 2 (Cambridge University Press, Cambridge, 1999).
[7] Z. W. Sun, 'Products and sums divisible by central binomial coefficients', Preprint, arXiv:1004.4623.
[8] Z. W. Sun, 'Binomial coefficients, Catalan numbers and Lucas quotients', Sci. China Math. 53 (2010), 2473-2488.
[9] Z. W. Sun and D. M. Davis, 'Combinatorial congruences modulo prime powers', Trans. Amer. Math. Soc. 359 (2007), 5525-5553.
[10] Z. W. Sun and R. Tauraso, 'On some new congruences for binomial coefficients', Int. J. Number Theory 7 (2011), 645-662.

[^1]
[^0]: Supported by the National Natural Science Foundation (grant 11171140) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
 (C) 2012 Australian Mathematical Publishing Association Inc. 1446-7887/2012 \$16.00

[^1]: ZHI-WEI SUN, Department of Mathematics, Nanjing University, Nanjing 210093, PR China
 e-mail: zwsun@nju.edu.cn

