ON SOME TWISTED CHEVALLEY GROUPS OVER LAURENT POLYNOMIAL RINGS

JUN MORITA

0. Introduction. We let Z denote the ring of rational integers, Q the field of rational numbers, R the field of real numbers, and C the field of complex numbers.

For elements e and f of a Lie algebra, [e, f] denotes the bracket of e and f. A generalized Cartan matrix $C = (c_{ij})$ is a square matrix of integers satisfying $c_{ii} = 2$, $c_{ij} \leq 0$ if $i \neq j$, $c_{ij} = 0$ if and only if $c_{ji} = 0$. For any generalized Cartan matrix $C = (c_{ij})$ of size $l \times l$ and for any field F of characteristic zero, $\mathfrak{P}_F(C)$ denotes the Lie algebra over F generated by 3lgenerators $e_1, \ldots, e_l, h_1, \ldots, h_l, f_1, \ldots, f_l$ with the defining relations

$$[h_i, h_j] = 0, [e_i, f_j] = \delta_{ij}h_i, [h_i, e_j] = c_{ji}e_j, [h_i, f_j] = -c_{ji}f_j$$

for all i, j,

 $(ad e_i)^{-c_j i+1}e_j = 0, (ad f_i)^{-c_j i+1}f_j = 0$

for distinct *i*, *j*. Let *A* be the Cartan matrix arising from a choice of ordered simple roots of a finite dimensional complex semisimple Lie algebra $\mathfrak{g}_{\mathbf{C}}$ with respect to a Cartan subalgebra $\mathfrak{h}_{\mathbf{C}}$. Then $\mathfrak{L}_{\mathbf{C}}(A)$ is isomorphic to $\mathfrak{g}_{\mathbf{C}}$ (cf. [3, p. 99]). Such a matrix *A* is called a finite Cartan matrix.

Let $\mathfrak{G} = \mathfrak{G}_F(C)$ be the subgroup of Aut $(\mathfrak{L}_F(C))$ generated by exp (ad te_i) and exp (ad tf_i) for all $t \in F$ and $i = 1, \ldots, l$. Then \mathfrak{G} has a *BN*-pair structure, i.e., a Tits system (cf. [10]).

A generalized Cartan matrix C is called a Euclidean Cartan matrix if C is singular and possesses the property that removal of any row and the corresponding column leaves a finite Cartan matrix. Euclidean Cartan matrices are classified (cf. [8]).

From now on we assume that *C* is a Euclidean Cartan matrix. The algebra $\mathfrak{P}_F(C)$ has a one dimensional center, denoted by \mathfrak{Z} . Let $\mathfrak{E} = \mathfrak{P}_F(C)/\mathfrak{Z}$, called a Euclidean Lie algebra. Any Euclidean Lie algebra \mathfrak{E} owns the constant *r* associated with the structure of its root system, which is named the tier number and is dependent only on *C*. It is known that *r* equals one of 1, 2, or 3 (cf. [8]). We suppose that *F* has a primitive cubic root of unity if the tier number *r* of \mathfrak{E} is 3. Let $F[T, T^{-1}]$ be the ring of Laurent polynomials in *T* and T^{-1} with coefficients in *F*. Then the algebra \mathfrak{E} is isomorphic to the subalgebra of fixed points of $F[T, T^{-1}] \bigotimes_F \mathfrak{P}_F(A)$

Received March 15, 1980 and in revised form July 20, 1980.

under $\tau \otimes \sigma$ for some finite Cartan matrix A, where τ is a Galois automorphism of $F[T, T^{-1}]$ over $F[T^r, T^{-r}]$ and σ is a diagram automorphism of $\mathfrak{L}_F(A)$, and both are of order r. The canonical Lie algebra homomorphism of $\mathfrak{L}_F(C)$ onto \mathfrak{E} induces a group homomorphism ϕ of Aut ($\mathfrak{E}_F(C)$) into Aut (\mathfrak{E}). Then we can view $\phi(\mathfrak{G})$ as the twisted subgroup, associated with τ and σ , of the elementary subgroup of a Chevalley group of adjoint type over $F[T, T^{-1}]$. We note that \mathfrak{G} and $\phi(\mathfrak{G})$ are isomorphic. In this paper, we will consider not only the group $\phi(\mathfrak{G})$ of adjoint type but non-adjoint types as follows.

Let Φ be a reduced irreducible root system (cf. [2]). Let G be a Chevalley group over $K[T, T^{-1}]$ of type Φ , and E the elementary subgroup of G (cf. [11]), where $K[T, T^{-1}]$ is the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K and the characteristic of K does not need to be zero. We fix a diagram automorphism σ of Φ (cf. [2], [3]). We say a pair (Φ, σ) is of r-type if σ is of order r. We assume that K has a primitive rth root of unity when (Φ, σ) is of r-type. Let τ be a Galois automorphism (with the same order as σ) of $K[T, T^{-1}]$ over $K[T^r, T^{-r}]$. Then we can construct the twisted subgroup E' of E associated with τ and σ . Of course, if r = 1, i.e., σ is trivial, then E = E'.

Our assertion is that E' has a BN-pair structure (cf. Theorem 3.1/3.4). In [11], it is confirmed that E has a BN-pair structure, therefore we will assume r = 2 or 3, i.e., Φ is of type A_n ($n \ge 2$), D_n ($n \ge 4$) or E_6 , and σ is not trivial (cf. Table 1). In Section 1 we introduce the twisted root system Φ_{σ} defined by (Φ , σ) and argue about the connection between twisted root systems and affine Weyl groups of type B_l , C_l , F_4 and G_2 . We will construct twisted Lie algebras in Section 2 and twisted Chevalley groups in Section 3 respectively. Our assertion can be reduced to the case of rank 1, which is essential and considered in Section 4. In Section 5 we complete the proof of our assertion.

Let x and y be elements of a group, then [x, y] denotes the commutator $xyx^{-1}y^{-1}$ of x and y. For two subgroups G_2 and G_3 of a group G_1 , let $[G_2, G_3]$ be the subgroup of G_1 generated by [x, y] for all $x \in G_2$ and $y \in G_3$. We shall write $G_1 = G_2 \cdot G_3$ when a group G_1 is a semidirect product of two groups G_2 and G_3 , and G_3 normalizes G_2 .

The author wishes to express his sincere gratitude to Professor Eiichi Abe for his guidance.

1. Twisted root systems. Let Φ be a reduced irreducible root system in a Euclidean space V (over **R**) of dimension n with an inner product (,), and $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ a simple system of Φ (cf. [2], [3]). For any nonzero element α in V, let w_{α} be the orthogonal transformation of Vdefined by $w_{\alpha}(v) = v - \langle v, \alpha \rangle \alpha$ for all $v \in V$, where $\langle v, \alpha \rangle = 2(v, \alpha)/(\alpha, \alpha)$. Let Φ be of type A_n ($n \ge 2$), D_n ($n \ge 4$) or E_6 . We fix a nontrivial diagram automorphism σ of Φ (cf. Table 1). The automorphism induces

 n	-
ARLE	2 1
ABLE	51.

	IABLE I.	
Φ/Φ_{σ}	Π/Πσ	σ
A_{2m+1} $(m \ge 1)$	$\alpha_{m+1} \xrightarrow{\alpha_m} \alpha_{m-1} \xrightarrow{\alpha_2} \alpha_1$	$\sigma(\alpha_i) = \alpha_{2m+2-i}$ $(1 \leq i \leq 2m+1)$
C_{m+1}	a_{m+1} a_m a_{m-1} a_2 a_1	$a_j = \frac{1}{2}(\alpha_j + \alpha_{2m+2-j})$ (1 \le j \le m + 1)
$ \begin{array}{l} A_{2m} \\ (m \ge 1) \end{array} $	$\alpha_{m} \qquad \alpha_{m-1} \qquad \alpha_{m-2} \qquad a_{2} \qquad \alpha_{1}$	$\sigma(\alpha_i) = \alpha_{2m+1-i}$ $(1 \le i \le 2m)$
BC_m	$a_{m} \xrightarrow{a_{m-1}} a_{m-2} \xrightarrow{a_{2}} a_{1}$	$a_j = \frac{1}{2}(\alpha_j + \alpha_{2m+1-j})$ (1 \le j \le m) $2a_m = \alpha_m + \alpha_{m+1}$
D_m $(m \ge 4)$	$\begin{array}{c} & \alpha_{m-2} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{m-3} \end{array} \xrightarrow{\alpha_{m-2}} \\ \alpha_{m} \end{array}$	$egin{aligned} & \sigma(lpha_i) = lpha_i \ & (1 \leq i \leq m-2) \ & \sigma(lpha_{m-1}) = lpha_m \ & \sigma(lpha_m) = lpha_{m-1} \end{aligned}$
B_{m-1}	$O \longrightarrow O \longrightarrow$	$a_j = \alpha_j$ (1 \le j \le m - 2) $a_{m-1} = \frac{1}{2}(\alpha_{m-1} + \alpha_m)$
E_6	$\alpha_4 \qquad \alpha_3 \qquad \qquad$	$\sigma(\alpha_1) = \alpha_6$ $\sigma(\alpha_2) = \alpha_5$ $\sigma(\alpha_3) = \alpha_3$ $\sigma(\alpha_4) = \alpha_4$ $\sigma(\alpha_5) = \alpha_2$ $\sigma(\alpha_6) = \alpha_1$
<i>F</i> ₄	$O \longrightarrow O O O O O O O O O O O O O O O O O O$	$a_{1} = \frac{1}{2}(\alpha_{1} + \alpha_{6})$ $a_{2} = \frac{1}{2}(\alpha_{2} + \alpha_{5})$ $a_{3} = \alpha_{3}, a_{4} = \alpha_{4}$
D_4	α_1 α_2 α_3 α_4	$\sigma(\alpha_1) = \alpha_1$ $\sigma(\alpha_2) = \alpha_3$ $\sigma(\alpha_3) = \alpha_4$ $\sigma(\alpha_4) = \alpha_2$
G ₂	a_1 a_2	$a_1 = \alpha_1$ $a_2 = \frac{1}{3}(\alpha_2 + \alpha_3 + \alpha_4)$

an automorphism of V, also denoted σ . Let V_{σ} be the subspace of fixed points of V under σ and $l = \dim V_{\sigma}$, and let Π be the natural projection of V onto V_{σ} . We let Φ_{σ} (resp. Π_{σ}) denote the image of Φ (resp. Π) under the projection π . Then Φ_{σ} is an irreducible root system with a simple system Π_{σ} in V_{σ} , but it is not necessarily reduced (cf. Table 1). Let Φ_{σ}^{+} be the positive system of Φ_{σ} with respect to Π_{σ} , and $\Phi_{\sigma}^{-} = \Phi_{\sigma} - \Phi_{\sigma}^{+}$. We note $\Phi_{\sigma}^{+} = \pi(\Phi^{+})$ and $\Phi_{\sigma}^{-} = \pi(\Phi^{-})$, where Φ^{+} is the positive system of Φ with respect to Π , and $\Phi^{-} = \Phi - \Phi^{+}$.

We shall identify the set of σ -orbits in Φ with the set Φ_{σ} . Then we have the following four types of roots in Φ_{σ} . Let $c \in \Phi_{\sigma}$.

$$\begin{array}{l} (\mathrm{R-1}) \ c = \{\gamma\}, \gamma = \sigma(\gamma) \\ (\mathrm{R-2}) \ c = \{\gamma_1, \gamma_2\}, \gamma_1 \neq \gamma_2 = \sigma(\gamma_1), \gamma_1 + \gamma_2 \notin \Phi_{\sigma} \\ (\mathrm{R-3}) \ c = \{\gamma_1, \gamma_2\}, \gamma_1 \neq \gamma_2 = \sigma(\gamma_1), \gamma_1 + \gamma_2 \in \Phi_{\sigma} \\ (\mathrm{R-4}) \ c = \{\gamma_1, \gamma_2, \gamma_3\}, \gamma_1 \neq \gamma_2 \neq \gamma_3 \neq \gamma_1, \gamma_2 = \sigma(\gamma_1), \\ \gamma_3 = \sigma(\gamma_2), \gamma_1 = \sigma(\gamma_3) \end{array}$$

For each $c \in \Phi_{\sigma}^+$, we fix an order of elements in c according to the action of σ , so we sometimes view the set c as an ordered pair (γ_1, γ_2) (resp. an ordered triple $(\gamma_1, \gamma_2, \gamma_3)$) if c is of type (R-2) or (R-3) (resp. of type (R-4)). Then we let $-c = (-\gamma_1, -\gamma_2)$ or $(-\gamma_1, -\gamma_2, -\gamma_3)$ if $c = (\gamma_1, \gamma_2)$ or $(\gamma_1, \gamma_2, \gamma_3)$ respectively.

If Φ_{σ} is of type B_l $(l \ge 3)$, C_l $(l \ge 2)$, F_4 , BC_1 or G_2 , then Φ_{σ} has two root lengths, and we distinguish long roots from short roots. If Φ_{σ} is of type BC_l $(l \ge 2)$, then Φ_{σ} has three root lengths, and we differentiate long roots, middle roots and short roots (cf. Table 2).

\sum	Φ_{σ}	roots	lengths	
()	$\begin{array}{ccc} B_l & (l \ge 3) \\ C & (l \ge 2) \end{array}$	(R – 1)	long	
(<i>a</i>)	$\begin{array}{cc} C_l & (l \ge 2) \\ F_4 \end{array}$	(R - 2)	short	
(b)	BC_1	(R – 1)	long	
	DC_1	(R - 3)	short	
		(R - 1)	long	
(c)	BC_l	(R – 2)	middle	
	$(l \ge 2)$	(R - 3)	short	
(<i>d</i>)	C	(R - 1)	long	
	G_2	(R - 4)	short	

TABLE 2.

Now we consider the subset $\Omega = \Omega_1 \cup \Omega_2$ of $\Phi_{\sigma} \times \mathbb{Z}$ defined as follows. Type (a): $\Omega_1 = \{(c, 2n); c \text{ is long, } n \in \mathbb{Z}\}$ $\Omega_2 = \{(c, n); c \text{ is short, } n \in \mathbb{Z}\}$ Type (b): $\Omega_1 = \{(c, 2n + 1); c \text{ is long, } n \in \mathbb{Z}\}$ $\Omega_2 = \{(c, n); c \text{ is short, } n \in \mathbb{Z}\}$ Type (c): $\Omega_1 = \{(c, 2n + 1); c \text{ is long, } n \in \mathbb{Z}\}$ $\Omega_2 = \{(c, n); c \text{ is middle or short, } n \in \mathbb{Z}\}$ $\Omega_2 = \{(c, n); c \text{ is middle or short, } n \in \mathbb{Z}\}$ Type (d): $\Omega_1 = \{(c, 3n); c \text{ is long, } n \in \mathbb{Z}\}$

We see that Ω corresponds to an affine root system, denoted $S(\Phi_{\sigma})^{\vee}$ (cf. [11, Proposition 2.1/Theorem 5.2]), and that an element (c, n) of Ω can be regarded as an element $c + n\xi$ of the corresponding Euclidean root system (cf. [8, Table 2]).

For each $(a, n) \in \Omega$, let $w_{a,n}$ be a permutation on Ω defined by

$$w_{a,n}(b, m) = (w_a b, m - \langle b, a \rangle \mathbf{n})$$

for all $(b, m) \in \Omega$. Let $W(\Omega)$ be the permutation group on Ω generated by $w_{a,n}$ for all $(a, n) \in \Omega$. We note that $W(\Omega)$ acts on $\Phi_{\sigma} \times \mathbb{Z}$ similarly. For each $(a, n) \in \Omega$, set

$$h_{a,n} = w_{a,n} w_{a,0}^{-1}$$
 if $\frac{1}{2}a \in \Phi_{\sigma}$

and set

$$h_{a,n} = w_{a,n} w_{b,0}^{-1}$$
 if $b = \frac{1}{2}a \in \Phi_{\sigma}$.

Let *I* be the subgroup of $W(\Omega)$ generated by $h_{a,n}$ for all $(a, n) \in \Omega$, and let *J* be the subgroup of $W(\Omega)$ generated by $w_{a,0}$ for all $a \in \text{Red}(\Phi_{\sigma})$, where

Red $(\Phi_{\sigma}) = \{b \in \Phi_{\sigma}; \frac{1}{2}b \notin \Phi_{\sigma}\}.$

We see that J is isomorphic to the Weyl group W of Φ_{σ} .

LEMMA 1.1. (1) Let (a, n) and (b, m) be in Ω . Then

 $h_{a,n}(b,m) = (b,m + \langle b,a \rangle n).$

(2) Suppose that Φ_σ is of type BC₁. Let a be in Φ_σ and of type (R-3). Then h_{a,1} = (h_{2a,1})².
(3) Let (a, n) and (b, m) be in Ω, and set c = w_ab. Then

$$w_{a,n}h_{b,m}w_{a,n}^{-1} = h_{c,m}$$

Let Ω_I be the subset of Ω defined below, where notation is as in Table 1:

 $\Omega_{I} = \{(a_{i}, 1), (a_{m+1}, 2); 1 \leq i \leq m\} \text{ if } \Phi_{\sigma} \text{ is of type } C_{m+1}, \\ \Omega_{I} = \{(a_{i}, 1), (2a_{m}, 1); 1 \leq i \leq m-1\} \text{ if } \Phi_{\sigma} \text{ is of type } BC_{m}, \\ \Omega_{I} = \{(a_{i}, 2), (a_{m-1}, 1); 1 \leq i \leq m-2\} \text{ if } \Phi_{\sigma} \text{ is of type } B_{m-1}, \\ \Omega_{I} = \{(a_{1}, 1), (a_{2}, 1), (a_{3}, 2), (a_{4}, 2)\} \text{ if } \Phi_{\sigma} \text{ is of type } F_{4}, \\ \Omega_{I} = \{(a_{1}, 3), (a_{2}, 1)\} \text{ if } \Phi_{\sigma} \text{ is of type } G_{2}.$

Then *I* is the free abelian group generated by $h_{a,n}$ for all $(a, n) \in \Omega_I$, so $W(\Omega) = I \cdot J$.

Let $\Pi_{\sigma} = \{a_1, \ldots, a_l\}$ and let a_0 be as follows:

(1) a_0 is the highest short root in Φ_{σ} with respect to Π_{σ} if Φ_{σ} is of type B_l , C_l , F_4 , or G_2 ,

(2) a_0 is the highest root in Φ_{σ} with respect to Π_{σ} if Φ_{σ} is of type BC_l . Set $a_{l+1} = -a_0$.

Let Δ be the dual root system of Red (Φ_{σ}) and $\Delta_0 = \{\delta_1, \ldots, \delta_l\}$ be a simple system of Δ . Let W^* be the affine Weyl group of Δ , and let δ_0 be the highest root in Δ with respect to Δ_0 . Put $\delta_{l+1} = -\delta_0$. Let $\Delta_1 = \Delta \times \mathbb{Z}$, and an element of Δ_1 is denoted by $\delta^{(n)}$, where $\delta \in \Delta$ and $n \in \mathbb{Z}$.

For each $\delta^{(n)} \in \Delta_1$, let $w_{\delta}^{(n)}$ be the permutation on Δ_1 defined by

$$w_{\delta}^{(n)}\chi^{(m)} = (w_{\delta}\chi)^{(m-\langle\chi,\delta\rangle n)}$$

for all $\chi^{(m)} \in \Delta_1$. Let W_1 be the permutation group on Δ_1 generated by $w_{\delta}^{(n)}$ for all $\delta^{(n)} \in \Delta_1$, and W_0 the subgroup of W_1 generated by $w_{\delta}^{(0)}$ for all $\delta \in \Delta$. Set

$$h_{\delta}^{(n)} = w_{\delta}^{(n)} w_{\delta}^{(0)-1}$$

and H_1 be the subgroup of W_1 generated by $h_{\delta}^{(n)}$ for all $\delta^{(n)} \in \Delta_1$. Then W_0 is isomorphic to the Weyl group of Δ , and H_1 is the free abelian group generated by $h_{\delta_i}^{(1)}$ for all $\delta_i \in \Delta_0$, hence $W_1 = H_1 \cdot W_0$ and $W_1 \simeq W^*$ (cf. [11, Lemma 1.1/Proposition 1.2]). Clearly $I \simeq H_1 \simeq \mathbb{Z}^{l}$ and $J \simeq W_0 \simeq W$.

We fix simple roots of Φ_{σ} and Δ as follows, then we have a_{l+1} and δ_{l+1} as above. (We add the vertices of a_{l+1} and δ_{l+1} , and the corresponding edges.)

(i) The case $\Phi_{\sigma} = B_l$ and $\Delta = C_l$ $(l \ge 3)$: -Œ $\mathbf{\hat{v}}$ a_{l-1} $a_{l+1} a_1$ a_2 a_{l-2} a_1 -0ć σ δ_{l+1} δ_1 δ_2 δ_{l-2} δ_{l-1} δι (ii) The case $\Phi_{\sigma} = BC_l$ and $\Delta = A_1$: $\Phi_{\sigma}: \underbrace{\sigma}_{a_2} a_1$ $\Delta : \bigcirc \\ \delta_2 \quad \delta$ (iii) The case $\Phi_{\sigma} = BC_l$ and $\Delta = C_l$ $(l \ge 2)$: -Œ $a_{l+1} \quad a_1 \qquad a_2 \qquad \qquad a_{l-2} \qquad a_{l-1} \quad a_l$ δ_{l+1} δ_1 δ_2 δ_{l-2} δ_{l-1} δ_l (iv) The case $\Phi_{\sigma} = C_2$ and $\Delta = B_2$:

$$\Delta: \qquad \overbrace{\delta_1 \qquad \delta_2 \qquad \delta_3}$$

(v) The case $\Phi_{\sigma} = C_l$ and $\Delta = B_l$ $(l \ge 3)$:

$$\delta_1 \qquad \delta_2 \qquad \delta_3$$

The map ψ defined by

$$\psi(w_{\delta_i}^{(0)}) = w_{a_i,0}$$

for $1 \leq i \leq l$ and

 $\psi(w_{\delta_{l+1}}^{(1)}) = w_{a_{l+1},1}$

induces an isomorphism, again called ψ , of W^* onto $W(\Omega)$. This fact is easily verified by the next lemma and proposition.

LEMMA 1.2. Let (a, m) be in Ω and w in $W(\Omega)$, and set (b, n) = w(a, m). Then $w w_{a,m} w^{-1} = w_{b,n}$ (cf. [11, Lemma 1.3]).

Set

$$egin{array}{ll} \Omega_0 &= \{(a_0,1),\,(-a_i,0); 1 \leq i \leq l\} ext{ and } \ Y' &= \{w_{a,n};\,(a,n) \in \Omega_0\}. \end{array}$$

PROPOSITION 1.3. Let $W(\Omega)$ and Y' be as above. Then $W(\Omega)$ is generated by Y' (cf. [11, Proposition 1.4]).

Thus, the following result has been proved.

PROPOSITION 1.4. The group $W(\Omega)$ is isomorphic to the affine Weyl group of type Δ as in the following table.

Table 3.					
Φ°	Bı	BC_l	C_l	F_4	G_2
Δ	Cı	C_l	B_l	F_4	G_2

When $w \in W(\Omega)$ is written as $w_1w_2 \ldots w_k$ ($w_j \in Y'$, k minimal), we write l(w) = k: this is the length of w. Set

$$\Omega^{+} = \Omega \cap (\Phi_{\sigma}^{+} \times \mathbf{Z}_{>0} \cup \Phi_{\sigma}^{-} \times \mathbf{Z}_{\geq 0})$$

and

 $\Omega^-\,=\,\Omega\,-\,\Omega^+.$

For each $w \in W(\Omega)$, set

$$\Gamma(w) = \{(a, n) \in \Omega^+; w(a, n) \in \Omega^-\}$$

and

$$N(w) = Card \Gamma(w).$$

The following two propositions hold (cf. [4, Lemma 2.1/2.2] and [11, Proposition 1.5/1.8]).

PROPOSITION 1.5. Let (a, n) be in Ω_0 and w in $W(\Omega)$. Then: (1) $\Gamma(w_{a,n}) = \{(a, n)\},$ (2) $w_{a,n}(\Gamma(w) - \{(a, n)\}) = \Gamma(w w_{a,n}) - \{(a, n)\},$ (3) (a, n) is in precisely one of $\Gamma(w)$ or $\Gamma(w, w_{a,n}),$ (4) $N(w w_{a,n}) = N(w) - 1$ if $(a, n) \in \Gamma(w), N(w w_{a,n}) = N(w) + 1$ if $(a, n) \notin \Gamma(w).$

PROPOSITION 1.6. Let w be in $W(\Omega)$. Then N(w) = l(w).

2. Twisted Lie algebras. Let Φ be a reduced irreducible root system with a simple system $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ and $\mathfrak{g}_{\mathbb{C}}$ a finite dimensional complex simple Lie algebra of type Φ . Then there is a Chevalley basis $\{h_i, e_\alpha; 1 \leq i \leq n, \alpha \in \Phi\}$ of $\mathfrak{g}_{\mathbb{C}}$ satisfying

(1)
$$[h_i, e_{\alpha}] = \langle \alpha, \alpha_i \rangle e_{\alpha},$$

(2)
$$[e_{\alpha}, e_{\beta}] = \begin{cases} N_{\alpha,\beta}e_{\alpha+\beta} \text{ if } \alpha + \beta \in \Phi, \\ h_{\alpha} \text{ if } \alpha + \beta = 0, \\ 0 \text{ otherwise,} \end{cases}$$

(3) $N_{\alpha,\beta} = \pm (p + 1)$ if $\beta - p\alpha, \ldots, \beta, \ldots, \beta + q\alpha$ is the α -string through β , $N_{\alpha,\beta} = -N_{\beta,\alpha} = -N_{-\alpha,-\beta}$,

(4) h_{α} is a **Z**-linear combinations of h_i 's, $h_{\alpha_i} = h_i$, for any $\alpha, \beta \in \Phi$ and $1 \leq i \leq n$. We set

$$\mathfrak{h}_{\mathbf{Z}} = \sum_{i=1}^{n} \mathbf{Z}h_{i}$$
 and $\mathfrak{g}_{\mathbf{Z}} = \mathfrak{h}_{\mathbf{Z}} + \sum_{\alpha \in \Phi} \mathbf{Z}e_{\alpha}$.

Let $K[T, T^{-1}]$ be the ring of Laurent polynomials in T and T^{-1} with coefficients in a field K, i.e.,

$$K[T, T^{-1}] = \left\{ \sum_{m \in \mathbf{Z}} t_m T^m \text{ (finite sum)}; t_m \in K \right\},$$

and set

$$L = K[T, T^{-1}] \bigotimes_{\mathbf{Z}} \mathfrak{g}_{\mathbf{Z}} \text{ and } \mathfrak{h} = K[T, T^{-1}] \bigotimes_{\mathbf{Z}} \mathfrak{h}_{\mathbf{Z}}.$$

From now on we will assume that Φ is of type A_n $(n \ge 2)$, D_n $(n \ge 4)$ or E_6 . We fix a nontrivial diagram automorphism σ of Φ (cf. Table 1). Associated to σ , we can find an automorphism of $\mathfrak{g}_{\mathbb{Z}}$, again denoted σ , such that

$$\sigma(h_{\alpha_i}) = h_{\beta_i}, \ \sigma(e_{\pm \alpha_i}) = e_{\pm \beta_i}$$

for all $\alpha_i \in \Pi$, where $\beta_i = \sigma(\alpha_i)$. We write

$$\sigma(e_{\alpha}) = k_{\alpha} e_{\sigma(\alpha)}$$

for each $\alpha \in \Phi$, where $k_{\alpha} \in \mathbb{Z}$. Then we have $k_{\alpha} = \pm 1$ for all $\alpha \in \Phi$.

PROPOSITION 2.1. Let (Φ, σ) be of 2-type. Then we can choose a Chevalley basis which satisfies the following condition:

(1) $k_{\alpha} = -1$ if Φ is of type A_{2n} $(n \ge 1)$ and $\sigma(\alpha) = \alpha$;

(2) $k_{\alpha} = 1$ otherwise (cf. [1, Proposition 3.1]).

PROPOSITION 2.2. Let (Φ, σ) be of 3-type. Then we can choose a Chevalley basis such that $k_{\alpha} = 1$ for all $\alpha \in \Phi$.

Proof. We have $k_{\alpha} = k_{-\alpha}$ as $\sigma(h_{\alpha}) = h_{\sigma(\alpha)}$, so we may assume α is positive. Suppose $\sigma(\alpha) = \alpha$. Then $(k_{\alpha})^3 = 1$ and $k_{\alpha} = 1$. Next suppose $\sigma(\alpha) \neq \alpha$, and set $\beta = \sigma(\alpha)$ and $\gamma = \sigma^2(\alpha)$. Then $k_{\alpha}k_{\beta}k_{\gamma} = 1$, and $(k_{\alpha}, k_{\beta}, k_{\gamma}) = (1, 1, 1), (1, -1, -1), (-1, 1, -1), \text{ or } (-1, -1, 1)$. To establish this proposition, we may assume $(k_{\alpha}, k_{\beta}, k_{\gamma}) = (1, -1, -1)$. Replacing e_{γ} by $-e_{\gamma}$, we have $\sigma(e_{\alpha}) = e_{\beta}, \sigma(e_{\beta}) = e_{\gamma}$ and $\sigma(e_{\gamma}) = e_{\alpha}$. Arrange the bases for negative roots similarly, and $k_{\alpha} = 1$ for all $\alpha \in \Phi$.

We shall fix a Chevalley basis of $\mathfrak{g}_{\mathbf{C}}$ with the properties of Proposition 2.1 or 2.2. We assume that K has a primitive rth root of unity when (Φ, σ) is of r-type. Therefore, in particular, we have char $K \neq r$. If r = 3, we let ω denote a primitive cubic root of unity in K. Let τ be the Galois automorphism of $K[T, T^{-1}]$ over $K[T^r, T^{-r}]$ defined by

(1)
$$\tau(T^{\pm 1}) = -T^{\pm 1}$$
 if $r = 2$,

(2)
$$\tau(T^{\pm 1}) = (\omega T)^{\pm 1}$$
 if $r = 3$.

Let L' (resp. \mathfrak{h}') be the subalgebra of fixed points of L (resp. \mathfrak{h}) under $\tau \otimes \sigma$. (For more general cases, see [5], [6]).

For each $(c, m) \in \Omega$, we define an element $e_{c,m}$ of L' as follows.

Type (a):

$$e_{c,m} = T^m e_{\gamma} \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 0 (2)$$

$$e_{c,m} = T^m e_{\gamma_1} + T^m e_{\gamma_2} \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-2) and } m \equiv 0 (2)$$

$$e_{c,m} = T^m e_{\gamma_1} - T^m e_{\gamma_2} \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-2) and } m \equiv 1 (2).$$

Type (b):

$$e_{c,m} = T^m e_{\gamma} \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 1 (2)$$

$$e_{c,m} = T^m e_{\gamma_1} + T^m e_{\gamma_2} \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-3) and}$$

$$m \equiv 0 (2)$$

$$e_{c,m} = T^m e_{\gamma_1} - T^m e_{\gamma_2} \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-3) and}$$

$$m \equiv 1 (2).$$

Type (c):

$$e_{c,m} = T^m e_{\gamma} \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 1 (2)$$

$$e_{c,m} = T^m e_{\gamma_1} + T^m e_{\gamma_2} \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-2) or}$$

$$(R-3), \text{ and } m \equiv 0 (2)$$

$$e_{c,m} = T^m e_{\gamma_1} - T^m e_{\gamma_2} \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-2) or}$$

$$(R-3), \text{ and } m \equiv 1 (2).$$

Type (d):

$$e_{c,m} = T^m e_i \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 0 (3)$$

$$e_{c,m} = T^m e_{\gamma_1} + T^m e_{\gamma_2} + T^m e_{\gamma_3} \text{ if } c = (\gamma_1, \gamma_2, \gamma_3) \text{ is of type}$$

$$(R-4) \text{ and } m \equiv 0 (3)$$

$$e_{c,m} = T^m e_{\gamma_1} + \omega T^m e_{\gamma_2} + \omega^2 T^m e_{\gamma_3} \text{ if } c = (\gamma_1, \gamma_2, \gamma_3) \text{ is of type}$$

$$(R-4) \text{ and } m \equiv 1 (3)$$

$$e_{c,m} = T^m e_{\gamma_1} + \omega^2 T^m e_{\gamma_2} + \omega T^m e_{\gamma_3} \text{ if } c = (\gamma_1, \gamma_2, \gamma_3) \text{ is of type}$$

$$(R-4) \text{ and } m \equiv 2 (3).$$

Then $L' = \mathfrak{h}' \oplus \sum_{(c,m)\in\Omega} Ke_{c,m}$. For each $c \in \Phi_{\sigma}$, set $h_c = h_{\gamma}$ if $c = (\gamma)$ is of type (R-1), $h_c = h_{\gamma_1} + h_{\gamma_2}$ if $c = (\gamma_1, \gamma_2)$ is of type (R-2) or (R-3), and $h_c = h_{\gamma_1} + h_{\gamma_2} + h_{\gamma_3}$ if $c = (\gamma_1, \gamma_2, \gamma_3)$ is of type (R-4). Let

$$\mathfrak{h}^{\prime\prime} = \sum_{c \in \Phi_{\sigma}} Kh_c.$$

For each $(c, m) \in \Omega$, we have $[h, e_{c,m}] = c(h)e_{c,m}$ for all $h \in \mathfrak{h}''$, where c is regarded as an element of $(\mathfrak{h}'')^*$, the dual of \mathfrak{h}'' .

PROPOSITION 2.3. Let (c, m) be in Ω . Then: (1) $[h_c, e_{c,m}] = 2e_{c,m}$ if c is of type (R-1), (R-2) or (R-4), (2) $[h_c, e_{c,m}] = e_{c,m}$ if c is of type (R-3), (3) $[e_{c,m}, e_{-c,-m}] = h_c$.

Proof. The case when c is of type (R-1), (R-2), or (R-4) is easy. Assume $c = (\gamma_1, \gamma_2)$ is of type (R-3). Then $h_c = h_{\gamma_1} + h_{\gamma_2}$, and $e_{c,m} = T^m e_{\gamma_1} + T^m e_{\gamma_2}$ (resp. $T^m e_{\gamma_1} - T^m e_{\gamma_2}$) if $m \equiv 0$ (2) (resp. $m \equiv 1$ (2)). Hence,

$$\begin{split} [h_{\gamma_1} + h_{\gamma_2}, T^m e_{\gamma_1} \pm T^m e_{\gamma_2}] &= 2T^m e_{\gamma_1} - T^m e_{\gamma_1} \mp T^m e_{\gamma_2} \pm 2T^m e_{\gamma_2} \\ &= T^m e_{\gamma_1} \pm T^m e_{\gamma_2} \end{split}$$

and

$$[T^{m}e_{\gamma_{1}} \pm T^{m}e_{\gamma_{2}}, T^{-m}e_{-\gamma_{1}} \pm T^{-m}e_{-\gamma_{2}}] = h_{\gamma_{1}} + h_{\gamma_{2}}.$$

3. Twisted Chevalley groups. Let ρ be a finite dimensional complex faithful representation of $\mathfrak{g}_{\mathbf{C}}$. We let G be a Chevalley group over $K[T, T^{-1}]$ associated with $\mathfrak{g}_{\mathbf{C}}$ and ρ . Set $\Phi_1 = \Phi \times \mathbf{Z}$. For each $(\alpha, n) \in \Phi_1$, there exists a group isomorphism

$$t \mapsto x_{\alpha}^{(n)}(t)$$

of the additive group K^+ of K onto a subgroup $X_{\alpha}^{(n)}$ of G (for the definition, see [11]). The elementary subgroup E of G is generated by $X_{\alpha}^{(n)}$ for all $(\alpha, n) \in \Phi_1$. Let K^* be the multiplicative group of K. For each $(\alpha, n) \in \Phi_1$ and $t \in K^*$, we define

$$w_{\alpha}^{(n)}(t) = x_{\alpha}^{(n)}(t)x_{-\alpha}^{(-n)}(-t^{-1})x_{\alpha}^{(n)}(t),$$

$$h_{\alpha}^{(n)}(t) = w_{\alpha}^{(n)}(t)w_{\alpha}^{(0)}(1)^{-1}.$$

Let N be the subgroup of E generated by $w_{\alpha}^{(n)}(t)$ for all $(\alpha, n) \in \Phi_1$ and $t \in K^*$, and let H_0 be the subgroup of E generated by $h_{\alpha}^{(0)}(t)$ for all $\alpha \in \Phi$ and $t \in K^*$. Let U be the subgroup of E generated by $x_{\alpha}^{(n)}(t)$ for all $(\alpha, n) \in \Phi_1^+$ and $t \in K$, where

$$\Phi_{1^{+}} = (\Phi^{+} \times \mathbb{Z}_{>0}) \cup (\Phi^{-} \times \mathbb{Z}_{\geq 0}).$$

Let *B* be the subgroup of *E* generated by U and H_0 .

THEOREM 3.1. Notation is as above. Then:

(1) (E, B, N) is a Tits system,

(2) $N/(B \cap N)$ is isomorphic to the affine Weyl group of Φ (cf. [11, Theorem 2.1]).

For any $(c, m) \in \Omega$ and $t \in K$, we define $x_{c,m}(t)$ as follows. Type (a):

$$\begin{aligned} x_{c,m}(t) &= x_{\gamma}^{(m)}(t) \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 0 (2) \\ x_{c,m}(t) &= x_{\gamma_1}^{(m)}(t) x_{\gamma_2}^{(m)}(t) \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-2)} \\ &\text{ and } m \equiv 0 (2) \end{aligned}$$

$$x_{c,m}(t) = x_{\gamma_1}{}^{(m)}(t)x_{\gamma_2}{}^{(m)}(-t) \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-2)}$$

and $m \equiv 1$ (2).

Type (b):

$$\begin{aligned} x_{c,m}(t) &= x_{\gamma}^{(m)}(t) \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 1 \ (2) \\ x_{c,m}(t) &= x_{\gamma_1}^{(m)}(t) x_{\gamma_2}^{(m)}(t) x_{\gamma_1+\gamma_2}^{(2m)}(\frac{1}{2}N_{\gamma_2,\gamma_1}t^2) \\ & \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-3) and } m \equiv 0 \ (2) \\ x_{c,m}(t) &= x_{\gamma_1}^{(m)}(t) x_{\gamma_2}^{(m)}(-t) x_{\gamma_1+\gamma_2}^{(2m)}(-\frac{1}{2}N_{\gamma_2,\gamma_1}t^2) \\ & \text{ if } c = (\gamma_1, \gamma_2) \text{ is of type (R-3) and } m \equiv 1 \ (2). \end{aligned}$$

Type (c):

Type (d):

$$\begin{aligned} x_{c,m}(t) &= x_{\gamma}^{(m)}(t) \text{ if } c = (\gamma) \text{ is of type (R-1) and } m \equiv 0 (3) \\ x_{c,m}(t) &= x_{\gamma_1}^{(m)}(t) x_{\gamma_2}^{(m)}(t) x_{\gamma_3}^{(m)}(t) \\ & \text{ if } c = (\gamma_1, \gamma_2, \gamma_3) \text{ is of type (R-4) and } m \equiv 0 (3) \\ x_{c,m}(t) &= x_{\gamma_1}^{(m)}(t) x_{\gamma_2}^{(m)}(\omega t) x_{\gamma_3}^{(m)}(\omega^2 t) \\ & \text{ if } c = (\gamma_1, \gamma_2, \gamma_3) \text{ is of type (R-4) and } m \equiv 1 (3) \\ x_{c,m}(t) &= x_{\gamma_1}^{(m)}(t) x_{\gamma_2}^{(m)}(\omega^2 t) x_{\gamma_3}^{(m)}(\omega t) \\ & \text{ if } c = (\gamma_1, \gamma_2, \gamma_3) \text{ is of type (R-4) and } m \equiv 2 (3). \end{aligned}$$

For each $(c, m) \in \Omega$, let $X_{c,m}$ be the subgroup of E generated by $x_{c,m}(t)$ for all $t \in K$. Then $X_{c,m}$ is isomorphic to the additive group K^+ of K. Let E' be the subgroup of E generated by $X_{c,m}$ for all $(c, m) \in \Omega$. For each $(c, m) \in \Omega$ and $t \in K^*$, we define

$$w_{c,m}(t) = x_{c,m}(t)x_{-c,-m}(-t^{-1})x_{c,m}(t)$$

if c is of type (R-1), (R-2) or (R-4),

$$w_{c,m}(t) = x_{c,m}(t)x_{-c,-m}(-2t^{-1})x_{c,m}(t)$$

if c is of type (R-3) and $m \equiv 0$ (2),

$$w_{c,m}(t) = x_{c,m}(t) x_{-c,-m}(2t^{-1}) x_{c,m}(t)$$

if c is of type (R-3) and $m \equiv 1$ (2).

Let N' be the subgroup of E' generated by $w_{c,m}(t)$ for all $(c, m) \in \Omega$ and $t \in K^*$.

LEMMA 3.2. Let (c, m) be in Ω and t in K^* . Then:

(1)
$$w_{c,m}(t) = w_{\gamma}^{(m)}(t)$$
 if $c = (\gamma)$ is of type (R-1),

(2)
$$w_{c,m}(t) = w_{\gamma_1}{}^{(m)}(t)w_{\gamma_2}{}^{(m)}(t)$$
 if $c = (\gamma_1, \gamma_2)$ is of type (R-2)
and $m \equiv 0$ (2),

CHEVALLEY GROUPS

(3)
$$w_{c,m}(t) = w_{\gamma_1}{}^{(m)}(t)w_{\gamma_2}{}^{(m)}(-t)$$
 if $c = (\gamma_1, \gamma_2)$ is of type (R-2)
and $m \equiv 1$ (2),

(4)
$$w_{c,m}(t) = h_{\gamma_1}^{(0)}(-1)w_{\gamma_1+\gamma_2}^{(2m)}(\frac{1}{2}N_{\gamma_2,\gamma_1}t^2)$$

if $c = (\gamma_1, \gamma_2)$ is of type (R-3) and $m \equiv 0$ (2),

(5)
$$w_{c,m}(t) = h_{\gamma_1}^{(0)}(-1)w_{\gamma_1+\gamma_2}^{(2m)}(-\frac{1}{2}N_{\gamma_2,\gamma_1}t^2)$$

if $c = (\gamma_1, \gamma_2)$ is of type (R-3) and $m \equiv 1$ (2),

(6)
$$w_{c,m}(t) = w_{\gamma_1}{}^{(m)}(t)w_{\gamma_2}{}^{(m)}(t)w_{\gamma_3}{}^{(m)}(t)$$

if $c = (\gamma_1, \gamma_2, \gamma_3)$ is of type (R-4) and $m \equiv 0$ (3),

(7)
$$w_{c,m}(t) = w_{\gamma_1}{}^{(m)}(t)w_{\gamma_2}{}^{(m)}(\omega t)w_{\gamma_3}{}^{(m)}(\omega^2 t)$$

if $c = (\gamma_1, \gamma_2, \gamma_3)$ is of type (R-4) and $m \equiv 1$ (3),

(8)
$$w_{c,m}(t) = w_{\gamma_1}{}^{(m)}(t)w_{\gamma_2}{}^{(m)}(\omega^2 t)w_{\gamma_3}{}^{(m)}(\omega t)$$

if $c = (\gamma_1, \gamma_2, \gamma_3)$ is of type (R-4) and $m \equiv 2$ (3).

Proof. (1), (2), (3), (6), (7), and (8) are easy. Here we shall establish (4). By the Jacobi identity, we have

$$\begin{split} N_{\gamma_1 + \gamma_2, -\gamma_1} N_{\gamma_2, \gamma_1} &= N_{-\gamma_1 - \gamma_2, \gamma_1} N_{-\gamma_2, -\gamma_1} = 1 \text{ and} \\ N_{\gamma_1 + \gamma_2, -\gamma_2} N_{\gamma_2, \gamma_1} &= N_{-\gamma_1 - \gamma_2, \gamma_2} N_{-\gamma_2, -\gamma_1} = -1. \end{split}$$

Thus,

$$\begin{split} w_{\mathfrak{c},\mathfrak{m}}(t) &= x_{\mathfrak{c},\mathfrak{m}}(t) x_{-\mathfrak{c},-\mathfrak{m}}(-2t^{-1}) x_{\mathfrak{c},\mathfrak{m}}(t) \\ &= x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(t) x_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) x_{-\gamma_{1}}^{(-m)}(-2^{-1}) x_{-\gamma_{2}}^{(-m)}(-2t^{-1}) \\ &\times x_{-\gamma_{1}-\gamma_{2}}^{(-2m)}(2N_{-\gamma_{2},-\gamma_{1}}t^{-2}) x_{\gamma_{1}}^{(m)}(t) x_{\gamma_{2}}^{(m)}(t) x_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &= x_{\gamma_{1}}^{(m)}(t) x_{-\gamma_{1}}^{(-m)}(-2t^{-1}) x_{\gamma_{1}}^{(m)}(t) x_{-\gamma_{1}}^{(-m)}(-2t^{-1}) x_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &\times x_{-\gamma_{1}-\gamma_{2}}^{(-2m)}(2N_{-\gamma_{2},-\gamma_{1}}t^{2}) x_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &= w_{\gamma_{1}}^{(m)}(t) x_{\gamma_{1}}^{(m)}(-t) w_{-\gamma_{1}}^{(-m)}(-t^{-1}) x_{-\gamma_{1}}^{(-m)}(-t^{-1}) w_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &= w_{\gamma_{1}}^{(m)}(t) x_{\gamma_{1}}^{(m)}(-t) w_{\gamma_{1}}^{(m)}(t) x_{-\gamma_{1}}^{(-m)}(-t^{-1}) w_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &= w_{\gamma_{1}}^{(m)}(t) h_{\gamma_{1}}^{(-m)}(-t^{-1}) w_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &= h_{\gamma_{1}}^{(m)}(t) h_{\gamma_{1}}^{(-m)}(-t^{-1}) w_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}) \\ &= h_{\gamma_{1}}^{(0)}(-1) w_{\gamma_{1}+\gamma_{2}}^{(2m)}(\frac{1}{2}N_{\gamma_{2},\gamma_{1}}t^{2}). \end{split}$$

(5) is similarly shown.

By Lemma 3.2 and [11, Lemma 2.3 (2)], the next lemma can be established.

LEMMA 3.3. Let (a, n) and (b, m) be in Ω , and t in K^* , and set $(b', m') = w_{a,n}(b, m)$. Then

$$w_{a,n}(t)X_{b,m}w_{a,n}(t)^{-1} = X_{b',m'}.$$

By Lemma 3.3, we see that there is a group homomorphism ν of N'onto $W(\Omega)$ defined by $\nu(w_{a,n}(t)) = w_{a,n}$ for all $(a, n) \in \Omega$ and $t \in K^*$. Let H_0' be the kernel of ν . We sometimes identify an element of $W(\Omega)$ with a representative in N' of N'/H_0' . Let U' be the subgroup of E'generated by $X_{c,m}$ for all $(c, m) \in \Omega^+$, and let B' be the subgroup of E'generated by U' and H_0' .

THEOREM 3.4. Let Y' be as in Section 1. Then (E', B', N', Y') is a Tits system.

This theorem will be established in Section 5. For that purpose it is necessary to prove the next proposition. Let s be in Y'. For some $(c, n) \in \Omega_0$, we have $s = w_{c,n}$. Set

$$\Omega^+(s) = \{ (a, m) \in \Omega^+; a \in \mathbf{Q}c \}.$$

Let P_s be the subgroup of U' generated by $X_{a,m}$ for all $(a, m) \in \Omega^+(s)$.

PROPOSITION 3.5. Let s be in Y'. Then

 $sP_ss^{-1} \subseteq B' \cup B'sB'.$

We shall show this proposition in Section 4.

4. Proof of proposition 3.5. Let s be in Y', and write $s = w_{c,n}$ for some $(c, n) \in \Omega_0$. Let

$$\Omega(s) = \{ (a, m) \in \Omega; a \in \mathbf{Q}c \}$$

and E'(s) be the subgroup of E' generated by $x_{a,m}(t)$ for all $(a, m) \in \Omega(s)$ and $t \in K$. If $\Phi_{\sigma} \cap \mathbf{Q}c = \{\pm c\}$, then we can view E'(s) as the elementary subgroup of a Chevalley group of type A_1 over $K[T, T^{-1}]$, $K[T^2, T^{-2}]$ or $K[T^3, T^{-3}]$, therefore Proposition 3.5 can be shown using the result in [11, Section 3]. Thus, to establish Proposition 3.5, we may assume that Φ is of type A_2 and Φ_{σ} is of type BC_1 . In this section, from now on we assume G is a Chevalley group of type A_2 over $K[T, T^{-1}]$, so $\Phi_{\sigma} = \{\pm a, \pm 2a\}$,

$$\begin{aligned} \Omega^+ &= \{(+a, n), \, (-a, m), \, (\pm 2a, k) \in \Omega; \\ n &> 0, \, m \ge 0, \, k > 0, \, k \equiv 1 \ (2) \}. \end{aligned}$$

We simply write

$$w_0 = w_{-a,0} = w_{-a}(1)w_{2a,1}(2)w_{2a,1}(-1)$$
 and
 $w_1 = w_{2a,1} = w_{2a,1}(1).$

Let $S_{\lambda} = B' \cup B' w_{\lambda} B'$, where $\lambda = 0, 1$.

LEMMA 4.1. The following statements hold. (1) $w_0 X_{\pm a,n} w_0^{-1} = X_{\mp a,n} \subseteq B'$ if $n \ge 1$. (2) $w_0 X_{\pm 2a,n} w_0^{-1} = X_{\mp 2a,n} \subseteq B'$ if $n \ge 1, n \equiv 1$ (2). $\begin{array}{ll} (3) \ w_0 \ X_{-a,0} w_0^{-1} = X_{a,0} \subseteq S_0. \\ (4) \ w_1 \ X_{a,n} w_1^{-1} = X_{-a,n-1} \subseteq B' & \text{if } n \ge 1. \\ (5) \ w_1 \ X_{-a,n} w_1^{-1} = X_{a,n+1} \subseteq B' & \text{if } n \ge 0. \\ (6) \ w_1 \ X_{2a,n} w_1^{-1} = X_{-2a,n-2} \subseteq B' & \text{if } n \ge 3, n \equiv 1 \ (2). \\ (7) \ w_1 \ X_{-2a,n} w_1^{-1} = X_{2a,n+2} \subseteq B' & \text{if } n \ge 1, n \equiv 1 \ (2). \\ (8) \ w_1 \ X_{2a,1} w_1^{-1} = X_{-2a,-1} \subseteq S_1. \end{array}$

Definition. Let x be in E'.

(1) x is called a (QS, 0)-element if x can be written as

$$x_{-a,0}(t)x_{a,0}(u)x_{b_1,m_1}(t_1)\ldots x_{b_k,m_k}(t_k)x_{-a,0}(v),$$

where $(b_j, m_j) \in \Omega^+ - \{(-a, 0)\}, k \ge 0, t, u, t_1, \ldots, t_k \in K$, and $v \in K^*$. (2) x is called a (QS, 1)-element if x can be written as

$$x_{2a,1}(t)x_{-2a,-1}(u)x_{b_1,m_1}(t_1)\ldots x_{b_k,m_k}(t_k)x_{2a,1}(v),$$

where $(b_j, m_j) \in \Omega^+ - \{(2a, 1)\}, k \ge 0, t, u, t_1, \ldots, t_k \in K$, and $v \in K^*$.

(3) x is called an (S, 0)-element (resp. (S, 1)-element) if x is a (QS, 0)-element (resp. (QS, 1)-element) with u = 0.

LEMMA 4.2. Let x be in E' and $\lambda = 0, 1$. If x is an (S, λ) -element, then $w_{\lambda}xw_{\lambda} \in S$.

Proof. Set $\lambda = 0$. We proceed by induction on k. If t = 0, clearly $w_0 x w_0^{-1} \in S_0$ by Lemma 4.1. Assume $t \neq 0$.

Case 1: $(b_1, m_1) = (-a, m), m > 0, m \equiv 1$ (2).

$$w_{0}xw_{0}^{-1} = w_{0}x_{-a,0}(t)x_{-a,m}(t_{1})x_{b_{2},m_{2}}(t_{2}) \dots$$

$$\dots x_{b_{k},m_{k}}(t_{k})x_{-a,0}(v)w_{0}^{-1} = w_{0}x_{-2a,m}(\pm 2tt_{1})x_{-a,m}(t_{1})x_{-a,0}(t)$$

$$\times x_{b_{2},m_{2}}(t_{2}) \dots x_{b_{k},m_{k}}(t_{k})x_{-a,0}(v)w_{0}^{-1} \in X_{2a,m}X_{a,m}w_{0}x_{-a,0}(t)$$

$$\times x_{b_{2},m_{2}}(t_{2}) \dots x_{b_{k},m_{k}}(t_{k})x_{-a,0}(v)w_{0}^{-1} \subseteq B'S_{0} \subseteq S_{0}.$$

Case 2: $(b_1, m_1) = (-a, m), m > 0, m \equiv 0$ (2).

$$w_{0}xw_{0}^{-1} = w_{0}x_{-a,0}(t)x_{-a,m}(t_{1})x_{b_{2},m_{2}}(t_{2})\dots x_{b_{k},m_{k}}(t_{k})x_{-a,0}(v)w_{0}^{-1}$$

= $w_{0}x_{-a,m}(t_{1})x_{-a,0}(t)x_{b_{2},m_{2}}(t_{2})\dots x_{b_{k},m_{k}}(t_{k})x_{-a,0}(v)w_{0}^{-1}$
 $\in X_{a,m}w_{0}x_{-a,0}(t)x_{b_{2},m_{k}}(t_{2})\dots x_{b_{k},m_{k}}(t_{k})x_{-a,0}(v)w_{0}^{-1}$
 $\subseteq B'S_{0} = S_{0}$

Case 3: $(b_1, m_1) = (-2a, m), m > 0, m \equiv 1$ (2). $w_0 x w_0^{-1} = w_0 x_{-a,0}(t) x_{-2a,m}(t_1) x_{b_2,m_2}(t_2) \dots x_{b_k,m_k}(t_k) x_{-a,0}(v) w_0^{-1}$ $= w_0 x_{-2a,m}(t_1) x_{-a,0}(t) x_{b_2,m_2}(t_2) \dots x_{b_k,m_k}(t_k) x_{-a,0}(v) w_0^{-1}$ $\in X_{2a,m} w_0 x_{-a,0}(t) x_{b_2,m_2}(t_2) \dots x_{b_k,m_k}(t_k) x_{-a,0}(v) w_0^{-1}$ $\subset B' S_0 = S_0.$ Case 4: $(b_1, m_1) = (a, m), m > 0,$ $w_0 x w_0^{-1} = w_0 x_{-a,0}(t) x_{a,m}(t_1) x_{b_2,m_2}(t_2) \dots x_{b_k,m_k}(t_k) x_{-a,0}(v) w_0^{-1}$ $= x_{a,0}(-t) x_{-a,m}(-t_1) x_2 \dots x_k x_{a,0}(-v)$ $= x_{-a,0}(-2t^{-1}) w_{-a,0}(2t^{-1}) x_{-a,0}(-2t^{-1}) x_{-a,m}(-t_1)$ $\times x_2 \dots x_k x_{-a,0}(-2v^{-1}) w_{-a,0}(2v^{-1}) x_{-a,0}(-2v^{-1})$ $\in B' w_0 x_{-a,0}(-2t^{-1}) x_{-a,m}(-t_1) x_2 \dots x_k x_{-a,0}(-2v^{-1}) w_0^{-1} B'$ $\subseteq B' S_0 B' = S_0$ $(x_j = w_0 x_{bj,m_j}(t_j) w_0^{-1}, 2 \le j \le k).$ Case 5: $(b_1, m_1) = (2a, m), m > 0, m \equiv 1$ (2). $w_0 x w_0^{-1} = w_0 x_{-a,0}(t) x_{2a,m}(t_1) x_{b_2,m_2}(t_2) \dots x_{b_k,m_k}(t_k) x_{-a,0}(v) w_0^{-1}$ $= x_{a,0}(-t) x_{-2a,m}(t_1) x_2 \dots x_k x_{a,0}(-v)$ $= x_{-a,0}(-2t^{-1}) w_{-a,0}(2t^{-1}) x_{-a,0}(-2t^{-1}) x_{-2a,m}(t_1)$ $\times x_2 \dots x_k x_{-a,0}(-2v^{-1}) w_{-a,0}(2v^{-1}) x_{-a,0}(-2v^{-1})$ $\in B' w_0 x_{-a,0}(-2t^{-1}) x_{-2a,m}(t_1) x_2 \dots x_k x_{-a,0}(-2v^{-1}) w_0^{-1} B'$ $\subset B' S_0 B' = S_0$

$$(x_j = w_0 x_{b_j, m_j}(t_j) w_0^{-1}, 2 \leq j \leq k).$$

The case when $\lambda = 1$ is similarly shown.

LEMMA 4.3. Let x be in E'. (1) If x is an (S, 0)-element, then

 $w_0 x w_0^{-1} \in B' w_0 X_{-a,c} X_{a,0} w_0^{-1}.$

(2) If x is an (S, 1)-element, then

 $w_1 x w_1^{-1} \in B' w_1 X_{2a,1} X_{-2a,-1} w_1^{-1}.$

Proof. Proceed by induction on k as in Lemma 4.2. Then we have (1) and (2).

LEMMA 4.4. Let x be in E' and $\lambda = 0, 1$. If x is a (QS, λ)-element, then $w_{\lambda}xw_{\lambda}^{-1} \in S$.

Proof. Lemma 4.2 implies this lemma as in [11, Lemma 3.6].

LEMMA 4.5. Let x be in E'. (1) If x is a (QS, 0)-element, then

$$w_0 x w_0^{-1} \in B' w_0 X_{-a,0} X_{a,0} w_0^{-1}.$$

(2) If x is a (QS, 1)-element, then

 $w_1 x w_1^{-1} \in B' w_1 X_{2a,1} X_{-2a,-1} w_1^{-1}.$

Proof. Lemma 4.3 implies this lemma.

These five lemmas lead to Proposition 3.5 as in [11, Section 3].

5. Proof of theorem 3.4. Notation is as in Section 3. By using the commutator relations in [11, Lemma 2.2], we can establish the following proposition.

PROPOSITION 5.1. Let (a, m) and (b, n) be in Ω such that $a + b \neq 0$. Then

 $[X_{a,m}, X_{b,n}] \subseteq \langle X_{c,k}; (c,k) \in \Omega,$

$$c = ia + jb, k = im + jn, i, j > 0$$

Let s be in Y', and let $\Omega^+(s)' = \Omega^+ - \Omega^+(s)$. Let Q_s be the subgroup of U' generated by $X_{a,m}$ for all $(a, m) \in \Omega^+(s)'$. Then, by Proposition 5.1, we have

(5.2) P_s normalizes Q_s ,

$$(5.3) \qquad U' = P_s Q_s.$$

By the definition of H_0' ,

(5.4)
$$H_0'$$
 normalizes $X_{c,m}$ for all $(c, m) \in \Omega$,

$$(5.5) \quad B' = U' \cdot H_0'.$$

Clearly, $B' \cap N' \supseteq H_0'$. Conversely let x be in $B' \cap N'$. Then $\bar{x} \in W(\Omega)$, where \bar{x} is the image of x under the canonical group homomorphism \bar{a} of N' onto N'/H_0' . Since x is in B', we have $\bar{x}\Omega^+ \subseteq \Omega^+$, hence $N(\bar{x}) = 0$ and $x \in H_0'$. Thus,

(5.6)
$$B' \cap N' = H_0'.$$

By Proposition 3.5, (5.3) and (5.5),

$$sB's^{-1} = s(P_sQ_sH_0')s^{-1} = (sP_ss^{-1})(sQ_ss^{-1})(sH_0's^{-1})$$

$$\subseteq (B' \cup B'sB')B'H_0'.$$

Hence,

(5.7) $B' \cup B'sB'$ is a subgroup of E'.

We see that E acts on L via the adjoint representation (cf. [11, Section 4]). Then L' is stable under the action of E'. Let g be in U' and $(a, n) \in \Omega_0$, and set

$$Z_{a,n} = \sum_{(b,m)\in\Omega^+-\{(a,n)\}} Ke_{b,m}.$$

If a is of type (R-1), (R-2), or (R-4) (resp. of type (R-3)), then we can write

$$ge_{-a,-n} = e_{-a,-n} + \zeta h_a - \zeta^2 e_{a,n} + z$$

(resp. $ge_{-a,-n} = e_{-a,-n} + \zeta h_a - \frac{1}{2} \zeta^2 e_{a,n} + z$) for some $\zeta \in K$ and $z \in Z_{a,n}$ (cf. Proposition 2.3). Let $\theta_{a,n}$ be a map of U' onto K defined by $\theta_{a,n}(g) = \zeta$. As

$$gh_a = h_a - 2\zeta e_{a,n} + z'$$

(resp. $gh_a = h_a - \zeta e_{a,n} + z'$) and $gZ_{a,n} \subseteq Z_{a,n}$, the map $\theta_{a,n}$ is a group homomorphism of U' onto the additive group K^+ of K, where $z' \in Z_{a,n}$. Let $D_{a,n}$ be the kernel of the homomorphism $\theta_{a,n}$. By (5.7),

$$w_{a,n}D_{a,n}w_{a,n}^{-1} \subseteq B' \cup B'w_{a,n}B'.$$

For any $x \in D_{a,n}$, we have

$$(w_{a,n}xw_{a,n}^{-1})e_{a,n} = e_{a,n} + z'',$$

where $z'' \in Z_{a,n}$, so $w_{a,n} x w_{a,n}^{-1}$ can not be in $B' w_{a,n} B'$. Thus,

 $(5.8) \qquad w_{a,n} D_{a,n} w_{a,n}^{-1} \subseteq B'.$

If g is in U', $(a, n) \in \Omega_0$ and $\theta_{a,n}(g) = \zeta$, then

$$gx_{a,n}(-\zeta) \in D_{a,n}.$$

Hence,

 $(5.9) \qquad U' = D_{a,n} \cdot X_{a,n}.$

Therefore, as in [11, Section 4], we have

 $(5.10) \quad (B'wB')(B'sB') \subseteq (B'wsB')(B'wB')$

for any $w \in W(\Omega)$ and $s \in Y'$. These facts imply Theorem 3.4.

Remark. If (Φ, σ) is of *r*-type, then L' has the structure of an *r*-tiered Euclidean Lie algebra (cf. [5], [6], [8], [9], [13], Table 4 below). We follow the classification in [8], so here we use the notation D_3 instead of A_3 .

	2-type				3-type	
(Φ, σ)	$ \begin{array}{c} A_{2n+1} \\ (n \geq 2) \end{array} $	$\begin{array}{c} A_{2n} \\ (n \geq 2) \end{array}$	$D_n \\ (n \ge 3)$	E_6	A_2	D_4
L'	$C_{n+1,2}$	$BC_{n,2}$	$B_{n-1,2}$	$F_{4,2}$	$A_{1,2}$	$G_{2,3}$

References

- E. Abe, Coverings of twisted Chevalley groups over commutative rings, Sci. Rep. Tökyö Kyöiku Daigaku 13 (1977), 194–218.
- 2. N. Bourbaki, Groupes et algèbres de Lie, Chap. 4-6 (Hermann, Paris, 1968).
- 3. J. E. Humphreys, Introduction to Lie algebras and representation theory (Springer, Berlin, 1972).
- N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci., Univ. of Tokyo 10 (1964), 215-236.
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izvestija 2 (1968), 1271–1311.
- 6. —— Automorphisms of finite order of semisimple Lie algebras, Functional Anal. Appl. 3 (1969), 252-254.

- I. G. Macdonald, Affine root systems and Dedekind's η-functions, Inventiones Math. 15 (1972), 91-143.
- 8. R. V. Moody, Euclidean Lie algebras, Can. J. Math. 21 (1969), 1432-1454.
- 9. Simple quotients of Euclidean Lie algebras, Can. J. Math. 22 (1970), 839-846.
- 10. R. V. Moody and K. L. Teo, Tits' systems with crystallographic Weyl groups, J. Algebra 21 (1972), 178-190.
- J. Morita, Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math. 3 (1979), 41-51.
- 12. R. Steinberg, Lectures on Chevalley groups, Yale Univ. Lecture Notes (1967/68).
- K. L. Teo, Simple quotients of the three tiered Euclidean Lie algebra, Bull. London Math. Soc. 9 (1977), 299-304.

University of Tsukuba, Ibaraki, Japan