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Abstract

We study the leading term in the small-time asymptotics of at-the-money call option
prices when the stock price process S follows a general martingale. This is equivalent
to studying the first centered absolute moment of S. We show that if S has a continuous
part, the leading term is of order

√
T in time T and depends only on the initial value of

the volatility. Furthermore, the term is linear in T if and only if S is of finite variation.
The leading terms for pure-jump processes with infinite variation are between these two
cases; we obtain their exact form for stable-like small jumps. To derive these results, we
use a natural approximation of S so that calculations are necessary only for the class of
Lévy processes.
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1. Introduction

We consider the problem of option pricing in mathematical finance where the price of an
option on a stock S is calculated as the expectation under a risk-neutral measure. As usual,
we assume that the stock price is modeled directly under this measure and set the interest rate
to zero. Therefore, our basic model consists of a càdlàg martingale S on a filtered probability
space (�,F , (Ft )t≥0,P) satisfying the usual hypotheses; we assume for simplicity that F0
is trivial P-almost surely (P-a.s.). Our main interest concerns the small-time asymptotics of
European call option prices,

E[(ST −K)+] for T ↓ 0, (1.1)

where x+ := max{x, 0} and K ∈ R is the strike price of the option. More precisely, we will
mostly be interested in the leading-order asymptotics for the at-the-money caseK = S0. Option
price asymptotics are used in finance to find initial values for model calibration procedures and
also for model testing, as explained below. From a probabilistic point of view we can note that,
up to a factor two, these are also the asymptotics of the centered absolute first moment and, at
least for continuous S, of the expected local time at the origin.

In applications S is often specified via a stochastic differential equation driven by a Brownian
motion W and a Poisson random measure N(dt, dx) with compensator F(dx) dt ; i.e. S is of
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the form
S = S0 + σ • W + κ(x) ∗ (N − F(dx) dt), (1.2)

where σ = (σt ) and κ = (κt (x)) are predictable integrands, and σ • Wu = ∫ u
0 σt dWt as well as

κ(x)∗(N−F(dx) dt)u denote the Itô integral and the integral
∫ u

0

∫
R
κt (x)(N(dt, dx)−F(dx) dt)

of random measures, respectively. In view of the applications, we will adopt this representation
for S, but we recall in Remark A.1 that this entails no essential loss of generality: every càdlàg
martingale with absolutely continuous characteristics can be represented in the form (1.2), and
this includes all models of interest.

The main results for the at-the-money asymptotics (1.1) are obtained under certain right-
continuity conditions on the mapping t �→ (σt , κt ). If we exclude the trivial case S ≡ S0,
the possible convergence rates range from

√
T to T . If σ0 	= 0, i.e. in the presence of a

Brownian component, the leading term is given by (|σ0|/
√

2π)
√
T irrespective of the jumps.

On the other hand, the leading term is CT if and only if S is of finite variation, and then C
is given explicitly in terms of κ0 and F . For pure-jump processes with infinite variation, the
rate may be anywhere between

√
T and T , and it need not be a power of T . We consider a

class of processes, containing most relevant examples, whose small jumps resemble those of
an α-stable Lévy process, where α ∈ [1, 2). For α > 1, the leading term is CT 1/α , while, for
α = 1, we find CT | log T |; the constants are given explicitly.

The basic idea to obtain these results is to calculate the option price asymptotics for a
simple model Z which approximates S in a suitable sense. More precisely, we obtain a natural
approximation by freezing the coefficients σ and κ in (1.2) at time t = 0, namely,

Z = S0 + σ0W + κ0(x) ∗ (N − F(dx) dt). (1.3)

Note that σ0 and κ0(x) are deterministic since F0 is trivial. We show that the Lévy process
Z has the same leading-order asymptotics as S under mild regularity conditions. Therefore,
an explicit treatment is necessary only in the Lévy case, for which much ‘finer’ arguments are
possible. We prove that we can pass, with an error of order O(T ), from one pure-jump Lévy
process to another when the small jumps have a similar behavior and use this to reduce even
further to very particular Lévy processes.

1.1. Literature

Owing to their importance for model calibration and testing, small-time asymptotics of
option prices have received considerable attention in recent years; see [2], [5], [6], [7], [10],
[11], [12], [13], [14], [15], [16], [17], [22], and [24]. A survey of recent literature is given in
the introduction of Forde et al. [16]. We will review only the works most closely related to
our study; in particular, we focus on the at-the-money case. Here Carr and Wu [7] is an early
reference with results in the spirit of ours. The authors obtained by partially heuristic arguments
that the order of convergence for finite-variation jumps isO(

√
T ) in the presence of a Brownian

component and O(T ) otherwise. This is in a general model including, e.g. exponential Lévy
processes; however, a boundedness assumption on the coefficients of the log price excludes the
application to the Heston model, for example. For the pure-jump case with infinite variation,
the authors mentioned that there is a range of possibilities for the order of convergence and they
illustrated this by the so-called log-stable model. Given option price data, the results are used
to study whether the underlying process has jumps.

Durrleman [10] determined the rate O(
√
T ) and the corresponding coefficient in a similar

model, again with bounded coefficients and finite-variation jumps. The result is stated in terms
of the implied volatility, which is an alternative parametrization for option prices (see also
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Corollary 3.1). Forde [14] studied a class of continuous, uncorrelated stochastic volatility
models and computed explicitly the first two leading terms corresponding to the orders T 1/2

and T 3/2, while Forde et al. [16] obtained the same two coefficients for the Heston model with
correlation. Forde and Figueroa-López [13] determined the leading-order term for the CGMY
model. More generally, Tankov [27] obtained several results similar to ours in the setting of
exponential Lévy models; detailed references are given below. Finally, for (arithmetic) Lévy
processes S, the at-the-money option price is related to the power variation of order 1: if T = δ

is the mesh size, E[|ST |] = E[n−1 ∑
1≤k≤n |Skδ − S(k−1)δ|] for any n ∈ N by the independent

and identically distributed (i.i.d.) property of the increments. Hence, it is not surprising that
we will benefit from the results of Jacod [19] on the asymptotic properties of power variations.

The present paper is organized as follows. Section 2 contains the approximation result,
which is stated for general martingales. Section 3 contains the analysis for the order

√
T and

Section 4 contains the analysis for the higher leading orders corresponding to the pure-jump
case. Appendix A contains some standard results about Lévy processes that are used in the body
of the text, often without further mention. We refer to the monograph of Jacod and Shiryaev [20]
for any unexplained notion or notation from stochastic calculus.

2. Approximation of the process S

In this section we compare two martingales S and S′ with different coefficients, and study
the distance |ST − S′

T | in mean as T ↓ 0. The main application to be used in the sequel is
the case where S′ is the Lévy approximation (1.3) of S. In that case, the assumption in the
following result becomes a Hölder-type condition in mean for the coefficients σt and κt of S.

Proposition 2.1. Let S be a martingale of the form (1.2), and let S′ be a martingale of the
analogous form S′ = S′

0 + σ ′ • W + κ ′(x) ∗ (N − F(dx) dt) with S′
0 = S0. Let γ ≥ 0.

(i) If E[(σt − σ ′
t )

2] = O(tγ ) and E[∫
R

|κt (x) − κ ′
t (x)|2F(dx)] = O(tγ ), then we have

E[|ST − S′
T |2] = O(T (1+γ )) and E[|ST − S′

T |] = O(T (1+γ )/2).

(ii) Let β ∈ [1, 2]. If E[∫
R

|κt (x) − κ ′
t (x)|βF (dx)] = O(tγ ) and σ ≡ 0, then we have

E[|ST − S′
T |β ] = O(T (1+γ )) and E[|ST − S′

T |] = O(T (1+γ )/β).

The assertions remain valid if O(·) is replaced by o(·) throughout.

Proof. We set X := S − S′, and denote by X = Xc + Xd the decomposition into the
continuous and purely discontinuous martingale parts; note that

Xc = (σ − σ ′) • W and Xd = (κ(x)− κ ′(x)) ∗ (N − F(dx) dt).

Fix β ∈ [1, 2] and γ ≥ 0. We use the Burkholder–Davis–Gundy inequality (see, e.g. [23,
Theorem IV.48]) to obtain

E[|XT |β ] ≤ 2β−1(E[|Xc
T |β ] + E[|Xd

T |β ])
≤ Cβ(E[〈Xc, Xc〉β/2T ] + E[[Xd, Xd]β/2T ]) (2.1)

for a universal constant Cβ depending only on β. We first treat the pure-jump case (ii); then
Xc ≡ 0 and we only need to estimate the second expectation in (2.1). Recall that, for a real
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sequence y = (yn), the norms ‖y‖	p = (
∑
n |yn|p)1/p satisfy ‖y‖	p ≥ ‖y‖	q for 1 ≤ p ≤

q < ∞. We apply this for p = β and q = 2 to obtain

[Xd, Xd]β/2T =
(∑
t≤T

|
Xt |2
)β/2

≤
∑
t≤T

|
X|β = |κ(x)− κ ′(x)|β ∗NT ;

hence, using the definition of the compensator and Fubini’s theorem, we have

E[[Xd, Xd]β/2T ] ≤ E[|κ(x)− κ ′(x)|β ∗NT ]
= E[|κ(x)− κ ′(x)|β ∗ (F (dx) dt)T ]

=
∫ T

0
E

[∫
R

|κt (x)− κ ′
t (x)|βF (dx)

]
dt.

By assumption, the integrand is of order O(tγ ); hence, the integral is of order O(T (1+γ ))
and the first assertion of (ii) follows by (2.1). The second assertion then follows by Jensen’s
inequality.

We now turn to case (i). Of course, the previous estimates hold, in particular, for β = 2, so
it remains to consider the continuous part in (2.1). For β = 2, the continuous part is

E[〈Xc, Xc〉T ] = E

[∫ T

0
(σt − σ ′

t )
2 dt

]
=

∫ T

0
E[(σt − σ ′

t )
2] dt,

and so the conclusion is obtained as before. Finally, we note that the proof remains valid if
O(·) is replaced by o(·) throughout.

We illustrate the use of Proposition 2.1 by two applications to the approximation of stochastic
differential equations (SDEs). For the sake of clarity, we do not strive for minimal conditions.

Corollary 2.1. Let f : R → R be continuously differentiable with bounded derivative, and let
L be a square-integrable Lévy martingale. Then the SDE

dSt = f (St−) dLt , S0 ∈ R,

has a unique solution S and the Lévy processZt = S0+f (S0)Lt satisfies E[|ST −ZT |] = O(T )

as T ↓ 0.

Proof. We recall from [23, Theorem V.67] that the SDE has a unique strong solution S
and that t �→ E[S2

t ] is locally bounded. The Lévy process L has a representation of the form
L = cW + x ∗ (N − F(dx) dt) and then

S = S0 + cf (S−) • W + (f (S−)x) ∗ (N − F(dx) dt),

Z = S0 + cf (S0) • W + (f (S0)x) ∗ (N − F(dx) dt).

It suffices to verify the conditions of Proposition 2.1(i) for γ = 1 and S′ = Z. In view of
St = St−, P-a.s. for each t , we have E[(σt − σ ′

t )
2] = c2 E[|f (St )− f (S0)|2] and

E

[∫
R

|κt (x)− κ ′
t (x)|2F(dx)

]
= E[|f (St )− f (S0)|2]

∫
|x|2F(dx).

The last integral is finite since L is square integrable (see Lemma A.1(vi)), and so it suffices to
show that E[|f (St ) − f (S0)|2] = O(t). Now f is Lipschitz continuous by assumption, so it
remains to prove that

E[|St − S0|2] = O(t).
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For this, in turn, it suffices to verify the conditions of Proposition 2.1(i) for γ = 0 and S′ ≡ S0
(and, hence, σ ′ ≡ 0 and κ ′ ≡ 0). Indeed, we have E[|σt |2] = c2 E[|f (St )|2] = O(1) as the
linear growth of f ensures that E[f (St )2] is again locally bounded like E[S2

t ], and similarly
we have E[∫

R
|κt (x)|2F(dx)] = E[f (St )2]

∫ |x|2F(dx) = O(1) as t ↓ 0.

Remark 2.1. If the square-integrable Lévy martingaleL does not have a Brownian component
and if its Lévy measure F satisfies ∫

R

|x|βF (dx) < ∞
for some β ∈ [1, 2], then the assertion in Corollary 2.1 can be strengthened to E[|ST −ZT |] =
O(T 2/β). In particular, this applies for β = 1 when L is of finite variation. The proof is as
above, using part (ii) of Proposition 2.1 instead of part (i).

We give a second example where the coefficient of the SDE is not Lipschitz continuous, as
this sometimes occurs in stochastic volatility models.

Corollary 2.2. Assume that S solves the SDE

dSt = St
√
vt− dWt, S0 ∈ R,

where v ≥ 0 is a càdlàg adapted process. If t �→ E[v2+ε
t ] and t �→ E[S4+ε

t ] are bounded
in a neighborhood of 0 for some ε > 0, then the Lévy process Zt = S0 + S0

√
v0Wt satisfies

E[|ST − ZT |] = o(
√
T ).

In particular, this applies when v is a square-root process, i.e. when S is the Heston model.

Proof. In view of Proposition 2.1(i) applied with γ = 0, it suffices to verify that

E[(St√vt − S0
√
v0)

2] = o(1);
note that, by the continuity of W , the SDE does not change if we replace v− by v. As

E[(St√vt − S0
√
v0)

2] = E[S2
t vt − S2

0v0] + 2S0
√
v0 E[S0

√
v0 − St

√
vt ],

it suffices to check that E[S2
t vt ] → S2

0v0 and E[St√vt ] → S0
√
v0 as t ↓ 0. Since S

√
v is right

continuous, this readily follows by the Cauchy–Schwarz inequality and uniform integrability.
That the assumptions are satisfied for the Heston model follows from, e.g. Cox et al. [9,
Section 3] and the proof of Proposition 3.1 of [3].

3. Option price of order
√

T

The main idea in this section is to calculate the option price for S from (1.2) via the
approximation

Z := S0 + σ0W + κ0(x) ∗ (N − F(dx) dt). (3.1)

We first have to ensure that this expression makes sense. Indeed, if S is a martingale, it follows
that ∫

R

|κt (x)| ∧ |κt (x)|2F(dx) < ∞ P ⊗dt-almost everywhere, (3.2)

but of course this may fail on the nullset {t = 0}. Hence, we make the standing assumption
that Z is well defined and integrable; i.e. that κ0(x) is Borel measurable and satisfies∫

R

|κ0(x)| ∧ |κ0(x)|2F(dx) < ∞. (3.3)

In any reasonable situation, we will be able to infer this condition from (3.2).
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We can now prove our result for the at-the-money option price of order
√
T . In fact, we

describe the slightly more general situation of almost at-the-money strikes by considering a
deterministic strike function T �→ KT such that KT → S0 as T ↓ 0. The main observation is
that the coefficient of order

√
T depends only on the initial value of σ and that the jumps are

irrelevant at this order. We denote by N the Gaussian distribution.

Theorem 3.1. Let S be a martingale of the form (1.2), and assume that

lim
t↓0

E[(σt − σ0)
2] = 0 and lim

t↓0
E

[∫
R

|κt (x)− κ0(x)|2F(dx)
]

= 0.

If KT = S0 + θ
√
T + o(

√
T ) for some θ ∈ R then

E[(ST −KT )
+] = E[N (−θ, σ 2

0 )
+]√T + o(

√
T ) as T ↓ 0.

In particular, for the at-time-money case K ≡ S0, we have

E[(ST − S0)
+] = |σ0|√

2π

√
T + o(

√
T ) as T ↓ 0.

Remark 3.1. (a) The form KT = S0 + θ
√
T + o(

√
T ) chosen in Theorem 3.1 is in fact the

only relevant one. Indeed, if the convergence KT → S0 is slower than ∼ C
√
T then the

leading-order asymptotics of E[(ST −KT )
+] will simply be determined by (S0 −KT )

+, and
if it is faster, we find the same asymptotics as in the at-the-money case. As usual, we write
f (T ) ∼ g(T ) if f (T )/g(T ) → 1 as T ↓ 0. We can also note that the constant θ satisfies
θ = (S0 −KT )/

√
T + o(1) and can therefore be interpreted as a degree of moneyness for the

option; a similar notion was previously used by Medvedev and Scaillet [22].

(b) Even for the class of continuous martingales,
√
T is the highest order in which the option

price depends only on the initial volatility σ0. Indeed, assume that this were also the case
for the order T 1/2+ε and some ε > 0. Set σt = √

(1 + 2ε)t2ε, and define the martingale
St = ∫ t

0 σs dWs . Then S is Gaussian with variance var(ST ) = ∫ T
0 σ 2

t dt = T 1+2ε and, hence,

E[S+
T ] = 1√

2π
T 1/2+ε.

This coefficient is of course different from that for S′ ≡ 0, which is another martingale with
σ0 = 0.

Let us formulate Theorem 3.1 once more, in the language preferred by practitioners. If
S > 0, the implied volatility σimpl(T ) ∈ [0,∞] of an at-the-money call option with maturity T
is defined as the solution of

E[(ST − S0)
+] = S0


( 1
2σimpl(T )

√
T

) − S0

(− 1

2σimpl(T )
√
T

)
,

where 
 denotes the standard normal distribution function. This means that the option price
coincides with its counterpart in a Black–Scholes model with volatility parameter σimpl(T ).
Note that σimpl(T ) exists and is unique since x �→ 
(x) − 
(−x) is strictly increasing and
maps [0,∞] to [0, 1] and, moreover, E[(ST − S0)

+] ∈ [0, S0]. The following generalizes the
result of [10] to unbounded coefficients and infinite-variation jumps.

https://doi.org/10.1239/jap/1324046015 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046015


Small-time asymptotics of option prices and first absolute moments 1009

Corollary 3.1. Let S > 0. Under the conditions of Theorem 3.1, we have σimpl(T ) → |σ0|/S0,
i.e. the implied volatility converges to the spot volatility of the continuous martingale part of
the log price.

Proof. By the asymptotic properties of
 (see, e.g. [1, Chapter 7]), we have
(x)−
(−x) ∼√
2/πx for small x. Since σimpl(T )

√
T ↓ 0 by Theorem 3.1, we obtain




(
1

2
σimpl(T )

√
T

)
−


(
−1

2
σimpl(T )

√
T

)
∼ σimpl(T )√

2π

√
T .

As Theorem 3.1 yields E[(ST − S0)
+]/S0 ∼ (|σ0|/S0/

√
2π)

√
T , the definition of σimpl(T )

shows that σimpl(T ) → |σ0|/S0.

Proof of Theorem 3.1. We may use the put–call parity to rewrite the call price in terms of
an absolute moment: since S is a martingale,

E[|ST −KT |] = E[2(ST −KT )
+ − ST +KT ]

= 2 E[(ST −KT )
+] − S0 +KT .

From this we also see that we may assume thatKT = S0 + θ
√
T (i.e. that the o(

√
T ) part does

not matter). By a translation we may also assume that S0 = K0 = 0. (We exploit here the fact
that we are working with a general class of martingales S, not necessarily positive.)

Step 1: continuous Lévy case. Assume first that S is a continuous Lévy process, i.e. that
St = σ0Wt . Then

E[(ST − θ
√
T )+] = √

T E[(σ0W1 − θ)+] = √
T E[N (−θ, σ 2

0 )
+].

Step 2: general Lévy case. Let S be a Lévy process (i.e. S = Z), and denote by S = Sc +Sd

its decomposition into the continuous and purely discontinuous martingale parts. In view of

|Sc
T −KT | − |Sd

T | ≤ |ST −KT | ≤ |Sc
T −KT | + |Sd

T |
and step 1, it suffices to show that E[|Sd

T |] is of order o(
√
T ). To relax the notation, let us

assume that Sd = S. We can further decompose S into a martingale with bounded jumps,
which is in particular square integrable, and a compound Poisson processX which is integrable
due to (3.3). We can check by direct calculation or by an application of Theorem 4.1 below
that E[|XT |] = O(T ). That is, we may even assume that S is a square-integrable, pure-jump
Lévy martingale. Then

|ST |√
T

→ 0 in probability as T ↓ 0;

see, e.g. [19, Lemma 4.1]. To conclude that E[|ST |]/√T → 0, it suffices to show the uniform
integrability of {ST /

√
T }T>0. But this set is even bounded in L2(P ) as S is square integrable;

indeed, ‖ST /
√
T ‖2

L2(P )
= E[[S, S]1] due to the relation E[S2

T ] = E[[S, S]T ] = T E[[S, S]1].
Step 3: general case. When S is as in the theorem, we approximate S by the Lévy processZ

from (3.1). The assumptions of Proposition 2.1(i) are satisfied for S′ = Z and the order o(1);
hence, we obtain that E[|ST − ZT |] is of order o(

√
T ). In view of step 2 applied to Z and

E[|ZT −KT |] − E[|ST − ZT |] ≤ E[|ST −KT |] ≤ E[|ZT −KT |] + E[|ST − ZT |],
the proof is complete.
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4. Option prices with higher leading orders

In this section we consider pure-jump martingales

S = S0 + κ(x) ∗ (N − F(dx) dt), (4.1)

i.e. we set σ ≡ 0 in (1.2). Then the term of order
√
T in Theorem 3.1 vanishes and the leading

order is higher than 1/2. We will again use the approximation result from Section 2 to reduce
to the Lévy case and consider

Z = S0 + κ0(x) ∗ (N − F(dx) dt). (4.2)

However, this case is now more involved since the results depend on the properties of the Lévy
measure. We recall the standing assumption (3.3) which ensures that Z is well defined and
integrable.

4.1. Finite variation

We first treat the case when S is of finite variation, which leads to the highest possible
(nontrivial) convergence rate for the at-the-money option price. Indeed, the following result
shows that this class of price processes is characterized by the rate O(T ).

Theorem 4.1. Let S be a pure-jump martingale of the form (4.1), and assume that

lim
t↓0

E

[∫
R

|κt (x)− κ0(x)|F(dx)
]

= 0.

Then the following assertions are equivalent:

(i) S is of finite variation on [0, T ] for some T > 0,

(ii) E[(ST − S0)
+] = O(T ) as T ↓ 0.

In that case,
E[(ST − S0)

+] = 1
2CT + o(T ) as T ↓ 0,

where C := ∫
R

|κ0(x)|F(dx)+ | ∫
R
κ0(x)F (dx)|.

Proof. As in the proof of Theorem 3.1, we may assume that S0 = 0 and then we have
E[|ST |] = 2 E[S+

T ]. Let us first clarify the meaning of (i) under the given conditions. The
assumed convergence implies in particular that

E

[∫ T

0

∫
R

|κt (x)− κ0(x)|F(dx) dt

]
< ∞ for some T > 0. (4.3)

Owing to this fact, the following assertions are actually equivalent to (i):

(a) Z is of integrable variation,

(b) S is of integrable variation on [0, T ] for some T > 0.

Indeed, assume that (i) holds. Then S = S1 −S2 on [0, T ] for two increasing processes S1 and
S2 with S1

0 = S2
0 = 0. Since the jumps of the martingale S are integrable, the positive stopping

time τ := inf{0 ≤ t ≤ T : S1
t + S2

t ≥ 1} is such that S is of integrable variation on [[0, τ ]].
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By [20, Theorem II.1.33b], this implies that E[∫ τ0 ∫
R

|κt (x)|F(dx) dt] < ∞. Now we can use
the fact that the product τ

∫
R

|κ0(x)|F(dx)=
∫ τ

0

∫
R

|κ0(x)|F(dx) dt is bounded by

∫ τ

0

∫
R

|κt (x)− κ0(x)|F(dx) dt +
∫ τ

0

∫
R

|κt (x)|F(dx) dt < ∞ P-a.s.

to conclude via Lemma A.1(vii) that Z is of integrable variation. Furthermore, (a) together
with (4.3) yields E[∫ T0 ∫

R
|κt (x)|F(dx) dt] < ∞, which is (b) by [20, Theorem II.1.33b], and,

clearly, (b) implies (i).
Step 1: Lévy case. We first assume that S = Z. Moreover, we replace (i) by the equivalent

condition (a).
(ii) implies (a). We consider an increasing sequence of continuous functions fn on R

satisfying

0 ≤ fn(x) ≤ |x| ∧ n, fn(x) = 0 for |x| < 1

n
, lim

n
fn(x) = |x|

for all x ∈ R and n ≥ 1. For each n, we have

lim inf
T ↓0

1

T
E[|ZT |] ≥ lim inf

T ↓0

1

T
E[fn(ZT )] =

∫
R

fn(κ0(x))F (dx),

where the equality follows from Sato [26, Corollary 8.9] since fn vanishes in a neighborhood
of the origin (this holds for any Lévy measure). By monotone convergence as n → ∞ we
obtain

lim inf
T ↓0

1

T
E[|ZT |] ≥

∫
|κ0(x)|F(dx).

The left-hand side is finite by assumption; hence, Z is of integrable variation.
(a) implies (ii). IfZ is of integrable variation, its total variation process var(Z)t := ∫ t

0 |dZs |
is an integrable Lévy subordinator and, by Lemma A.1(vii),

1

T
E[var(Z)T ] = E[var(Z)1] =

∫
|κ0(x)|F(dx)+

∣∣∣∣
∫
κ0(x)F (dx)

∣∣∣∣ = C.

Since |ZT | ≤ var(Z)T , we conclude that

lim sup
T ↓0

1

T
E[|ZT |] ≤ C.

For the converse inequality, we consider the function gn(x) = |x| ∧ n for n ≥ 1. Since Z is of
finite variation, we obtain, for each n,

lim inf
T ↓0

1

T
E[|ZT |] ≥ lim

T ↓0

1

T
E[gn(ZT )] =

∫
gn(κ0(x))F (dx)+

∣∣∣∣
∫
κ0(x)F (dx)

∣∣∣∣
as a consequence of [19, Theorem 2.1(i)(c)] since the increments of Z are i.i.d. (see also [19,
Equation (5.8)]). Applying monotone convergence as n → ∞ to the right-hand side, we
conclude that

lim inf
T ↓0

1

T
E[|ZT |] ≥ C.

Hence, we have proved the claimed convergence rate for the case S = Z.
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Step 2: general case. Under the stated assumption, Proposition 2.1(ii) with β = 1 and
γ = 0 yields E[|ST − ZT |] = o(T ) as T ↓ 0. Hence, (ii) holds for S if and only if it holds for
Z and so step 1 yields the equivalence of (i) and (ii). Moreover, the leading constant C is the
same as for Z since the approximation error is of order o(T ).

Remark 4.1. (a) For exponential Lévy processes, where κ(x) = ex − 1, the formula in
Theorem 4.1(ii) was previously obtained by Tankov [27]. We thank the referee for pointing out
this reference.

(b) The constantC has the following feature. For a given absolute momentµ := ∫ |κ0(x)|F(dx)
of the Lévy measure ofZ, the value ofC may range from µ to 2µ depending on

∫
κ0(x)F (dx).

In particular, C is minimal if the jumps are symmetric, and maximal if all jumps have the same
sign.

(c) As in Corollary 3.1, it follows from Theorem 4.1 that the implied volatility satisfies
σimpl(T ) ∼ √

π/2C/S0
√
T as T ↓ 0.

(d) The following observation from step 1 in the proof of Theorem 4.1 seems worth record-
ing: if Z is a Lévy martingale of finite variation, then the three functions T �→ E[|ZT |],
T �→ E[supt≤T |Zt |], and T �→ E[var(Z)T ] all converge to 0 as T ↓ 0 with the same leading
term CT .

4.2. Infinite variation

We now turn to pure-jump processes with infinite variation. By the previous results we know
that the leading order for the at-the-money option price has to be strictly between

√
T and T ;

however, it need not be a power of T . The class of possible Lévy measures at time 0 is very
rich and it is unclear how to compute the exact order in general. A look at existing financial
models suggests imposing an additional structure which will pin down an order of parametric
form. The base case is the α-stable Lévy measure which is given by

ν(dx) = g(x)

|x|1+α dx, g(x) := β− 1(−∞,0)(x)+ β+ 1(0,∞)(x)

for α ∈ (0, 2) and two nonnegative constants β+ and β−. More precisely, ν corresponds
to a Lévy process Lt following a stable law with index of stability α, skewness parameter
β = (β+ −β−)/(β+ +β−), shift parameterµ = 0, and scale parameter c = (β+ +β−)1/αt1/α .
In the nondegenerate case, β+ + β− > 0, the process L has infinite variation if and only if
α ∈ [1, 2). For α ∈ (1, 2), the first moment E[|Lt |] exists whereas, for α ∈ (0, 1], this is not
the case and in particular L cannot be a martingale. On the other hand, only the small jumps
are relevant for the option price asymptotics of order smaller thanO(T ), which leads us to the
following definition.

Definition 4.1. Let α+, α− ∈ (0, 2). A Lévy process is said to have (α+, α−)-stable-like small
jumps if its Lévy measure ν is of the form

ν(dx) =
(
f (x)

|x|1+α− 1(−∞,0)(x)+ f (x)

|x|1+α+ 1(0,∞)(x)

)
dx

for a Borel function f ≥ 0 whose left and right limits at 0,

f+ := lim
x↓0

f (x) and f− := lim
x↑0

f (x),

exist and satisfy f (x)− f+ = O(x) as x ↓ 0 and f (x)− f− = O(x) as x ↑ 0.
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This class includes most of the processes used in financial modeling, e.g. the tempered
stable and in particular the CGMY processes, of which the variance gamma process is a special
case, or the normal inverse Gaussian process. We refer the reader to [8, Section 4.5] for more
information on these models. We observe that if the driving Lévy process of an SDE as in
Corollary 2.1 is chosen from this class, then the process Z defined in the same corollary is
again of the same type; merely the constants f+ and f− change.

Since α+ ∨ α− ∈ (0, 1) implies that the jumps are of finite variation (cf. Theorem 4.1), we
are interested here only in the case α+ ∨ α− ∈ [1, 2). In that case we will see that the larger of
the values α+ and α− determines the leading order.

The statement of our main result requires the following constants. For f+, f− ≥ 0 and
α ∈ (1, 2), we set C(α, 0, 0) := 0 and if f+ + f− > 0 then

C(α, f+, f−) := 2

π
(f+ + f−)1/α�

(
1 − 1

α

)[
1 +

(
f+ − f−
f+ + f−

)2

tan2
(
απ

2

)]1/2α

× cos

(
1

α
arctan

(
f+ − f−
f+ + f−

tan

(
απ

2

)))
,

where � denotes the usual gamma function. For α+, α− ∈ (0, 2) such that α+ ∨ α− ∈ (1, 2),
we then define

C(α+, α−, f+, f−) :=

⎧⎪⎨
⎪⎩
C(α+, f+, f−), α+ = α−,
C(α+, f+, 0), α+ > α−,
C(α−, 0, f−), α+ < α−.

Theorem 4.2. Let S be a pure-jump martingale of the form (4.1) such that the Lévy process
Z from (4.2) has (α+, α−)-stable-like small jumps, and let α := α+ ∨ α−. Assume that there
exist β ∈ [1, 2] and γ ≥ 0 such that

E

[∫
R

|κt (x)− κ0(x)|βF (dx)
]

= o(tγ ) and
β

1 + γ
≤ α.

(i) If α ∈ (1, 2) then

E[(ST − S0)
+] = 1

2C(α+, α−, f+, f−)T 1/α + o(T 1/α) as T ↓ 0.

(ii) If α+ = α− = 1 and f+ = f−, then

E[(ST − S0)
+] = 1

2 (f+ + f−)T | log T | + o(T | log T |) as T ↓ 0.

Remark 4.2. (a) For exponential Lévy processes, a result similar to Theorem 4.2(i) is obtained
in [27]. There, the condition on the jumps in formulated in a slightly different way and, hence,
our theorem is not a strict generalization. More specifically, in [27], the author dealt with
Lévy processes whose characteristic function resembles that of a stable process. On the other
hand, we consider processes whose jump measures resemble the jump measure of a stable
process around the origin, which seems more convenient beyond Lévy models. For a stable
process, one readily verifies that the two expressions for the small-time limit indeed coincide,
once the relationship between the characteristic function and the jump measure (cf., e.g. [25,
Chapter I.1]) is taken into account.

The special case of a CGMY model is also treated in [13].
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(b) In Theorem 4.2(i), the continuity assumption on κt (x) is satisfied in particular if

E

[∫
R

|κt (x)− κ0(x)|2F(dx)
]

= O(t).

For example, this holds in the setting of the Lévy-driven SDE of Corollary 2.1 (see the proof
of that result).

(c) In the limit α ↑ 2, which corresponds to the Brownian case, we obtain the order
√
T as in

Theorem 3.1. On the other hand, the limit α ↓ 1 in Theorem 4.2(i) does not yield the order
obtained in Theorem 4.2(ii) and the leading constants explode since lima↓0 �(a) = +∞.

(d) Theorem 4.2 still holds if the regularity off in Definition 4.1 is weakened as follows. Instead
of f (x)− f± = O(|x|), it is sufficient to have f (x)− f± = O(|x|�) for some � > α/2. The
proof is identical.

(e) As in Corollary 3.1, we can deduce that the implied volatility satisfies

σimpl(T ) ∼
√
π/2C(α+, α−, f+, f−)

S0T 1/α−1/2

in the setting of Theorem 4.2(i) and σimpl(T ) ∼ √
π/2(f+ + f−)/S0

√
T | log T | in the setting

of Theorem 4.2(ii).

(f) The following consequence of a result due to Luschgy and Pagès (see [21, Theorem 3])
complements Theorem 4.2(ii). If S is a (1, 1)-stable-like Lévy process, possibly with f+ 	= f−,
then E[(ST − S0)

+] = O(T | log T |) still holds. However, their method only yields an upper
bound and not that the leading order is indeed ∼ CT | log T |. As in the proof below, we can
infer that the same bound holds if S is not a Lévy process but satisfies the assumptions of
Theorem 4.2(ii), excluding f+ = f−.

4.2.1. Proof of Theorem 4.2. The plan for the proof of Theorem 4.2 is as follows. We will
again reduce the general martingale to the Lévy case using Proposition 2.1. Since the first
absolute moment is known for stable processes, the main step for part (i) will be to estimate
the error made when replacing a stable-like Lévy process by a true stable process with index
α = α+ ∨α− > 1. For part (ii), the situation is slightly different as the 1-stable process fails to
have a first moment; in this case we will instead use the normal inverse Gaussian as a reference
process.

In a first step we show more generally that we can pass with an error of order O(T ) from
one Lévy process to another when the small jumps have a similar behavior.

Lemma 4.1. Let L and L′ be pure-jump Lévy martingales with Lévy measures ν and ν′,
respectively. Suppose that, for some δ > 0, the Radon–Nikodym derivative

ψ(x) = d(ν′(dx)|[−δ,δ])
d(ν(dx)|[−δ,δ])

of the measures restricted to [−δ, δ] exists and that
∫ δ
−δ|ψ(x)−1|2ν(dx) < ∞. Then E[|LT |] =

E[|L′
T |] +O(T ) as T ↓ 0.

Proof. LetL = x∗(µ−ν(dx) dt) be the canonical representation ofL; hereµ is the random
measure associated with the jumps of L. We decompose L into L = L≤δ + L>δ , where the
Lévy process

L≤δ := x 1{|x|≤δ} ∗(µ− ν(dx) dt)
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is obtained by truncating the jumps at magnitude δ. Then L>δ = L−L≤δ is of finite variation
and Theorem 4.1 yields

E[|L>δT |] = O(T ) as T ↓ 0.

Hence, we may assume thatL = L≤δ , i.e. that the jumps are bounded by δ in absolute value, or,
equivalently, that ν is concentrated on [−δ, δ]. The integrability assumption on ψ ensures that
Y := (ψ(x) − 1) ∗ (µ − ν(dx) dt) is a square-integrable Lévy martingale; moreover, ψ ≥ 0
implies that 
Y ≥ −1. Hence, the stochastic exponential

D := E(Y ) = E((ψ(x)− 1) ∗ (µ− ν(dx) dt))

is a nonnegative square-integrable martingale (cf. Lemma A.1(x)). We define the probability
measure Q � P on F1 by dQ /dP = D1. Then it follows from the Girsanov–Jacod–Mémin
theorem (cf. [20, Theorem III.3.24]) that, under Q, the process (Lt )0≤t≤1 is Lévy with triplet
(bQ, 0, νQ) relative to the truncation function h(x) = x, where νQ(dx) = ψ(x)ν(dx) =
1[−δ,δ] ν′(dx) and

bQ =
∫ δ

−δ
x(ψ(x)− 1)ν(dx);

this integral is finite due to the assumption on ψ and Hölder’s inequality. After subtracting
the linear drift, which is of order O(T ), the Q-distribution of L therefore coincides with the
P-distribution of L′≤δ , which is obtained from L′ by truncating the jumps. As before, we may
assume that L′ = L′≤δ . To summarize, we have

EQ[|LT |] = E[|L′
T |] +O(T ),

and, hence, it suffices to show that EQ[|LT |] − E[|LT |] = O(T ). Indeed, EQ[|LT |] =
E[DT |LT |], Hölder’s inequality, and Lemma A.1(vi) and (x) yield

| EQ[|LT |] − E[|LT |]| ≤ E[|DT − 1||LT |]
≤ {E[(DT − 1)2] E[L2

T ]}1/2

= {(E[D2
T ] − 1)E[L2

T ]}1/2

= {(eT 〈Y,Y 〉1 − 1)T 〈L,L〉1}1/2

= O(T ),

where we have used the fact that both Y and L = L≤δ are square integrable.

Proof of Theorem 4.2(i). As in the proof of Theorem 3.1, we may assume that S0 = 0; then
we have E[|ST |] = 2 E[S+

T ].
Step 1: α-stable Lévy case. We first note the result for Z, and under the additional

assumptions that f (x) = f− 1(−∞,0)(x) + f+ 1(0,∞)(x) and α+ = α− =: α. Then Z is a
centered α-stable Lévy motion with α ∈ (1, 2), and in this case it is known that

E[|ZT |] = C(α, f+, f−)T 1/α;
see [25, Property 1.2.17].

Step 2: stable-like Lévy case with α+ = α−. We again consider Z for the special case
α+ = α− =: α, but now we let f be an arbitrary function satisfying f (x) − f+ = O(x) as
x ↑ 0 and f (x)− f− = O(x) as x ↓ 0. For δ > 0, we define the function

ψ(x) := 1[−δ,0](x)
(
f−
f (x)

+ 1{f−=0}
)

+ 1(0,δ](x)
(
f+
f (x)

+ 1{f+=0}
)
,
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where we use the convention that 0/0 := 0. We have |ψ(x) − 1| = O(|x|). Indeed, consider
the case f+ > 0. Then, for small enough x > 0, we have f (x) ≥ f+/2 > 0 and, thus,

|ψ(x)− 1| =
∣∣∣∣f+ − f (x)

f (x)

∣∣∣∣ ≤ 2

f+
|f+ − f (x)| = O(x) as x ↓ 0.

The case f+ = 0 is trivial and x < 0 is treated in the same way. As a result, by choosing small
enough δ we can find a constant M > 0 such that

|ψ(x)− 1| ≤ M|x|, x ∈ [−δ, δ].
In particular, ψ satisfies the integrability assumption of Lemma 4.1. In the sequel, we denote
by ν the Lévy measure of Z, i.e. ν(·) = F(κ−1

0 (·)).
Step 2a: f+ > 0 and f− > 0. In this case we have

ν′(dx) := ψ(x)ν(dx) =
(

1[−δ,0)(x)
f−

|x|1+α + 1(0,δ]
f+

|x|1+α (x)
)

dx.

Note that ν′ is the Lévy measure of an α-stable Lévy motion whose jumps were truncated at
magnitude δ. As above, this truncation changes the option price only at the order O(T ). Now
Lemma 4.1 and step 1 yield

E[|ZT |] = C(α, f+, f−)T 1/α +O(T ). (4.4)

Step 2b: f+ = 0 and f− > 0. Note that in this case the formula for ν′ is not the desired one
in general, since we have f (x) instead of f+ in

ν′(dx) = ψ(x)ν(dx) =
(

1[−δ,0)(x)
f−

|x|1+α + 1(0,δ]
f (x)

|x|1+α (x)
)

dx.

However, the previous argument does apply if f (x) = f+ = 0 for all x > 0, and we will
reduce to this case. Indeed, Lemma 4.2 stated below shows that the positive jumps of Z are of
finite variation and, hence, of integrable variation by (3.3). By subtracting these jumps from Z

and compensating, we achieve f (x) = f+ = 0 for all x > 0 and Theorem 4.1 shows that this
manipulation affects the option price only at the order O(T ). Hence, we may conclude as in
step 2a to obtain (4.4).

The case where f+ > 0 and f− = 0 is analogous. Finally, if f+ and f− both vanish,
Lemma 4.2 shows that Z is of finite variation and Theorem 4.1 yields an option price of order
O(T ). Hence, (4.4) again holds since C(α, 0, 0) = 0.

Step 3: stable-like Lévy case with α+ 	= α−. We consider the case where α := α+ > α−.
The idea is to reduce to the case where α+ = α− but f− = 0, i.e. we get rid of all the negative
jumps and show that this induces an error of order o(T 1/α).

Let µ be the random measure associated with the jumps of Z. By setting

Z+ := x+ ∗ (µ− ν(dx) dt) and Z− := x− ∗ (µ− ν(dx) dt),

we decompose Z = Z+ + Z−, where Z+ and Z− are Lévy martingales having only positive
and negative jumps, respectively, and Lévy measures given by ν+(dx) = 1(0,∞)(x)ν(dx) and
ν−(dx) = 1(−∞,0)(x)ν(dx). Note the abuse of notation: x+ and x− refer to the positive and
negative parts of x while Z± and ν± are new symbols.
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We observe that Z+ has (α+, α+)-stable-like jumps, where the corresponding function f ′
in Definition 4.1 satisfies f ′(x) = 0 for x < 0. In particular, the left limit is f ′− = 0. The
martingale Z− has analogous properties for α−.

From step 2 we know that E[|Z−
T |] = O(T 1/α−) if α− ∈ (1, 2), and we have also seen that

E[|Z−
T |] = O(T ) if α− ∈ (0, 1), due to finite variation. For the remaining case α− = 1, we

have E[|Z−
T |] = O(T | log T |) by Remark 4.2(f). As α− < α+ and α+ > 1, we therefore have

E[|Z−
T |] = o(T 1/α+)

in all three cases for α−. On the other hand, we know from step 2 applied to α+ that E[|Z+
T |] ∼

CT 1/α+ . Therefore, the leading-order coefficient for Z is the same as for Z+, i.e.

E[|ZT |] = C(α+, f+, 0)T 1/α+ + o(T 1/α+).

The case α+ < α− is analogous.
Step 4: general case. Proposition 2.1(ii) implies that

E[|ST − ZT |] = o(T (1+γ )/β)

and, in particular, E[|ST −ZT |] = o(T 1/α). In view of the previous steps, the proof is complete.

The following result was used in the preceding proof.

Lemma 4.2. LetL be a Lévy process with (α+, α−)-stable-like small jumps for some α+, α− ∈
(0, 2). If the function f from Definition 4.1 satisfies f+ = 0 then the positive jumps of L are
of finite variation, that is,

∑
t≤T (
Lt)+ < ∞ for any T < ∞.

Proof. Let ν be the Lévy measure of L. Since f (x) = f (x)− f+ = O(x) as x ↓ 0, there
exist δ > 0 and M > 0 such that f (x) ≤ Mx for x ∈ (0, δ]. Therefore,

∫ δ

0
xν(dx) =

∫ δ

0

xf (x)

|x|1+α+ dx ≤ M

∫ δ

0

x2

|x|1+α+ dx < ∞,

showing that the small positive jumps are summable. Of course, the large jumps are always
summable.

We now come to the proof of the second part of Theorem 4.2. The main difference to the
above is that we cannot use the 1-stable process as a reference since it is not integrable. Instead,
we use the normal inverse Gaussian process. It is the symmetry of its Lévy density around 0
that forces us to impose the condition f+ = f− in the theorem to apply our method. Indeed, we
are not aware of a suitable process with sufficiently asymmetric density for which the absolute
moment asymptotics are known.

Proof of Theorem 4.2(ii). The proof has the same structure as the proof of part (i).
Step 1: normal inverse Gaussian case. First let Z be a symmetric normal inverse Gaussian

process with Lévy measure

ν′(dx) = ρ

π |x|K1(|x|),
where ρ > 0 and Kθ denotes the modified Bessel function of the third kind of order θ . Then
we are in the setting of Theorem 4.2(ii) with f+ = f− = ρ/π by the properties of K1; see,
e.g. [1, Equation (9.6.9)]. The absolute moments of Zt were calculated explicitly and for all t
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by Barndorff-Nielsen and Stelzer [4, Corollary 4]. By their formula and another property of
Bessel functions (see [1, Equation (9.6.8)]), we have

E[|ZT |] = 2ρ

π
eρT T K0(ρT ) ∼ 2ρ

π
T | log T | = (f+ + f−)T | log T |.

Step 2: general Lévy case. Now let Z be a (1, 1)-stable-like Lévy martingale with Lévy
measure ν(dx) = f (x)/|x|2 dx, where, by assumption, f satisfies f0 := limx→0 f (x) =
f+ = f−. As the f0 = 0 case again follows from Lemma 4.2, we may assume that f0 > 0.
Then there exists a small δ > 0 such that f is bounded away from 0 on [−δ, δ] and we can
define

ψ(x) := 1[−δ,δ](x)
f0K1(|x|)|x|

f (x)
.

By choosing ρ := πf0 we have ν′(dx) = ψ(x)ν(dx) on [−δ, δ], where ν′ is as in step 1. As
f0K1(|x|)|x| = f0 +O(|x|) by [1, Equation (9.6.11)], we have

ψ(x)− 1[−δ,δ](x) = 1[−δ,δ](x)
f0K1(|x|)|x| − f (x)

f (x)
= O(|x|),

owing to the assumption that f (x) = f0 + O(|x|). Making δ > 0 smaller if necessary, we
conclude that

∫ δ
−δ(ψ(x)− 1)2ν(dx) < ∞, and now the assertion follows from Lemma 4.1 and

step 1. The last step to the general martingale case is as in the proof of part (i).

Appendix A

The following lemma collects some standard facts about Lévy processes that are used
throughout the text. A Lévy process L is an adapted càdlàg process with independent and
stationary increments and L0 = 0.

Lemma A.1. Let L be a Lévy process having triplet (b, c, ν) with respect to the truncation
function h(x) = x 1{|x|≤1}.

(i)
∫

R
1 ∧ |x|2ν(dx) < ∞.

(ii) There is a decomposition Lt = Lat + Lbt + Lct + At into independent Lévy processes
such that La is a compound Poisson process, Lb is a purely discontinuous martingale
with bounded jumps, Lc = √

cW is a scaled Brownian motion, and A ∈ R.

(iii) Let p ∈ [1,∞). Then
∫
|x|>1 |x|pν(dx) < ∞ if and only if E[|Lt |p] < ∞ for all t ≥ 0.

In particular, if L has bounded jumps, or, equivalently, if the support of ν is compact,
then E[|Lt |p] < ∞ for all p ∈ [1,∞).

(iv) L is a martingale if and only if
∫
|x|>1|x|ν(dx) < ∞ and b + ∫

|x|>1 xν(dx) = 0 both
hold.

(v) If L is integrable then E[Lt ] = t E[L1] and Lt − t E[L1] is a martingale.

(vi) If L is a square-integrable martingale then

E[L2
t ] = E[[L,L]t ] = 〈L,L〉t = t〈L,L〉1 = tc + t

∫
R

|x|2ν(dx) < ∞.
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(vii) If c = 0, L is of finite variation if and only if
∫
|x|≤1 |x|ν(dx) < ∞ and of integrable

variation if and only if
∫

R
|x|ν(dx) < ∞. In that case the total variation var(L)t :=∫ t

0 |dLs | is a Lévy process satisfying E[var(L)1] = ∫ |x|ν(dx)+ | ∫ xν(dx)|.
(viii) For any δ > 0, there is a decomposition L = L≤δ + L>δ into two independent Lévy

processes satisfying |
L≤δ| ≤ δ as well as |
L>δ| > δ on the set {|
L>δ|} > 0. The
corresponding Lévy measures are given by ν≤δ(dx) = 1[−δ,δ](x)ν(dx) and ν>δ(dx) =
1R\[−δ,δ](x)ν(dx). IfL>δ has no Brownian component, it is a compound Poisson process
with drift.

(ix) If L is a martingale, the stochastic exponential E(L) is again a martingale.

(x) If L is a square-integrable martingale then so is E(L) and, moreover, E[E(L)2t ] =
exp(t〈L,L〉1).

Proof. Statements (i)–(viii) can be found in any advanced textbook about Lévy processes;
see, e.g. [26]. Statement (ix) is [8, Proposition 8.23]. One way to deduce the formula in (x) is
to use Yor’s formula in

E(L)2t = E(2L+ [L,L] − 〈L,L〉 + 〈L,L〉)t
= E(2L+ [L,L] − 〈L,L〉)t exp(t〈L,L〉1).

Noting that 2L+ [L,L] − 〈L,L〉 is a Lévy martingale, (ix) yields the result.

The following makes precise a remark from the introduction.

Remark A.1. Let S be any càdlàg martingale with absolutely continuous predictable charac-
teristics. Then S can be represented in the form (1.2). Indeed, let

dBt = bt dt, dCt = σ 2
t dt, dνt = Kt(dx) dt

be the characteristics of S with respect to the trivial truncation function h(x) = x (cf. [20,
Chapter II] for background). The latter choice is possible since S is a martingale, which
then implies that B = 0. Moreover, let F be any atomless σ -finite measure on R such that
F(R) = ∞. Then there exist a Brownian motion W and a Poisson random measure N
with compensator F(dx) dt such that (1.2) holds. Moreover, κ and K satisfy the relation
Kt(A) = F(κ−1

t (A)) for any Borel set A, where κ−1
t denotes the preimage with respect to the

spatial variable x. To be precise, the constructions ofW andN may necessitate an enlargement
of the probability space, but this is harmless since we are interested only in distributional
properties. We refer the reader to [18, Theorem 14.68(a)] for further details.
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