ON SOME TWISTED CHEVALLEY GROUPS OVER LAURENT POLYNOMIAL RINGS

JUN MORITA

0. Introduction. We let \mathbf{Z} denote the ring of rational integers, \mathbf{Q} the field of rational numbers, \mathbf{R} the field of real numbers, and \mathbf{C} the field of complex numbers.

For elements e and f of a Lie algebra, $[e, f]$ denotes the bracket of e and f.
A generalized Cartan matrix $C=\left(c_{i j}\right)$ is a square matrix of integers satisfying $c_{i i}=2, c_{i j} \leqq 0$ if $i \neq j, c_{i j}=0$ if and only if $c_{j i}=0$. For any generalized Cartan matrix $C=\left(c_{i j}\right)$ of size $l \times l$ and for any field F of characteristic zero, $R_{F}(C)$ denotes the Lie algebra over F generated by $3 l$ generators $e_{1}, \ldots, e_{l}, h_{1}, \ldots, h_{l}, f_{1}, \ldots, f_{l}$ with the defining relations

$$
\left[h_{i}, h_{j}\right]=0,\left[e_{i}, f_{j}\right]=\delta_{i j} h_{i},\left[h_{i}, e_{j}\right]=c_{j i} e_{j},\left[h_{i}, f_{j}\right]=-c_{j i} f_{j}
$$

for all i, j,

$$
\left(\operatorname{ad} e_{i}\right)^{-c_{j i}+1} e_{j}=0,\left(\operatorname{ad} f_{i}\right)^{-c_{j i}+1} f_{j}=0
$$

for distinct i, j. Let A be the Cartan matrix arising from a choice of ordered simple roots of a finite dimensional complex semisimple Lie algebra $g_{\mathbf{G}}$ with respect to a Cartan subalgebra $\mathfrak{h}_{\mathbf{C}}$. Then ${ }^{R_{\mathbf{C}}}(A)$ is isomorphic to g_{C} (cf. [3, p. 99]). Such a matrix A is called a finite Cartan matrix.

Let $(5)=\mathfrak{H}_{F}(C)$ be the subgroup of Aut $\left(\mathfrak{Z}_{F}(C)\right)$ generated by exp $\left(\operatorname{ad} t e_{i}\right)$ and $\exp \left(\operatorname{ad} t f_{i}\right)$ for all $t \in F$ and $i=1, \ldots, l$. Then (55 has a $B N$-pair structure, i.e., a Tits system (cf. [10]).

A generalized Cartan matrix C is called a Euclidean Cartan matrix if C is singular and possesses the property that removal of any row and the corresponding column leaves a finite Cartan matrix. Euclidean Cartan matrices are classified (cf. [8]).

From now on we assume that C is a Euclidean Cartan matrix. The algebra $\mathfrak{Z}_{F}(C)$ has a one dimensional center, denoted by 8 . Let $\mathbb{F}=$ $\mathfrak{Z}_{F}(C) / 8$, called a Euclidean Lie algebra. Any Euclidean Lie algebra \mathfrak{F} owns the constant r associated with the structure of its root system, which is named the tier number and is dependent only on C. It is known that r equals one of 1,2 , or 3 (cf. [8]). We suppose that F has a primitive cubic root of unity if the tier number r of \mathbb{F} is 3 . Let $F\left[T, T^{-1}\right]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in F. Then the algebra \mathfrak{E} is isomorphic to the subalgebra of fixed points of $F\left[T, T^{-1}\right] \bigotimes_{F} \mathbb{R}_{F}(A)$

[^0]under $\tau \otimes \sigma$ for some finite Cartan matrix A, where τ is a Galois automorphism of $F\left[T, T^{-1}\right]$ over $F\left[T^{r}, T^{-r}\right]$ and σ is a diagram automorphism of $\mathfrak{R}_{F}(A)$, and both are of order r. The canonical Lie algebra homomorphism of $\Omega_{F}(C)$ onto \mathbb{E} induces a group homomorphism ϕ of Aut $\left(\mathcal{R}_{F}(C)\right)$ into Aut (⿷). Then we can view $\phi(\mathbb{(})$ as the twisted subgroup, associated with τ and σ, of the elementary subgroup of a Chevalley group of adjoint type over $F\left[T, T^{-1}\right]$. We note that (ξ) and $\phi(\$)$ are isomorphic. In this paper, we will consider not only the group $\phi(झ)$) of adjoint type but non-adjoint types as follows.

Let Φ be a reduced irreducible root system (cf. [2]). Let G be a Chevalley group over $K\left[T, T^{-1}\right]$ of type Φ, and E the elementary subgroup of G (cf. [11]), where $K\left[T, T^{-1}\right]$ is the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K and the characteristic of K does not need to be zero. We fix a diagram automorphism σ of Φ (cf. [2], [3]). We say a pair (Φ, σ) is of r-type if σ is of order r. We assume that K has a primitive r th root of unity when (Φ, σ) is of r-type. Let τ be a Galois automorphism (with the same order as σ) of $K\left[T, T^{-1}\right]$ over $K\left[T^{r}, T^{-r}\right]$. Then we can construct the twisted subgroup E^{\prime} of E associated with τ and σ. Of course, if $r=1$, i.e., σ is trivial, then $E=E^{\prime}$.

Our assertion is that E^{\prime} has a $B N$-pair structure (cf. Theorem 3.1/3.4). In [11], it is confirmed that E has a $B N$-pair structure, therefore we will assume $r=2$ or 3 , i.e., Φ is of type $A_{n}(n \geqq 2), D_{n}(n \geqq 4)$ or E_{6}, and σ is not trivial (cf. Table 1). In Section 1 we introduce the twisted root system Φ_{σ} defined by (Φ, σ) and argue about the connection between twisted root systems and affine Weyl groups of type B_{l}, C_{l}, F_{4} and G_{2}. We will construct twisted Lie algebras in Section 2 and twisted Chevalley groups in Section 3 respectively. Our assertion can be reduced to the case of rank 1, which is essential and considered in Section 4. In Section 5 we complete the proof of our assertion.

Let x and y be elements of a group, then $[x, y]$ denotes the commutator $x y x^{-1} y^{-1}$ of x and y. For two subgroups G_{2} and G_{3} of a group G_{1}, let [G_{2}, G_{3}] be the subgroup of G_{1} generated by $[x, y]$ for all $x \in G_{2}$ and $y \in G_{3}$. We shall write $G_{1}=G_{2} \cdot G_{3}$ when a group G_{1} is a semidirect product of two groups G_{2} and G_{3}, and G_{3} normalizes G_{2}.

The author wishes to express his sincere gratitude to Professor Eiichi Abe for his guidance.

1. Twisted root systems. Let Φ be a reduced irreducible root system in a Euclidean space V (over \mathbf{R}) of dimension n with an inner product (,), and $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a simple system of Φ (cf. [2], [3]). For any nonzero element α in V, let w_{α} be the orthogonal transformation of V defined by $w_{\alpha}(v)=v-\langle v, \alpha\rangle \alpha$ for all $v \in V$, where $\langle v, \alpha\rangle=2(v, \alpha) /$ (α, α). Let Φ be of type $A_{n}(n \geqq 2), D_{n}(n \geqq 4)$ or E_{6}. We fix a nontrivial diagram automorphism σ of Φ (cf. Table 1). The automorphism induces

Table 1.
F_{4}
an automorphism of V, also denoted σ. Let V_{σ} be the subspace of fixed points of V under σ and $l=\operatorname{dim} V_{\sigma}$, and let Π be the natural projection of V onto V_{σ}. We let $\Phi_{\sigma}\left(\right.$ resp. $\left.\Pi_{\sigma}\right)$ denote the image of Φ (resp. Π) under the projection π. Then Φ_{σ} is an irreducible root system with a simple system Π_{σ} in V_{σ}, but it is not necessarily reduced (cf. Table 1). Let $\Phi_{\sigma}+$ be the positive system of Φ_{σ} with respect to Π_{σ}, and $\Phi_{\sigma}{ }^{-}=\Phi_{\sigma}-\Phi_{\sigma}{ }^{+}$. We note $\Phi_{\sigma}{ }^{+}=\pi\left(\Phi^{+}\right)$and $\Phi_{\sigma^{-}}=\pi\left(\Phi^{-}\right)$, where Φ^{+}is the positive system of Φ with respect to Π, and $\Phi^{-}=\Phi-\Phi^{+}$.

We shall identify the set of σ-orbits in Φ with the set Φ_{σ}. Then we have the following four types of roots in Φ_{σ}. Let $c \in \Phi_{\sigma}$.

$$
\begin{aligned}
& \text { (R-1) } c=\{\gamma\}, \gamma=\sigma(\gamma) \\
& \begin{aligned}
&(\mathrm{R}-2)= \\
& \text { (R-3) } c=\left\{\gamma_{1}, \gamma_{2}\right\}, \gamma_{1} \neq \gamma_{2}=\sigma\left(\gamma_{1}\right), \gamma_{1}+\gamma_{2} \notin \Phi_{\sigma} \\
& \text { (R-4) } c=\left\{\gamma_{1} \neq \gamma_{2}=\sigma\left(\gamma_{1}\right), \gamma_{1}+\gamma_{3}\right\}, \gamma_{1} \neq \Phi_{\sigma} \neq \gamma_{3} \neq \gamma_{1}, \gamma_{2}=\sigma\left(\gamma_{1}\right) \\
& \gamma_{3}=\sigma\left(\gamma_{2}\right), \gamma_{1}=\sigma\left(\gamma_{3}\right) .
\end{aligned}
\end{aligned}
$$

For each $c \in \Phi_{\sigma}{ }^{+}$, we fix an order of elements in c according to the action of σ, so we sometimes view the set c as an ordered pair (γ_{1}, γ_{2}) (resp. an ordered triple $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$) if c is of type (R-2) or (R-3) (resp. of type (R-4)). Then we let $-c=\left(-\gamma_{1},-\gamma_{2}\right)$ or $\left(-\gamma_{1},-\gamma_{2},-\gamma_{3}\right)$ if $c=\left(\gamma_{1}, \gamma_{2}\right)$ or $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ respectively.

If Φ_{σ} is of type $B_{l}(l \geqq 3), C_{l}(l \geqq 2), F_{4}, B C_{1}$ or G_{2}, then Φ_{σ} has two root lengths, and we distinguish long roots from short roots. If Φ_{σ} is of type $B C_{l}(l \geqq 2)$, then Φ_{σ} has three root lengths, and we differentiate long roots, middle roots and short roots (cf. Table 2).

Table 2.
$\left.\begin{array}{llll}\hline & \Phi_{\sigma} & \text { roots } & \text { lengths } \\ \hline \text { (a) } & B_{l} & (l \geqq 3) \\ C_{l} & (l \geqq 2) \\ & F_{4}\end{array}\right)$

Now we consider the subset $\Omega=\Omega_{1} \cup \Omega_{2}$ of $\Phi_{\sigma} \times \mathbf{Z}$ defined as follows.
Type (a):

$$
\begin{aligned}
& \Omega_{1}=\{(c, 2 n) ; c \text { is long, } n \in \mathbf{Z}\} \\
& \Omega_{2}=\{(c, n) ; c \text { is short, } n \in \mathbf{Z}\}
\end{aligned}
$$

Type (b):

$$
\begin{aligned}
& \Omega_{1}=\{(c, 2 n+1) ; c \text { is long, } n \in \mathbf{Z}\} \\
& \Omega_{2}=\{(c, n) ; c \text { is short, } n \in \mathbf{Z}\}
\end{aligned}
$$

Type (c):

$$
\begin{aligned}
& \Omega_{1}=\{(c, 2 n+1) ; c \text { is long, } n \in \mathbf{Z}\} \\
& \Omega_{2}=\{(c, n) ; c \text { is middle or short, } n \in \mathbf{Z}\}
\end{aligned}
$$

Type (d):

$$
\begin{aligned}
& \Omega_{1}=\{(c, 3 n) ; c \text { is long, } n \in \mathbf{Z}\} \\
& \Omega_{2}=\{(c, n) ; c \text { is short, } n \in \mathbf{Z}\} .
\end{aligned}
$$

We see that Ω corresponds to an affine root system, denoted $S\left(\Phi_{c}\right)^{2}$ (cf. [11, Proposition 2.1/Theorem 5.2]), and that an element (c, n) of Ω can be regarded as an element $c+n \xi$ of the corresponding Euclidean root system (cf. [8, Table 2]).

For each $(a, n) \in \Omega$, let $w_{a, n}$ be a permutation on Ω defined by

$$
w_{c, m}(b, m)=\left(w_{b} b, m-\langle b, a\rangle \mathrm{n}\right)
$$

for all,$m)$ \&. Let $W(\Omega)$ be the permutation group on Ω generated by $w_{a, n}$ for all $(a, n) \in \Omega$. We note that $W(\Omega)$ acts on $\Phi_{\sigma} \times \mathbf{Z}$ similarly. For each $(a, n) \in \Omega$, set

$$
h_{a, n}=w_{a, n} w_{a, 0} 0^{-1} \text { if } \frac{1}{2} a \notin \Phi_{\sigma},
$$

and set

$$
h_{a, n}=w_{a, n} w_{b, 0^{-1}} \text { if } b=\frac{1}{2} a \in \Phi_{\sigma} .
$$

Let I be the subgroup of $W(\Omega)$ generated by $h_{a, n}$ for all $(a, n) \in \Omega$, and let J be the subgroup of $W(\Omega)$ generated by $w_{a, 0}$ for all $a \in \operatorname{Red}\left(\Phi_{\sigma}\right)$, where

$$
\operatorname{Red}\left(\Phi_{\sigma}\right)=\left\{b \in \Phi_{\sigma} ; \frac{1}{2} b \notin \Phi_{\sigma}\right\} .
$$

We see that J is isomorphic to the Weyl group W of Φ_{σ}.
Lemma 1.1. (1) Let (a, n) and (b, m) be in Ω. Then

$$
h_{a, n}(b, m)=(b, m+\langle b, a\rangle n) .
$$

(2) Suppose that Φ_{σ} is of type $B C_{l}$. Let a be in Φ_{σ} and of type (R-3). Then $h_{a, 1}=\left(h_{2 a, 1}\right)^{2}$.
(3) Let (a, n) and (b, m) be in Ω, and set $c=w_{a} b$. Then

$$
w_{a, n} h_{b, m} w_{a, n}^{-1}=h_{c, m} .
$$

Let Ω_{I} be the subset of Ω defined below, where notation is as in Table 1:

$$
\begin{aligned}
& \Omega_{I}=\left\{\left(a_{i}, 1\right),\left(a_{m+1}, 2\right) ; 1 \leqq i \leqq m\right\} \text { if } \Phi_{\sigma} \text { is of type } C_{m+1}, \\
& \Omega_{I}=\left\{\left(a_{i}, 1\right),\left(2 a_{m}, 1\right) ; 1 \leqq i \leqq m-1\right\} \text { if } \Phi_{\sigma} \text { is of type } B C_{m}, \\
& \Omega_{I}=\left\{\left(a_{i}, 2\right),\left(a_{m-1}, 1\right) ; 1 \leqq i \leqq m-2\right\} \text { if } \Phi_{\sigma} \text { is of type } B_{m-1}, \\
& \Omega_{I}=\left\{\left(a_{1}, 1\right),\left(a_{2}, 1\right),\left(a_{3}, 2\right),\left(a_{4}, 2\right)\right\} \text { if } \Phi_{\sigma} \text { is of type } F_{4}, \\
& \Omega_{I}=\left\{\left(a_{1}, 3\right),\left(a_{2}, 1\right)\right\} \text { if } \Phi_{\sigma} \text { is of type } G_{2} .
\end{aligned}
$$

Then I is the free abelian group generated by $h_{a, n}$ for all $(a, n) \in \Omega_{I}$, so $W(\Omega)=I \cdot J$.

Let $\Pi_{\sigma}=\left\{a_{1}, \ldots, a_{l}\right\}$ and let a_{0} be as follows:
(1) a_{0} is the highest short root in Φ_{σ} with respect to Π_{σ} if Φ_{σ} is of type B_{l}, C_{l}, F_{4}, or G_{2},
(2) a_{0} is the highest root in Φ_{σ} with respect to Π_{σ} if Φ_{σ} is of type $B C_{r}$. Set $a_{l+1}=-a_{0}$.

Let Δ be the dual root system of $\operatorname{Red}\left(\Phi_{\sigma}\right)$ and $\Delta_{0}=\left\{\delta_{1}, \ldots, \delta_{l}\right\}$ be a simple system of Δ. Let W^{*} be the affine Weyl group of Δ, and let δ_{0} be the highest root in Δ with respect to Δ_{0}. Put $\delta_{l+1}=-\delta_{0}$. Let $\Delta_{1}=$ $\Delta \times \mathbf{Z}$, and an element of Δ_{1} is denoted by $\delta^{(n)}$, where $\delta \in \Delta$ and $n \in \mathbf{Z}$.

For each $\delta^{(n)} \in \Delta_{1}$, let $w_{\delta}^{(n)}$ be the permutation on Δ_{1} defined by

$$
w_{\delta}^{(n)} \chi^{(m)}=\left(w_{\delta} \chi\right)^{(m-\langle\chi, \delta\rangle n)}
$$

for all $\chi^{(m)} \in \Delta_{1}$. Let W_{1} be the permutation group on Δ_{1} generated by $w_{\delta}^{(n)}$ for all $\delta^{(n)} \in \Delta_{1}$, and W_{0} the subgroup of W_{1} generated by $w_{\dot{\delta}}{ }^{(0)}$ for all $\delta \in \Delta$. Set

$$
h_{\delta}{ }^{(n)}=w_{\delta}{ }^{(n)} w_{\delta}{ }^{(0)-1}
$$

and H_{1} be the subgroup of W_{1} generated by $h_{\delta}{ }^{(n)}$ for all $\delta^{(n)} \in \Delta_{1}$. Then W_{0} is isomorphic to the Weyl group of Δ, and H_{1} is the free abelian group generated by $h_{\delta_{i}}{ }^{(1)}$ for all $\delta_{i} \in \Delta_{0}$, hence $W_{1}=H_{1} \cdot W_{0}$ and $W_{1} \simeq W^{*}$ (cf. [11, Lemma 1.1/Proposition 1.2]). Clearly $I \simeq H_{1} \simeq \mathbf{Z}^{l}$ and $J \simeq$ $W_{0} \simeq W$.

We fix simple roots of Φ_{σ} and Δ as follows, then we have a_{l+1} and δ_{l+1} as above. (We add the vertices of a_{l+1} and δ_{l+1}, and the corresponding edges.)
(i) The case $\Phi_{\sigma}=B_{l}$ and $\Delta=C_{l}(l \geqq 3)$:

(ii) The case $\Phi_{\sigma}=B C_{l}$ and $\Delta=A_{1}$:

(iii) The case $\Phi_{\sigma}=B C_{l}$ and $\Delta=C_{l}(l \geqq 2)$:

(iv) The case $\Phi_{\sigma}=C_{2}$ and $\Delta=B_{2}$:

$\Delta:$

(v) The case $\Phi_{\sigma}=C_{l}$ and $\Delta=B_{l}(l \geqq 3)$:

(vi) The case $\Phi_{\sigma}=F_{4}$ and $\Delta=F_{4}$:

(vii) The case $\Phi_{\sigma}=G_{2}$ and $\Delta=G_{2}$:

Δ :

The map ψ defined by

$$
\psi\left(w_{\delta_{i}}{ }^{(0)}\right)=w_{a i, 0}
$$

for $1 \leqq i \leqq l$ and

$$
\psi\left(w_{\delta_{l+1}}{ }^{(1)}\right)=w_{a_{l+1}, 1}
$$

induces an isomorphism, again called ψ, of W^{*} onto $W(\Omega)$. This fact is easily verified by the next lemma and proposition.

Lemma 1.2. Let (a, m) be in Ω and w in $W(\Omega)$, and set $(b, n)=w(a, m)$. Then $w w_{a, m} w^{-1}=w_{b, n}$ (cf. [11, Lemma 1.3]).

Set

$$
\begin{aligned}
\Omega_{0} & =\left\{\left(a_{0}, 1\right),\left(-a_{i}, 0\right) ; 1 \leqq i \leqq l\right\} \text { and } \\
Y^{\prime} & =\left\{w_{a, n} ;(a, n) \in \Omega_{0}\right\} .
\end{aligned}
$$

Proposition 1.3. Let $W(\Omega)$ and Y^{\prime} be as above. Then $W(\Omega)$ is generated by Y^{\prime} (cf. [11, Proposition 1.4]).

Thus, the following result has been proved.
Proposition 1.4. The group $W(\Omega)$ is isomorphic to the affine Weyl group of type Δ as in the following table.

Table 3.

Φ°	B_{l}	$B C_{l}$	C_{l}	F_{4}	G_{2}
Δ	C_{l}	C_{l}	B_{l}	F_{4}	G_{2}

When $w \in W(\Omega)$ is written as $w_{1} w_{2} \ldots w_{k}\left(w_{j} \in Y^{\prime}, k\right.$ minimal $)$, we write $l(w)=k$: this is the length of w. Set

$$
\Omega^{+}=\Omega \cap\left(\Phi_{\sigma}{ }^{+} \times \mathbf{Z}_{>0} \cup \Phi_{\sigma}{ }^{-} \times \mathbf{Z}_{\geqq 0}\right)
$$

and

$$
\Omega^{-}=\Omega-\Omega^{+}
$$

For each $w \in W(\Omega)$, set

$$
\Gamma(w)=\left\{(a, n) \in \Omega^{+} ; w(a, n) \in \Omega^{-}\right\}
$$

and

$$
N(w)=\operatorname{Card} \Gamma(w) .
$$

The following two propositions hold (cf. [4, Lemma 2.1/2.2] and [11, Proposition 1.5/1.8]).

Proposition 1.5. Let (a, n) be in Ω_{0} and w in $W(\Omega)$. Then:
(1) $\Gamma\left(w_{a, n}\right)=\{(a, n)\}$,
(2) $w_{a, n}(\Gamma(w)-\{(a, n)\})=\Gamma\left(w_{w_{a, n}}\right)-\{(a, n)\}$,
(3) (a, n) is in precisely one of $\Gamma(w)$ or $\Gamma\left(w, w_{a, n}\right)$,
(4) $N\left(w w_{a, n}\right)=N(w)-1$ if $(a, n) \in \Gamma(w), N\left(w w_{a, n}\right)=N(w)+1$ if $(a, n) \notin \Gamma(w)$.

Proposition 1.6. Let we in $W(\Omega)$. Then $N(w)=l(w)$.
2. Twisted Lie algebras. Let Φ be a reduced irreducible root system with a simple system $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $g_{\mathbf{C}}$ a finite dimensional complex simple Lie algebra of type Φ. Then there is a Chevalley basis $\left\{h_{i}, e_{\alpha} ; 1 \leqq i \leqq n, \alpha \in \Phi\right\}$ of $\mathfrak{g}_{\mathbf{C}}$ satisfying

$$
\begin{align*}
& {\left[h_{i}, e_{\alpha}\right]=\left\langle\alpha, \alpha_{i}\right\rangle e_{\alpha},} \tag{1}\\
& {\left[e_{\alpha}, e_{\beta}\right]=\left\{\begin{array}{l}
N_{\alpha, \beta} e_{\alpha+\beta} \text { if } \alpha+\beta \in \Phi, \\
h_{\alpha} \text { if } \alpha+\beta=0 \\
0 \text { otherwise }
\end{array}\right.} \tag{2}
\end{align*}
$$

(3) $N_{\alpha, \beta}= \pm(p+1)$ if $\beta-p \alpha, \ldots, \beta, \ldots, \beta+q \alpha$ is the α-string through $\beta, N_{\alpha, \beta}=-N_{\beta, \alpha}=-N_{-\alpha,-\beta}$,
(4) h_{α} is a \mathbf{Z}-linear combinations of h_{i} 's, $h_{\alpha_{i}}=h_{i}$, for any $\alpha, \beta \in \Phi$ and $1 \leqq i \leqq n$. We set

$$
\mathfrak{h}_{\mathbf{z}}=\sum_{i=1}^{n} \mathbf{Z} h_{i} \quad \text { and } \quad g_{\mathbf{z}}=\mathfrak{h}_{\mathbf{z}}+\sum_{\alpha \in \Phi} \mathbf{Z} e_{\alpha} .
$$

Let $K\left[T, T^{-1}\right]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K, i.e.,

$$
K\left[T, T^{-1}\right]=\left\{\sum_{m \in \mathbf{Z}} t_{m} T^{m} \text { (finite sum) } ; t_{m} \in K\right\},
$$

and set

$$
L=K\left[T, T^{-1}\right] \otimes_{\mathbf{z}} \mathfrak{g}_{\mathbf{z}} \quad \text { and } \quad \mathfrak{h}=K\left[T, T^{-1}\right] \otimes_{\mathbf{z}} \mathfrak{h}_{\mathbf{z}}
$$

From now on we will assume that Φ is of type $A_{n}(n \geqq 2), D_{n}(n \geqq 4)$ or E_{6}. We fix a nontrivial diagram automorphism σ of Φ (cf. Table 1). Associated to σ, we can find an automorphism of $\mathfrak{g}_{\mathbf{z}}$, again denoted σ, such that

$$
\sigma\left(h_{\alpha_{i}}\right)=h_{\beta_{i}}, \sigma\left(e_{ \pm \alpha_{i}}\right)=e_{ \pm \beta_{i}}
$$

for all $\alpha_{i} \in \Pi$, where $\beta_{i}=\sigma\left(\alpha_{i}\right)$. We write

$$
\sigma\left(e_{\alpha}\right)=k_{\alpha} e_{\sigma(\alpha)}
$$

for each $\alpha \in \Phi$, where $k_{\alpha} \in \mathbf{Z}$. Then we have $k_{\alpha}= \pm 1$ for all $\alpha \in \Phi$.
Proposition 2.1. Let (Φ, σ) be of 2 -type. Then we can choose a Chevalley basis which satisfies the following condition:
(1) $k_{\alpha}=-1$ if Φ is of type $A_{2 n}(n \geqq 1)$ and $\sigma(\alpha)=\alpha$;
(2) $k_{\alpha}=1$ otherwise (cf. [1, Proposition 3.1]).

Proposition 2.2. Let (Φ, σ) be of 3 -type. Then we can choose a Chevalley basis such that $k_{\alpha}=1$ for all $\alpha \in \Phi$.

Proof. We have $k_{\alpha}=k_{-\alpha}$ as $\sigma\left(h_{\alpha}\right)=h_{\sigma(\alpha)}$, so we may assume α is positive. Suppose $\sigma(\alpha)=\alpha$. Then $\left(k_{\alpha}\right)^{3}=1$ and $k_{\alpha}=1$. Next suppose $\sigma(\alpha) \neq \alpha$, and set $\beta=\sigma(\alpha)$ and $\gamma=\sigma^{2}(\alpha)$. Then $k_{\alpha} k_{\beta} k_{\gamma}=1$, and $\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right)$ $=(1,1,1),(1,-1,-1),(-1,1,-1)$, or $(-1,-1,1)$. To establish this proposition, we may assume $\left(k_{\alpha}, k_{\beta}, k_{\gamma}\right)=(1,-1,-1)$. Replacing e_{γ} by $-e_{\gamma}$, we have $\sigma\left(e_{\alpha}\right)=e_{\beta}, \sigma\left(e_{\beta}\right)=e_{\gamma}$ and $\sigma\left(e_{\gamma}\right)=e_{\alpha}$. Arrange the bases for negative roots similarly, and $k_{\alpha}=1$ for all $\alpha \in \Phi$.

We shall fix a Chevalley basis of $\mathfrak{g}_{\mathbf{c}}$ with the properties of Proposition 2.1 or 2.2 . We assume that K has a primitive r th root of unity when (Φ, σ) is of r-type. Therefore, in particular, we have char $K \neq r$. If $r=3$, we let ω denote a primitive cubic root of unity in K. Let τ be the Galois automorphism of $K\left[T, T^{-1}\right]$ over $K\left[T^{\tau}, T^{-r}\right]$ defined by

$$
\begin{align*}
& \tau\left(T^{ \pm 1}\right)=-T^{ \pm 1} \text { if } r=2 \tag{1}\\
& \tau\left(T^{ \pm 1}\right)=(\omega T)^{ \pm 1} \text { if } r=3 \tag{2}
\end{align*}
$$

Let L^{\prime} (resp. \mathfrak{h}^{\prime}) be the subalgebra of fixed points of L (resp. \mathfrak{h}) under $\tau \otimes \sigma$. (For more general cases, see [5], [6]).

For each $(c, m) \in \Omega$, we define an element $e_{c, m}$ of L^{\prime} as follows.
Type (a):

$$
\begin{aligned}
& e_{c, m}=T^{m} e_{\gamma} \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 0(2) \\
& e_{c, m}=T^{m} e_{\gamma_{1}}+T^{m} e_{\gamma_{2}} \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) and } m \equiv 0(2) \\
& e_{c, m}=T^{m} e_{\gamma_{1}}-T^{m} e_{\gamma_{2}} \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) and } m \equiv 1(2) .
\end{aligned}
$$

Type (b):

$$
\begin{aligned}
& e_{c, m}=T^{m} e_{\gamma} \text { if } c=(\gamma) \text { is of type }(\mathrm{R}-1) \text { and } m \equiv 1(2) \\
& e_{c, m}=T^{m} e_{\gamma_{1}}+T^{m} e_{\gamma_{2}} \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-3) and } \\
& \quad m \equiv 0(2) \\
& e_{c, m}=T^{m} e_{\gamma_{1}}-T^{m} e_{\gamma_{2}} \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-3) and } \\
& m \equiv 1(2) .
\end{aligned}
$$

Type (c):

$$
\begin{array}{r}
e_{c, m}=T^{m} e_{\gamma} \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 1(2) \\
e_{c, m}=T^{m} e_{\gamma_{1}}+T^{m} e_{\gamma_{2}} \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) or } \\
\text { (R-3), and } m \equiv 0(2) \\
e_{c, m}=T^{m} e_{\gamma_{1}}-T^{m} e_{\gamma_{2}} \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) or } \\
\text { (R-3), and } m \equiv 1(2) .
\end{array}
$$

Type (d):

$$
\begin{array}{r}
e_{c, m}=T^{m} e \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 0 \text { (3) } \\
e_{c, m}=T^{m} e_{\gamma_{1}}+T^{m} e_{\gamma_{2}}+T^{m} e_{\gamma_{3}} \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type } \\
\quad(\mathrm{R}-4) \text { and } m \equiv 0(3) \\
e_{c, m}=T^{m} e_{\gamma_{1}}+\omega T^{m} e_{\gamma_{2}}+\omega^{2} T^{m} e_{\gamma_{3}} \text { if } c=\begin{array}{r}
\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type } \\
(\mathrm{R}-4) \text { and } m \equiv 1(3) \\
e_{c, m}=T^{m} e_{\gamma_{1}}+\omega^{2} T^{m} e_{\gamma_{2}}+\omega T^{m} e_{\gamma_{3}} \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type } \\
(\mathrm{R}-4) \text { and } m \equiv 2(3) .
\end{array}
\end{array}
$$

Then $L^{\prime}=\mathfrak{h}^{\prime} \oplus \sum_{(c, m) \in \Omega} K e_{c, m}$. For each $c \in \Phi_{\sigma}$, set $h_{c}=h_{\gamma}$ if $c=(\gamma)$ is of type (R-1), $h_{c}=h_{\gamma_{1}}+h_{\gamma_{2}}$ if $c=\left(\gamma_{1}, \gamma_{2}\right)$ is of type (R-2) or (R-3), and $h_{c}=h_{\gamma_{1}}+h_{\gamma_{2}}+h_{\gamma_{3}}$ if $c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is of type (R-4). Let

$$
\mathfrak{h}^{\prime \prime}=\sum_{c \in \Phi_{\sigma}} K h_{c} .
$$

For each $(c, m) \in \Omega$, we have $\left[h, e_{c, m}\right]=c(h) e_{c, m}$ for all $h \in \mathfrak{h}^{\prime \prime}$, where c is regarded as an element of $\left(\mathfrak{h}^{\prime \prime}\right)^{*}$, the dual of $\mathfrak{h}^{\prime \prime}$.

Proposition 2.3. Let (c, m) be in Ω. Then:
(1) $\left[h_{c}, e_{c, m}\right]=2 e_{c, m}$ if c is of type (R-1), (R-2) or (R-4),
(2) $\left[h_{c}, e_{c, m}\right]=e_{c, m}$ if c is of type (R-3),
(3) $\left[e_{c, m}, e_{-c,-m}\right]=h_{c}$.

Proof. The case when c is of type (R-1), (R-2), or (R-4) is easy. Assume $c=\left(\gamma_{1}, \gamma_{2}\right)$ is of type (R-3). Then $h_{c}=h_{\gamma_{1}}+h_{\gamma_{2}}$, and $e_{c, m}=T^{m} e_{\gamma_{1}}$ $+T^{m} e_{\gamma_{2}}\left(\right.$ resp. $\left.T^{m} e_{\gamma_{1}}-T^{m} e_{\gamma_{2}}\right)$ if $m \equiv 0$ (2) (resp. $m \equiv 1$ (2)). Hence,

$$
\begin{aligned}
{\left[h_{\gamma_{1}}+h_{\gamma_{2}}, T^{m} e_{\gamma_{1}} \pm T^{m} e_{\gamma_{2}}\right]=2 T^{m} e_{\gamma_{1}}-T^{m} e_{\gamma_{1}} } & \mp T^{m} e_{\gamma_{2}} \pm 2 T^{m} e_{\gamma_{2}} \\
& =T^{m} e_{\gamma_{1}} \pm T^{m} e_{\gamma_{2}}
\end{aligned}
$$

and

$$
\left[T^{m} e_{\gamma_{1}} \pm T^{m} e_{\gamma_{2}}, T^{-m} e_{-\gamma_{1}} \pm T^{-m} e_{-\gamma_{2}}\right]=h_{\gamma_{1}}+h_{\gamma_{2}} .
$$

3. Twisted Chevalley groups. Let ρ be a finite dimensional complex faithful representation of $\mathfrak{g}_{\mathbf{C}}$. We let G be a Chevalley group over $K\left[T, T^{-1}\right]$ associated with $g_{\mathbf{G}}$ and ρ. Set $\Phi_{1}=\Phi \times \mathbf{Z}$. For each $(\alpha, n) \in \Phi_{1}$, there exists a group isomorphism

$$
t \mapsto x_{\alpha}^{(n)}(t)
$$

of the additive group K^{+}of K onto a subgroup $X_{\alpha}{ }^{(n)}$ of G (for the definition, see [11]). The elementary subgroup E of G is generated by $X_{\alpha}{ }^{(n)}$ for all $(\alpha, n) \in \Phi_{1}$. Let K^{*} be the multiplicative group of K. For each $(\alpha, n) \in \Phi_{1}$ and $t \in K^{*}$, we define

$$
\begin{aligned}
& w_{\alpha}^{(n)}(t)=x_{\alpha}{ }^{(n)}(t) x_{-\alpha}{ }^{(-n)}\left(-t^{-1}\right) x_{\alpha}^{(n)}(t), \\
& h_{\alpha}^{(n)}(t)=w_{\alpha}{ }^{(n)}(t) w_{\alpha}^{(0)}(1)^{-1} .
\end{aligned}
$$

Let N be the subgroup of E generated by $w_{\alpha}{ }^{(n)}(t)$ for all $(\alpha, n) \in \Phi_{1}$ and $t \in K^{*}$, and let H_{0} be the subgroup of E generated by $h_{\alpha}{ }^{(0)}(t)$ for all $\alpha \in \Phi$ and $t \in K^{*}$. Let U be the subgroup of E generated by $x_{\alpha}{ }^{(n)}(t)$ for all $(\alpha, n) \in \Phi_{1}{ }^{+}$and $t \in K$, where

$$
\Phi_{1}{ }^{+}=\left(\Phi^{+} \times \mathbf{Z}_{>0}\right) \cup\left(\Phi^{-} \times \mathbf{Z}_{\geqq 0}\right)
$$

Let B be the subgroup of E generated by U and H_{0}.
Theorem 3.1. Notation is as above. Then:
(1) (E, B, N) is a Tits system,
(2) $N /(B \cap N)$ is isomorphic to the affine Weyl group of $\Phi(c f .[11$, Theorem 2.1]).

For any $(c, m) \in \Omega$ and $t \in K$, we define $x_{c, m}(t)$ as follows.
Type (a):

$$
\begin{array}{r}
x_{c, m}(t)=x_{\gamma}{ }^{(m)}(t) \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 0(2) \\
x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}(t) \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) } \\
\quad \text { and } m \equiv 0(2) \\
x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}(-t) \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) } \\
\text { and } m \equiv 1(2) .
\end{array}
$$

Type (b):

$$
\begin{align*}
& x_{c, m}(t)=x_{\gamma}{ }^{(m)}(t) \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 1 \\
& x_{c, m}(t)=x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(t) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-3) and } m \equiv 0 \tag{2}\\
& x_{c, m}(t)=x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(-t) x_{\gamma_{1}+\gamma_{2}}^{\iota \iota m)}\left(-\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-3) and } m \equiv 1 \text { (2). }
\end{align*}
$$

Type (c):

$$
\begin{array}{r}
\begin{array}{r}
x_{c, m}(t)=x_{\gamma}{ }^{(m)}(t) \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 1(2) \\
x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}(t) \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) } \\
\quad \text { and } m \equiv 0 \\
x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}(-t) \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) } \\
\text { and } m \equiv 1 \\
x_{c, m}(t)=x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(t) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
\text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-3) and } m \equiv 0 \\
x_{c, m}(t)=x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(-t) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(-\frac{1}{2} N_{\left.\gamma_{2}, \gamma_{1} t^{2}\right)}\right. \\
\text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-3) and } m \equiv 1
\end{array}
\end{array}
$$

Type (d):

$$
\begin{align*}
& x_{c, m}(t)=x_{\gamma}{ }^{(m)}(t) \text { if } c=(\gamma) \text { is of type (R-1) and } m \equiv 0 \\
& x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}(t) x_{\gamma_{3}}{ }^{(m)}(t) \\
& \quad \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type (R-4) and } m \equiv 0 \tag{3}\\
& x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}(\omega t) x_{\gamma_{3}}{ }^{(m)}\left(\omega^{2} t\right) \\
& \quad \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type (R-4) and } m \equiv 1(3) \tag{3}\\
& x_{c, m}(t)=x_{\gamma_{1}}{ }^{(m)}(t) x_{\gamma_{2}}{ }^{(m)}\left(\omega^{2} t\right) x_{\gamma_{3}}{ }^{(m)}(\omega t) \\
& \quad \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type (R-4) and } m \equiv 2(3) .
\end{align*}
$$

For each $(c, m) \in \Omega$, let $X_{c, m}$ be the subgroup of E generated by $x_{c, m}(t)$ for all $t \in K$. Then $X_{c, m}$ is isomorphic to the additive group K^{+}of K. Let E^{\prime} be the subgroup of E generated by $X_{c, m}$ for all $(c, m) \in \Omega$. For each $(c, m) \in \Omega$ and $t \in K^{*}$, we define

$$
w_{c, m}(t)=x_{c, m}(t) x_{-c,-m}\left(-t^{-1}\right) x_{c, m}(t)
$$

if c is of type (R-1), (R-2) or (R-4),

$$
w_{c, m}(t)=x_{c, m}(t) x_{-c,-m}\left(-2 t^{-1}\right) x_{c, m}(t)
$$

if c is of type (R-3) and $m \equiv 0(2)$,

$$
w_{c, m}(t)=x_{c, m}(t) x_{-c,-m}\left(2 t^{-1}\right) x_{c, m}(t)
$$

if c is of type (R-3) and $m \equiv 1$ (2).
Let N^{\prime} be the subgroup of E^{\prime} generated by $w_{c, m}(t)$ for all $(c, m) \in \Omega$ and $t \in K^{*}$.

Lemma 3.2. Let (c, m) be in Ω and t in K^{*}. Then:

$$
\begin{align*}
& w_{c, m}(t)=w_{\gamma}{ }^{(m)}(t) \text { if } c=(\gamma) \text { is of type }(\mathrm{R}-1), \tag{1}\\
& w_{c, m}(t)=w_{\gamma_{1}}{ }^{(m)}(t) w_{\gamma_{2}}{ }^{(m)}(t) \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type }(\mathrm{R}-2) \tag{2}\\
& \text { and } m \equiv 0(2)
\end{align*}
$$

$$
\begin{equation*}
w_{c, m}(t)=w_{\gamma_{1}}{ }^{(m)}(t) w_{\gamma_{2}}{ }^{(m)}(-t) \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type (R-2) } \tag{3}
\end{equation*}
$$

and $m \equiv 1(2)$,

$$
\begin{align*}
& w_{c, m}(t)=h_{\gamma_{1}}^{(0)}(-1) w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \tag{4}\\
& \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type }(\mathrm{R}-3) \text { and } m \equiv 0(2)
\end{align*}
$$

$$
\begin{align*}
& w_{c, m}(t)=h_{\gamma_{1}}^{(0)}(-1) w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(-\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \tag{5}\\
& \quad \text { if } c=\left(\gamma_{1}, \gamma_{2}\right) \text { is of type }(\mathrm{R}-3) \text { and } m \equiv 1(2)
\end{align*}
$$

$$
\begin{equation*}
w_{c, m}(t)=w_{\gamma_{1}}{ }^{(m)}(t) w_{\gamma_{2}}{ }^{(m)}(t) w_{\gamma_{3}}{ }^{(m)}(t) \tag{6}
\end{equation*}
$$

$$
\text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type (R-4) and } m \equiv 0(3)
$$

$$
\begin{align*}
& w_{c, m}(t)= w_{\gamma_{1}}{ }^{(m)}(t) w_{\gamma_{2}}{ }^{(m)}(\omega t) w_{\gamma_{3}}{ }^{(m)}\left(\omega^{2} t\right) \tag{7}\\
& \quad \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type (R-4) and } m \equiv 1(3), \\
& w_{c, m}(t)=w_{\gamma_{1}}{ }^{(m)}(t) w_{\gamma_{2}}{ }^{(m)}\left(\omega^{2} t\right) w_{\gamma_{3}}{ }^{(m)}(\omega t) \tag{8}\\
& \text { if } c=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \text { is of type (R-4) and } m \equiv 2(3) .
\end{align*}
$$

Proof. (1), (2), (3), (6), (7), and (8) are easy. Here we shall establish (4). By the Jacobi identity, we have

$$
\begin{aligned}
& N_{\gamma_{1}+\gamma_{2},-\gamma_{1}} N_{\gamma_{2}, \gamma_{1}}=N_{-\gamma_{1}-\gamma_{2}, \gamma_{1}} N_{-\gamma_{2},-\gamma_{1}}=1 \text { and } \\
& N_{\gamma_{1}+\gamma_{2},-\gamma_{2}} N_{\gamma_{2}, \gamma_{1}}=N_{-\gamma_{1}-\gamma_{2}, \gamma_{2}} N_{-\gamma_{2},-\gamma_{1}}=-1 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
w_{c, m} & (t)=x_{c, m}(t) x_{-c,-m}\left(-2 t^{-1}\right) x_{c, m}(t) \\
& =x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(t) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) x_{-\gamma_{1}}^{(-m)}\left(-2^{-1}\right) x_{-\gamma_{2}}^{(-m)}\left(-2 t^{-1}\right) \\
& \times x_{-\gamma_{1}-\gamma_{2}}^{(-2 m)}\left(2 N_{-\gamma_{2},-\gamma_{1}} t^{-2}\right) x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(t) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& =x_{\gamma_{1}}^{(m)}(t) x_{-\gamma_{1}}^{(-m)}\left(-2 t^{-1}\right) x_{\gamma_{1}}^{(m)}(t) x_{-\gamma_{1}}^{(-m)}\left(-2 t^{-1}\right) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& \times x_{-\gamma_{1}-\gamma_{2}}^{(-2 m)}\left(2 N_{-\gamma_{2},-\gamma_{1}} t^{2}\right) x_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& =w_{\gamma_{1}}^{(m)}(t) x_{\gamma_{1}}^{(m)}(-t) w_{-\gamma_{1}}^{(-m)}\left(-t^{-1}\right) x_{-\gamma_{1}}^{(-m)}\left(-t^{-1}\right) w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& =w_{\gamma_{1}}^{(m)}(t) x_{\gamma_{1}}^{(m)}(-t) w_{\gamma_{1}}^{(m)}(t) x_{-\gamma_{1}}^{(-m)}\left(-t^{-1}\right) w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& =w_{\gamma_{1}}^{(m)}(t)^{2} w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& =h_{\gamma_{1}}^{(m)}(t) h_{\gamma_{1}}^{(-m)}\left(-t^{-1}\right) w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) \\
& =h_{\gamma_{1}}^{(0)}(-1) w_{\gamma_{1}+\gamma_{2}}^{(2 m)}\left(\frac{1}{2} N_{\gamma_{2}, \gamma_{1}} t^{2}\right) .
\end{aligned}
$$

(5) is similarly shown.

By Lemma 3.2 and [11, Lemma 2.3 (2)], the next lemma can be established.

Lemma 3.3. Let (a, n) and (b, m) be in Ω, and t in K^{*}, and set $\left(b^{\prime}, m^{\prime}\right)=$ $w_{a, n}(b, m)$. Then

$$
w_{a, n}(t) X_{b, m} w_{a, n}(t)^{-1}=X_{b^{\prime}, m^{\prime}} .
$$

By Lemma 3.3, we see that there is a group homomorphism ν of N^{\prime} onto $W(\Omega)$ defined by $\nu\left(w_{a, n}(t)\right)=w_{a, n}$ for all $(a, n) \in \Omega$ and $t \in K^{*}$. Let $H_{0}{ }^{\prime}$ be the kernel of ν. We sometimes identify an element of $W(\Omega)$ with a representative in N^{\prime} of $N^{\prime} / H_{0}{ }^{\prime}$. Let U^{\prime} be the subgroup of E^{\prime} generated by $X_{c, m}$ for all $(c, m) \in \Omega^{+}$, and let B^{\prime} be the subgroup of E^{\prime} generated by U^{\prime} and $H_{0}{ }^{\prime}$.

Theorem 3.4. Let Y^{\prime} be as in Section 1. Then ($E^{\prime}, B^{\prime}, N^{\prime}, Y^{\prime}$) is a Tits system.
This theorem will be established in Section 5. For that purpose it is necessary to prove the next proposition. Let s be in Y^{\prime}. For some $(c, n) \in$ Ω_{0}, we have $s=w_{c, n}$. Set

$$
\Omega^{+}(s)=\left\{(a, m) \in \Omega^{+} ; a \in \mathbf{Q} c\right\} .
$$

Let P_{s} be the subgroup of U^{\prime} generated by $X_{a, m}$ for all $(a, m) \in \Omega^{+}(s)$.
Proposition 3.5. Let sbe in Y^{\prime}. Then

$$
s P_{s} s^{-1} \subseteq B^{\prime} \cup B^{\prime} s B^{\prime} .
$$

We shall show this proposition in Section 4.
4. Proof of proposition 3.5. Let s be in Y^{\prime}, and write $s=w_{c, n}$ for some $(c, n) \in \Omega_{0}$. Let

$$
\Omega(s)=\{(a, m) \in \Omega ; a \in \mathbf{Q} c\}
$$

and $E^{\prime}(s)$ be the subgroup of E^{\prime} generated by $x_{a, m}(t)$ for all $(a, m) \in \Omega(s)$ and $t \in K$. If $\Phi_{\sigma} \cap \mathbf{Q} c=\{ \pm c\}$, then we can view $E^{\prime}(s)$ as the elementary subgroup of a Chevalley group of type A_{1} over $K\left[T, T^{-1}\right], K\left[T^{2}, T^{-2}\right]$ or $K\left[T^{3}, T^{-3}\right]$, therefore Proposition 3.5 can be shown using the result in [11, Section 3]. Thus, to establish Proposition 3.5, we may assume that Φ is of type A_{2} and Φ_{σ} is of type $B C_{1}$. In this section, from now on we assume G is a Chevalley group of type A_{2} over $K\left[T, T^{-1}\right]$, so $\Phi_{\sigma}=$ $\{ \pm a, \pm 2 a\}$,

$$
\begin{aligned}
& \Omega^{+}=\{(+a, n),(-a, m),(\pm 2 a, k) \in \Omega ; \\
& \quad n>0, m \geqq 0, k>0, k \equiv 1(2)\} .
\end{aligned}
$$

We simply write

$$
\begin{aligned}
& w_{0}=w_{-a, 0}=w_{-a}(1) w_{2 a, 1}(2) w_{2 a, 1}(-1) \quad \text { and } \\
& w_{1}=w_{2 a, 1}=w_{2 a, 1}(1) .
\end{aligned}
$$

Let $S_{\lambda}=B^{\prime} \cup B^{\prime} w_{\lambda} B^{\prime}$, where $\lambda=0,1$.
Lemma 4.1. The following statements hold.
(1) $w_{0} X_{ \pm a, n} w_{0}^{-1}=X_{\mp a, n} \subseteq B^{\prime} \quad$ if $n \geqq 1$.
(2) $w_{0} X_{ \pm 2 a, n} w_{0}^{-1}=X_{\mp 2 a, n} \subseteq B^{\prime} \quad$ if $n \geqq 1, n \equiv 1$ (2).
(3) $w_{0} X_{-a, 0} w_{0}^{-1}=X_{a, 0} \subseteq S_{0}$.
(4) $w_{1} X_{a, n} w_{1}^{-1}=X_{-a, n-1} \subseteq B^{\prime} \quad$ if $n \geqq 1$.
(5) $w_{1} X_{-a, n} w_{1}^{-1}=X_{a, n+1} \subseteq B^{\prime} \quad$ if $n \geqq 0$.
(6) $w_{1} X_{2 a, n} w_{1}^{-1}=X_{-2 a, n-2} \subseteq B^{\prime} \quad$ if $n \geqq 3, n \equiv 1$ (2).
(7) $w_{1} X_{-2 a, n} w_{1}^{-1}=X_{2 a, n+2} \subseteq B^{\prime} \quad$ if $n \geqq 1, n \equiv 1$ (2).
(8) $w_{1} X_{2 a, w_{1} w_{1}^{-1}}=X_{-2 a,-1} \subseteq S_{1}$.

Definition. Let x be in E^{\prime}.
(1) x is called a ($Q S, 0$)-element if x can be written as

$$
x_{-a, 0}(t) x_{a, 0}(u) x_{b_{1}, m_{1}}\left(t_{1}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v)
$$

where $\left(b_{j}, m_{j}\right) \in \Omega^{+}-\{(-a, 0)\}, k \geqq 0, t, u, t_{1}, \ldots, t_{k} \in K$, and $v \in K^{*}$.
(2) x is called a $(Q S, 1)$-element if x can be written as

$$
x_{2 a, 1}(t) x_{-2 a,-1}(u) x_{b_{1}, m_{1}}\left(t_{1}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{2 a, 1}(v)
$$

where $\left(b_{j}, m_{j}\right) \in \Omega^{+}-\{(2 a, 1)\}, k \geqq 0, t, u, t_{1}, \ldots, t_{k} \in K$, and $v \in K^{*}$.
(3) x is called an $(S, 0)$-element (resp. $(S, 1)$-element) if x is a $(Q S, 0)$ element (resp. ($Q S, 1$)-element) with $u=0$.

Lemma 4.2. Let x be in E^{\prime} and $\lambda=0$, 1. If x is an (S, λ)-element, then $w_{\lambda} x w_{\lambda} \in S$.

Proof. Set $\lambda=0$. We proceed by induction on k. If $t=0$, clearly $w_{0} x w_{0}-1 \in S_{0}$ by Lemma 4.1. Assume $t \neq 0$.

Case 1: $\left(b_{1}, m_{1}\right)=(-a, m), m>0, m \equiv 1$ (2).

$$
\begin{aligned}
& w_{0} x w_{0}{ }^{-1}=w_{0} x_{-a, 0}(t) x_{-a, m}\left(t_{1}\right) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots \\
& \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}-1=w_{0} x_{-2 a, m}\left(\pm 2 t t_{1}\right) x_{-a, m}\left(t_{1}\right) x_{-a, 0}(t) \\
& \quad \times x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}-1 \in X_{2 a, m} X_{a, m} w_{0} x_{-a, 0}(t) \\
& \quad \times x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}-1 \subseteq B^{\prime} S_{0} \subseteq S_{0}
\end{aligned}
$$

Case 2: $\left(b_{1}, m_{1}\right)=(-a, m), m>0, m \equiv 0(2)$.

$$
\begin{aligned}
& w_{0} x w_{0}^{-1}=w_{0} x_{-a, 0}(t) x_{-a, m}\left(t_{1}\right) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}{ }^{-1} \\
& \quad=w_{0} x_{-a, m}\left(t_{1}\right) x_{-a, 0}(t) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}^{-1} \\
& \in X_{a, m} w_{0} x_{-a, 0}(t) x_{b_{2}, m_{k}}\left(t_{2}\right) \ldots x_{b_{k}, m_{\kappa}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}^{-1} \\
& \quad \subseteq B^{\prime} S_{0}=S_{0} .
\end{aligned}
$$

Case 3: $\left(b_{1}, m_{1}\right)=(-2 a, m), m>0, m \equiv 1(2)$.

$$
\begin{aligned}
& w_{0} x w_{0}^{-1}=w_{0} x_{-a, 0}(t) x_{-2 a, m}\left(t_{1}\right) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}{ }^{-1} \\
& =w_{0} x_{-2 a, m}\left(t_{1}\right) x_{-a, 0}(t) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}{ }^{-1} \\
& \in X_{2 a, m} w_{0} x_{-a, 0}(t) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}-1 \\
& \qquad B^{\prime} S_{0}=S_{0}
\end{aligned}
$$

Case 4: $\left(b_{1}, m_{1}\right)=(a, m), m>0$,

$$
\begin{aligned}
& \begin{aligned}
& w_{0} x w_{0}^{-1}=w_{0} x_{-a, 0}(t) x_{a, m}\left(t_{1}\right) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}^{-1} \\
&=x_{a, 0}(-t) x_{-a, m}\left(-t_{1}\right) x_{2} \ldots x_{k} x_{a, 0}(-v) \\
&=x_{-a, 0}\left(-2 t^{-1}\right) w_{-a, 0}\left(2 t^{-1}\right) x_{-a, 0}\left(-2 t^{-1}\right) x_{-a, m}\left(-t_{1}\right) \\
& \times x_{2} \ldots x_{k} x_{-a, 0}\left(-2 v^{-1}\right) w_{-a, 0}\left(2 v^{-1}\right) x_{-a, 0}\left(-2 v^{-1}\right) \\
& \in B^{\prime} w_{0} x_{-a, 0}\left(-2 t^{-1}\right) x_{-a, m}\left(-t_{1}\right) x_{2} \ldots x_{k} x_{-a, 0}\left(-2 v^{-1}\right) w_{0}^{-1} B^{\prime} \\
&\left(x_{j}\right.\left.=w_{0} x_{b_{j, m j}}\left(t_{j}\right) w_{0}-1,2 \leqq j \leqq k\right) . \\
& \subseteq B^{\prime} S_{0} B^{\prime}=S_{0}
\end{aligned}
\end{aligned}
$$

Case 5: $\left(b_{1}, m_{1}\right)=(2 a, m), m>0, m \equiv 1$ (2).

$$
\begin{aligned}
& w_{0} x w_{0}^{-1}=w_{0} x_{-a, 0}(t) x_{2 a, m}\left(t_{1}\right) x_{b_{2}, m_{2}}\left(t_{2}\right) \ldots x_{b_{k}, m_{k}}\left(t_{k}\right) x_{-a, 0}(v) w_{0}-1 \\
& \quad=x_{a, 0}(-t) x_{-2 a, m}\left(t_{1}\right) x_{2} \ldots x_{k} x_{a, 0}(-v) \\
& \quad=x_{-a, 0}\left(-2 t^{-1}\right) w_{-a, 0}\left(2 t^{-1}\right) x_{-a, 0}\left(-2 t^{-1}\right) x_{-2 a, m}\left(t_{1}\right) \\
& \times x_{2} \ldots x_{k} x_{-a, 0}\left(-2 v^{-1}\right) w_{-a, 0}\left(2 v^{-1}\right) x_{-a, 0}\left(-2 v^{-1}\right) \\
& \in B^{\prime} w_{0} x_{-a, 0}\left(-2 t^{-1}\right) x_{-2 a, m}\left(t_{1}\right) x_{2} \ldots x_{k} x_{-a, 0}\left(-2 v^{-1}\right) w_{0}-1 B^{\prime} \\
& \subseteq B^{\prime} S_{0} B^{\prime}=S_{0}
\end{aligned}
$$

$$
\left(x_{j}=w_{0} x_{b_{j}, m_{j}}\left(t_{j}\right) w_{0}^{-1}, 2 \leqq j \leqq k\right)
$$

The case when $\lambda=1$ is similarly shown.
Lemma 4.3. Let x be in E^{\prime}.
(1) If x is an $(S, 0)$-element, then

$$
w_{0} x w_{0}^{-1} \in B^{\prime} w_{0} X_{-a, \mathrm{c}} X_{a, 0} w_{0}^{-1}
$$

(2) If x is an ($S, 1$)-element, then

$$
w_{1} x w_{1}^{-1} \in B^{\prime} w_{1} X_{2 a, 1} X_{-2 a,-1} w_{1}^{-1}
$$

Proof. Proceed by induction on k as in Lemma 4.2. Then we have (1) and (2).

Lemma 4.4. Let x be in E^{\prime} and $\lambda=0$, 1. If x is a $(Q S, \lambda)$-element, then $w_{\lambda} x w_{\lambda}{ }^{-1} \in S$.

Proof. Lemma 4.2 implies this lemma as in [11, Lemma 3.6].
Lemma 4.5. Let x be in E^{\prime}.
(1) If x is a $(Q S, 0)$-element, then

$$
w_{0} x w_{0}^{-1} \in B^{\prime} w_{0} X_{-a, 0} X_{a, 0} w_{0}^{-1}
$$

(2) If x is a $(Q S, 1)$-element, then

$$
w_{1} x w_{1}^{-1} \in B^{\prime} w_{1} X_{2 a, 1} X_{-2 a,-1} w_{1}^{-1} .
$$

Proof. Lemma 4.3 implies this lemma.
These five lemmas lead to Proposition 3.5 as in [11, Section 3].
5. Proof of theorem 3.4. Notation is as in Section 3. By using the commutator relations in [11, Lemma 2.2], we can establish the following proposition.

Proposition 5.1. Let (a, m) and (b, n) be in Ω such that $a+b \neq 0$. Then

$$
\begin{aligned}
{\left[X_{a, m}, X_{b, n}\right] \subseteq\left\langle X_{c, k} ;(c, k)\right.} & \in \Omega \\
c & =i a+j b, k=i m+j n, i, j>0\rangle
\end{aligned}
$$

Let s be in Y^{\prime}, and let $\Omega^{+}(s)^{\prime}=\Omega^{+}-\Omega^{+}(s)$. Let Q_{s} be the subgroup of U^{\prime} generated by $X_{a, m}$ for all $(a, m) \in \Omega^{+}(s)^{\prime}$. Then, by Proposition 5.1, we have

$$
\begin{equation*}
P_{s} \text { normalizes } Q_{s}, \tag{5.2}
\end{equation*}
$$

(5.3) $\quad U^{\prime}=P_{s} Q_{s}$.

By the definition of $H_{0}{ }^{\prime}$,
(5.4) $H_{0}{ }^{\prime}$ normalizes $X_{c, m}$ for all $(c, m) \in \Omega$,
(5.5) $\quad B^{\prime}=U^{\prime} \cdot H_{0}{ }^{\prime}$.

Clearly, $B^{\prime} \cap N^{\prime} \supseteq H_{0}{ }^{\prime}$. Conversely let x be in $B^{\prime} \cap N^{\prime}$. Then $\bar{x} \in W(\Omega)$, where \bar{x} is the image of x under the canonical group homomorphism - of N^{\prime} onto $N^{\prime} / H_{0}{ }^{\prime}$. Since x is in B^{\prime}, we have $\bar{x} \Omega^{+} \subseteq \Omega^{+}$, hence $N(\bar{x})=0$ and $x \in H_{0}{ }^{\prime}$. Thus,

$$
\begin{equation*}
B^{\prime} \cap N^{\prime}=H_{0^{\prime}} . \tag{5.6}
\end{equation*}
$$

By Proposition 3.5, (5.3) and (5.5),

$$
\begin{aligned}
& s B^{\prime} s^{-1}=s\left(P_{s} Q_{s} H_{0}{ }^{\prime}\right) s^{-1}=\left(s P_{s} s^{-1}\right)\left(s Q_{s} s^{-1}\right)\left(s H_{0}{ }^{\prime} s^{-1}\right) \\
& \subseteq\left(B^{\prime} \cup B^{\prime} s B^{\prime}\right) B^{\prime} H_{0}^{\prime} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
B^{\prime} \cup B^{\prime} s B^{\prime} \text { is a subgroup of } E^{\prime} \tag{5.7}
\end{equation*}
$$

We see that E acts on L via the adjoint representation (cf. [11, Section 4]). Then L^{\prime} is stable under the action of E^{\prime}. Let g be in U^{\prime} and $(a, n) \in$ Ω_{0}, and set

$$
Z_{a, n}=\sum_{(b, m) \in \Omega^{+}+\{(a, n)\}} K e_{b, m} .
$$

If a is of type (R-1), (R-2), or (R-4) (resp. of type (R-3)), then we can write

$$
g e_{-a,-n}=e_{-a,-n}+\zeta h_{a}-\zeta^{2} e_{a, n}+z
$$

(resp. $g e_{-a,-n}=e_{-a,-n}+\zeta h_{a}-\frac{1}{2} \zeta^{2} e_{a, n}+z$) for some $\zeta \in K$ and $z \in Z_{a, n}$ (cf. Proposition 2.3). Let $\theta_{a, n}$ be a map of U^{\prime} onto K defined by $\theta_{a, n}(g)=$ ζ. As

$$
g h_{a}=h_{a}-2 \zeta e_{a, n}+z^{\prime}
$$

(resp. $g h_{a}=h_{a}-\zeta e_{a, n}+z^{\prime}$) and $g Z_{a, n} \subseteq Z_{a, n}$, the map $\theta_{a, n}$ is a group homomorphism of U^{\prime} onto the additive group K^{+}of K, where $z^{\prime} \in Z_{a, n}$. Let $D_{a, n}$ be the kernel of the homomorphism $\theta_{a, n}$. By (5.7),

$$
w_{a, n} D_{a, n} w_{a, n}{ }^{-1} \subseteq B^{\prime} \cup B^{\prime} w_{a, n} B^{\prime} .
$$

For any $x \in D_{a, n}$, we have

$$
\left(w_{a, n} w_{a, n}^{-1}\right) e_{a, n}=e_{a, n}+z^{\prime \prime},
$$

where $z^{\prime \prime} \in Z_{a, n}$, so $w_{a, n} x w_{a, n}{ }^{-1}$ can not be in $B^{\prime} w_{a, n} B^{\prime}$. Thus,

$$
\begin{equation*}
w_{a, n} D_{a, n} w_{a, n}{ }^{-1} \subseteq B^{\prime} . \tag{5.8}
\end{equation*}
$$

If g is in $U^{\prime},(a, n) \in \Omega_{0}$ and $\theta_{a, n}(g)=\zeta$, then

$$
g x_{a, n}(-\zeta) \in D_{a, n} .
$$

Hence,

$$
\begin{equation*}
U^{\prime}=D_{a, n} \cdot X_{a, n} . \tag{5.9}
\end{equation*}
$$

Therefore, as in [11, Section 4], we have

$$
\begin{equation*}
\left(B^{\prime} w B^{\prime}\right)\left(B^{\prime} s B^{\prime}\right) \subseteq\left(B^{\prime} w s B^{\prime}\right)\left(B^{\prime} w B^{\prime}\right) \tag{5.10}
\end{equation*}
$$

for any $w \in W(\Omega)$ and $s \in Y^{\prime}$. These facts imply Theorem 3.4.
Remark. If (Φ, σ) is of r-type, then L^{\prime} has the structure of an r-tiered Euclidean Lie algebra (cf. [5], [6], [8], [9], [13], Table 4 below). We follow the classification in [8], so here we use the notation D_{3} instead of A_{3}.

Table 4.

			2-type	3-type		
(Φ, σ)	$A_{2 n+1}$					
$(n \geqq 2)$	$A_{2 n}$					
$(n \geqq 2)$	D_{n} $(n \geqq 3)$	E_{6}	A_{2}	D_{4}		
L^{\prime}	$C_{n+1,2}$	$B C_{n, 2}$	$B_{n-1,2}$	$F_{4,2}$	$A_{1,2}$	$G_{2,3}$

References

1. E. Abe, Coverings of twisted Chevalley groups over commutative rings, Sci. Rep. Tōkyō Kyōiku Daigaku 13 (1977), 194-218.
2. N. Bourbaki, Groupes et algèbres de Lie, Chap. 4-6 (Hermann, Paris, 1968).
3. J. E. Humphreys, Introduction to Lie algebras and representation theory (Springer, Berlin, 1972).
4. N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci., Univ. of Tokyo 10 (1964), 215-236.
5. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSRIzvestija 2 (1968), 1271-1311.
6. Automorphisms of finite order of semisimple Lie algebras, Functional Anal. Appl. 3 (1969), 252-254.
7. I. G. Macdonald, A ffine root systems and Dedekind's η-functions, Inventiones Math. 15 (1972), 91-143.
8. R. V. Moody, Euclidean Lie algebras, Can. J. Math. 21 (1969), 1432-1454.
9. -_ Simple quotients of Euclidean Lie algebras, Can. J. Math. 22 (1970), 839-846.
10. R. V. Moody and K. L. Teo, Tits' systems with crystallographic Weyl groups, J. Algebra 21 (1972), 178-190.
11. J. Morita, Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math. 3 (1979), 41-51.
12. R. Steinberg, Lectures on Chevalley groups, Yale Univ. Lecture Notes (1967/68).
13. K. L. Teo, Simple quotients of the three tiered Euclidean Lie algebra, Bull. London Math. Soc. 9 (1977), 299-304.

University of Tsukuba, Ibaraki, Japan

[^0]: Received March 15, 1980 and in revised form July 20, 1980.

