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Introduction

Two sets of » + 2 points, P,, P;, each spanning a projective space of
r 4+ 1 dimensions, [r 4 1], which has no solid ([3]) common with that
spanned by the other, are said to be projective from an [r — 1], if here is an
[ — 1] which meets the » 4+ 2 joins P,P;. It is to be proved that the two
sets are projective, if and only if the » 4- 2 intersections A4, of their corre-
sponding [7]s lie in a line a. 4, are said to be the arguesian points and a the
arguesian line of the sets. When » = 1, the proposition becomes the well-
known Desargues’ two-triangle theorem (3) in a plane. Therefore in analogy
with the same we name it as the Desargues’ theorem in [2r]. Following Baker
(1, pp. 8—39), we may prove this theorem in the same synthetic style by
making use of the axioms and the corresponding proposition of incidence in
[27 + 1] or with the aid of the Desargues’ theorem in a plane and the axioms
of [27] only. But the use of symbols makes its proof more concise; the alge-
braic approach adopted here is due to the referee (Arts. 2, 3, 5, 6, 7). Pairs of
sets of » 4 p points each projective from an [ — 1] are also introduced to
serve as a basis for a much more thorough investigation.

1. Synthetic Outline

Following Coxeter (4, p. 7), first we observe that the theorem is obvious
almost when the 2 [7 4+ 1]s of the 2 sets meet in a line @ and therefore both
lie in a [27 + 1], because in this case the projections from the transversal
[r — 1] of the » 4+ 2 joins of their corresponding points are the » + 2 points
A,, which all lie in a. The theorem for the sets in a [27] arises as a limiting
case.

2. The Two Theorems

To avoid the considerations of continuity, we may formulate the theorems
for [2» 4+ 1] and [2r] separately as follows: _
I. Given 2 sets of r + 2 points, P;, P;, each spanming [r + 1], and between
them spanning [2r + 1], the necessary and sufficient condition that there should
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be an [r — 1] which meets the v + 2 lines P, P; s that each of the r + 2 pairs of
[]ss uch as [Py, -+, P;_y, P;yy, + ¢, P, y] and [P(;: Y P;—p P:'+1: Y P;-{—l]
should have a common point A,.

I1. Given 2 sets of v + 2 points, P,;, P;, each spanwing [r + 1], and between
them spanning [27], the necessary and sufficient condition that there should be
an [r — 1] which meets the v + 2 lines P, P; is that the v + 2 points of concur-
rence A; of the pairs of [r]s such as [Py, -+, P;_y, Pyy, "+, P,q] and
[Py, Pi_1, Piry, + -+, Priy] should be collinear.

3. The Proofs of these Theorems

We may use Baker’s method (6) of “point symbols’’ and ‘‘algebraic sym-
bols”, or treat ‘‘points’’ as being represented by vectors with 27 4 2 com- .
ponents, the vectors P; and £P, corresponding to the same point. There are
either two (in [27 4 1]) or three (in [27]) identities (or ‘‘syzygies’’) connect-
ing the 2» + 4 point symbols (or vectors) P;, P;.

Theorem I. Assume the 7 4 2 lines P,P; are met by an [r — 1], and that
by an adjustment of multipliers the points in which the [ — 1] meets the
lines are P, + P;. Since these 7 + 2 points lie in [7 — 1], there are 2 syzy-
gies, say D5t (P; + P;) = 0, 37t &, (P, + P;) = 0. From these we deduce
r + 2 relations such as

r+1

j;o(ki—kj)(Pi—l_P;) = 0.

This is the condition that the 2 [#]s quoted in the theorem have common the
point A, = (k; —k;)P; = — > (k;, — k;)P;. The converse can be proved
equally simply.

Theorem 11. The algebraic part of the argument from the existence of the
[ — 1] to the collinearity of the » + 2 points is identical with that above.
For the converse we assume that among the 2 4+ 4 points there are 3
syzygies, say 3 (P, + P}) = 0,3 b,P, + 3 hiP, = 0,3 kP, + 3 KP,=0.
It has to be shown that if these are such that the » 4 2 points A, are col-

linear, then the » 4 2 lines have a transversal [# — 1]. The plane in which
the 2 [r + 1]s meet is U°H®K? where

Ut=>P,=—> P, H =Y 1P, K= >k, P,
and the points A, are
A, = (hk; — bR)U + (k, — k)H® + (h; — h,)KO.
The » + 2 points of this form are collinear, if and only if multipliers $, ¢, 7
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can be found such that
plhk; — hik) + qlk, — ki) + 7(h; — h;) = 0.

From this the existence of the transversal [ — 1] can be deduced.

4. The Associated Arguesian Lines

The pair of sets of # + 2 points P,, P, projective from an [r — 1] give rise
to 21 — 1 more such pairs obviously projective from the same [» — 1].
For there are 2 choices for every point, P, or P;, to belong to a set independ-
ent of each other. For example, 7 4 2 pairs are of the type [P, Py, * * *, P,11],
[Po, Py, -+ +, Ppial; (37) pairs of the type [Py, Py, Py, - -+, Py, (Po, Py,
P,, -+, P,.,], and so on. Evidently every subset of » 4 1 points belongs to
2 sets, e.g., [Py, -+ *, P,,;] belongs to [Py, - -+, P, 4] and [Py, Py, - -+, P, 4]
Thus: there are in all 2™+ arguesian lines, one for each pair of such sets, and
2"(r + 2) arguesian points, v + 2 on each line and each common to 2 lines, such
that every line meets v + 2 other lines, skew to each other.

It is assumed here that no 7 lines P,P,’ lie in a [2r — 2]. For otherwise a
number of arguesian points coincide and the picture is no longer general.
For example, if the lines for 7 = 1,---, 7 lieina [2r — 2], the 2 [r — 1]s
[Py, -+, P, [Py, -, P,] meetin a point which coincides with the 4 argue-
sian points [Py, -+, P,] « [Pg, -+, P,], [Py, "+ Pyl * [Py, -+ Pral,
[P(;’Pl"..»Pr]' [POJP{»”':P;]’ [P1:°“’Pr’P1,'+1] ’ [P]I.!.."P;’Pr+1]°

5. Redundant Coordinates

Let (z;, «;) in the symbol (x;P, + z;P;) be taken as coordinates initially
in [2r + 3]. The 2syzygiesU = > (P; + P;) = 0,K = Y k,(P;+ P;) = 0
correspond to projections from [27 + 3] on to [27 + 1] from the points
‘whose symbols are U and K. Thus Y (#,z; + #;x;) = 0 represents a prime in
[27 + 1] only if 3 (u; + u;) = 0 and Y k;(u, + u;) = 0, and a quadratic
form in z;, x, represents a quadric in [27 + 1] only if in [27 + 3] it represents
a quadric cone with the line UK as vertex. It represents a quadric in a sub-
space of [27 4 1] only if the subspace is the projection of a space in [27 + 3]

that is tangent to the quadric in [27 4 3] at every point of UK.

6. Case r=2

a) Take the two tetrads of points 4, B, C, D; A’, B’, C’, D’ connected by
the twosyzygiesU = A + A"+ B+ B'"+C+C'+D 4 D' =0,

K=a(A+A')+bB+B)+¢(C+C)+dD+D)=0.

The first arguesian line contains the 4 points
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(b —a)B + (¢ — a)C + (@ — a)D, say .000,
(@ —b)4 + (¢ — b)C + (@ — b)D, 0.00,
(@—c)A + (b —c¢)B + (@ — ¢)D, 00.0,
(a —d)A + (b — d)B + (c — d)C, 000..

Interchanging D, D’, we find another arguesian line through (b — 4)B +
(c — a)C + (@ — a)D’, say .001, etc. The 8 lines and 16 points can be ex-
hibited as the rows and columns of the scheme

.000 0.00 00.0 000.
1.00 .100 001. 00.1
10.0 01.0 .010 0.01
100. 010. 0.10 .001

1.e., they lie in a solid s, and are two tetrads of generators (6) of a quadric
surface ¢ and their 16 common points.

b) The equations of sare 2(x + 2') + Iy + ¢') + m(z + 2') + n(t + ¢)
=0 where 2 +71-+m+n=0, ak + bl + cm 4 dn = 0, i.e.

(i) x4+ y+y z4+2 t+¢
1 1 1 1 =0
a b ¢ d

The transversal of the two solids ABCD, A'B’C’'D’ is the line [4 + A4,
B+ B, C + C', D+ D']. s is the “harmonic conjugate’ of this w.r. to
A, A'; B,B’; C,C’; D, D’, viz., the solid

[A”=-'A~A,, B”=B—B,, C”=C—C,, D”=D——D’].
c) The equation of ¢ is

(ii) xx' yy' b4 74
1 1 1 1
a b c d 0
a? b2 c? a2

since it is satisfied by the 16 points (b — @)B + (¢ — a)C + (d — a)D etc.,
ie, (0,0 —a,c—a,d—a,0,0,0,0) etc., and since further, in the [7] in
which the points 4, - - -, D’ are independent, the [5] with equations (i)
passes through U, K and lies in the tangent primes at those points to the
quadric sixfold of which the equation is (ii).

d) Further it can be seen immediately that the 4 points of each of the 4
sets such as .000, .100, .010, .001 are coplanar. These points in fact lie in
the plane of which the equations are x — ' = 0, together with equations (i);
the 4 such planes are the faces! of the tetrahedron 7' = A" B"C"D".

1 This observation is due to the referee.
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e) So far it has been assumed that the basic figure lies in [5]. If it lies in
[4], there will be an additional syzygy connecting 4, - - -, D’ and the figure
in [4] may therefore be considered as the projection of that in [5] from some
point, say H. The figure of the 8 arguesian lines will therefore not be affected,
unless H lies in s.

7. Case r=3

a) Following the same line of argument, we find in [7] a configuration of
40 points which are collinear by sets of five on 16 lines.

b) Using in [5] redundant coordinates (z,y, 2, ¢, #, 2’, ¥, 2, #', 4’) and
two points of projection U, K from [7], we find: the figure lies in the [4] s
whose equations are

z -+ y+y 2+ 2 t -+t u -+ u
1 1 1 1 1 -0,
a b c d e

which is the ‘“harmonic conjugate’” of the plane 4 + 4',---, E + E’.
c) It lies 2 on the pencil of quadrics determined by

xx' yy' 22 i’ uu'
1 1 1
1 1 —0
a b c ad e
a b2 c? dz e?

d) The 8 points .0000, .1000, .0100, .0010, .0001, .1001, .0101, .0011
lie in a solid, viz., x — 2’ = 0, and are associated, for they all lie on the
quadrics (quadric surfaces in the solid) in the system

xx’ vy’ 22 i un’
1 1 1 1 1 = 0.
a b c a e

The 5 such solids form the common self-polar simplex ? of the pencil of
quadrics.

e) The system of quadrics (in [4]) in this case is ‘‘general’”’, and the 16
lines form the general 16, figure lying on the Segre 2 quartic surface (2,
pp. 166—72). In case of general » we shall obtain a system of r — 1 linearly
independent quadrics in [7 4 1], but they are not ‘‘general’.

8. The Dual of S-configurations

a) Let us recall the tetrads of coplanar arguesian points (Art. 6d) .000,
.100, .010, .001 and study their symbols as follows:

2 These observations are due to the referee.
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.000 = (b — a)B + (¢ — a)C + (@ — a)D is equivalent to
(b —a)B" + (c —a)C" + (d — a)D"" (Art. 6b) because of their
connecting syzygies (Art. 6a). Similarly

100 = (a — b)B"” + (c — a)C”" + (d — a)D”,

010 = (b —a)B”" — (c —a)C”" 4 (d — a)D",

.00l = (b —a)B”" + (c —a)C" — (d — a)D".

Thus they form a quadrangle whose diagonal triangle is B’’C'’D"’. Similarly
behave the other such 3 tetrads of coplanar arguesian points in the other 3
respective faces of the tetrahedron 7’ which is then self-polar for the quadric
g (Art. 6c).

b) In the same manner we may observe that the octad of arguesian points
(Art. 7d) form the pair of tetrahedra, 7', = (.0000, .1001, .0101, .0011),
T', = (.1000, .0100, .0010, .0001) desmic with the tetrahedral face
T/ = B”"C"”"D"E"” of the 4-simplex S = A”B"C"D"E"”, where A" =
A — A’, etc. Thus they form a closed set (5) w. r. to their diagonal tetrahe-
dron 7", such that all quadrics, for which 7' is self-polar, passing through
one of the 8 points pass through all of them. Similarly behave the other 4
such octads of arguesian points in the other 4 respective solid faces of S”.

c) Now we are in a position to state the general proposition as follows
(Arts. 3, 4, 7b): The 27(r + 2) arguesian points arising from a pair of sets of
r + 2 points P,, P; projective from an [r — 1] distribute into r + 2 sets of 27
each such that the points of a set form the vertices of the dual of an r-dimensional
S-configuration ® whose diagonal r-simplex forms a prime face of the (r + 1)-
simplex with vertices at ther -+ 2 points P, — P, which determine the “harmonic
conjugate” [r + 1] of the transversal [r — 1] of the r 4 2 lines P,P; (5).

d) The preceding proposition indicates the construction of the system of
7 — 1 linearly independent quadrics in [7 4 1] referred to above (Art. 7e) as
follows: 7

Construct the system of quadrics for which the simplex S"” = Py’ - -+ P, ,
is self-polar, where P, = P, — P;. Let them further pass through 3 argue-
sian points, one in each of 3 prime faces of S”'. This system then contains all
the 3 - 2" arguesian points in the 3 faces of S considered. For, the vertices
of the dual of an »-dimensional S-configuration form a closed set (5) of 27
points w. r. to their common diagonal r-simplex such that all the (r — 1)-
quadrics in the [7] of the r-simplex, for which it is self-polar, and which pass
through one of them, pass through all of them. Again each arguesian line
has just one arguesian point common with each prime face of S’’ and there-
fore has 3 points common with the system of quadrics which then contain all
the arguesian lines as required.

3 “Dual of an r-dimensional S-configuration’’: the system of points (4 1, &£ 1,..., &+ 1),
cf. (5).
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9. Projective Sets of r + 3 (r> 2) Points

a) Consider a pair of sets of # - 3 points, P;, P;, each spanning an [» + 2]
which has no [5] common with that spanned by the other, projective from
an [r — 1] such that it meets the  + 3 joins P,P;. They give rise to » 4 3
arguesian lines, one for each pair of their corresponding subsets of » -+ 2
points each, which then evidently lie in a plane, referred as the arguesian
plane of the sets.

b) Further one pair of such projective sets gives rise to 27+2 — 1 more
such pairs (cf. Art. 4). Thus: Given a pair of sets, of r + 3 points each,
projective from an [v — 1], there arise 272 arguesian planes and 27+ (v + 3)
arguesian lines, v + 3 lines 1n each plane, each line common to 2 planes which
then lie in a solid such that theve ave 2™+1(r 4 3) such solids, each containing
2r + 5 lines. There are 27("5?) arguesian points. (r + 2)2 in each solid, each
lying on 4 lines and 4 planes which lie in a [4] such that there ave 27 ("53) such
[4]s in all, each containing 4 solids, 4 planes, 4(r + 2) lines and 2r> + 6r 4 5
points.

c) We may introduce here an arguesian triangle too as one formed by a
triad of arguesian lines, that being possible in arguesian planes only with
vertices at 3 arguesian points therein. Evidently there are 27+2("3%) such
triangles, ("i3) in each plane. Thus: Through cvery vertex of an arguesian
triangle PQR there passes just one other arguesian plane determined by the
other 2 arguesian lines through it. The 3 such planes meet in pairs at the vertices
of another arguesian triangle P'Q'R' such that P, Q, R, P’, Q', R" constitute
a ‘“‘5-dimensional octahedron’ with the 2 skew planes PQR, P'Q'R’ as a pair of
1ts opposite planes, the other 3 pairs being PQ'R, P'QR’, PQR’, P'Q’'R; P'QR,
PQ'R'.

d) This 5-dimensional octahedron, or, say, 5-octahedron, occurs in many
contexts, e.g., as the Grassmann representative in [5] of the lines through the
‘vertices and in the faces of a tetrahedron in a solid. But for immediate ref-
erence we may note down here its make-up expressed symbolically following
Baker (6; 2, p. 104) as follows: 6(., 4, 4, 8, 5)12(2, ., 2, 5, 4)8(3, 3, ., 3, 3)
12(4, 5, 2, ., 2)6(5, 8, 4, 4, .). That is, it has 6 vertices, 12 edges, 8 planes,
12 solids, 6 [4]s as its elements such that each vertex lies on 4 edges, 4 planes,
8 solids and 5 [4]s; each edge contains 2 vertices and lies in 2 planes, 5 solids
and 4 [4]s; and so on. From the above considerations we find that there are
in all 2r-1("$?) 5-octahedra whose relations with the arguesian points and
lines w.r. to the arguesian triangles may be represented by the scheme:

()L 4+ 47+ 1) 2+ 3)(r + 2, ., 2(75), (3D)
ari2(ri%y(3, 3, | 1) 2-1(713)(6,12, 8, .).

e) Now each 5-octahedron represents a [5] which contains, besides its
6 vertices, 4(r + 2) more arguesian points, and besides its 12 edges, 87
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more arguesian lines. To sum up, the configuration of all the arguesian points,
lines, planes, and their solids, [4]s and [5]s may be put down in the following
scheme:

2r("53)(., 4,4, 47 + 8, 212 4 67 + 5, (2r® + 672 + Tr + 3)/3)
2r+l(y - 3)(r + 2, .,2, 27 + 5, (r + 2)2, ("53)(2r + 3)/3)
22 (5), 7 + 3, ., 7 + 3, (F), (')

241y + 3)((r + 2)2, 2r + 5,2, .,7v + 2, (r + 2)(r + 1))
2r("53) (272 4 67 + 5,47 + 8,4, 4, ., 7 + 1)

2r-1("$3) (492 - 87 4 6, 87 + 12, 8,12, 6, .).

f) The above proposition in regard to pairs of sets of » -+ 3 points pro-
jective from an [ — 1] holds good rather obviously in [27 4 1] as well as
in [27 + 2].

10. Projective Sets of r 4+ p Points (r> 2, 1 <p <2r+ 1)

Now it follows as an immediate consequence of what precedes that: If 2
sets of v + p points, every subset of v + 1 points of either set spanning an [r]
which has no line common with the corresponding [r] of the other, be projective
from an [v — 1] such that it meets all the v + p joins of their corresponding
points, the ([3%) points of intersection of their corresponding [r]s all lie in a
[p — 1], by (r + 2)s on ([13) Lines therein, each common to p — 1 of them.

Thanks are due to the referee for taking special pains to introduce his
elegant algebra thus enriching my ideas to a good extent, and to Professor

B. R. Seth for his generous, kind and constant encouragement in my pure
pursuits.
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