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ON SOME TWISTED CHEVALLEY GROUPS OVER 
LAURENT POLYNOMIAL RINGS 

JUN MORITA 

0. Introduction. We let Z denote the ring of rational integers, 0 the 
field of rational numbers, R the field of real numbers, and C the field of 
complex numbers. 

For elements e and/of a Lie algebra, [e,f] denotes the bracket of e and/ . 
A generalized Cartan matrix C = (c*,-) is a square matrix of integers 

satisfying cu = 2, ctj ^ 0 if i ^ j , ctj = 0 if and only if cjt = 0. For any 
generalized Cartan matrix C = (ctj) of size / X I and for any field F of 
characteristic zero, %F(C) denotes the Lie algebra over F generated by 3/ 
generators ei, . . ., eh hi, . . ., hh / i , . . . , / ? with the defining relations 

[huhj] = 0, [eufj] = bijhu [hue,] = c^e^ [ft,,/,] = -Cjjj 

for all i, j , 

(ad ei)-<>-<+% = 0, ( a d / , ) - c - + 1 / , = 0 

for distinct i, j . Let A be the Cartan matrix arising from a choice of 
ordered simple roots of a finite dimensional complex semisimple Lie 
algebra gc with respect to a Cartan subalgebra ï)c- Then £cG4) is iso
morphic to gc (cf. [3, p. 99]). Such a matrix A is called a finite Cartan 
matrix. 

Let ® = &F(C) be the subgroup of Aut (%F(C)) generated by exp 
(ad tei) and exp (ad tft) for all t G F and i = 1, . . . , / . Then ® has a 
^iV-pair structure, i.e., a Tits system (cf. [10]). 

A generalized Cartan matrix C is called a Euclidean Cartan matrix if 
C is singular and possesses the property that removal of any row and the 
corresponding column leaves a finite Cartan matrix. Euclidean Cartan 
matrices are classified (cf. [8]). 

From now on we assume that C is a Euclidean Cartan matrix. The 
algebra %F(C) has a one dimensional center, denoted by 3- Let @ = 
2F(C)/$, called a Euclidean Lie algebra. Any Euclidean Lie algebra (5 
owns the constant r associated with the structure of its root system, which 
is named the tier number and is dependent only on C. It is known that r 
equals one of 1, 2, or 3 (cf. [8]). We suppose that F has a primitive cubic 
root of unity if the tier number r of @ is 3. Let F[T, T~l] be the ring of 
Laurent polynomials in Tand T~l with coefficients in F. Then the algebra 
<S is isomorphic to the subalgebra of fixed points of F[T, T~l] ® F 2F(A) 
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CHEVALLEY GROUPS 1183 

under r ® a for some finite Cartan matrix A, where r is a Galois auto
morphism of F[T, T~l] over F[TT, T~~T] and a is a diagram automorphism 
of SF(^4), and both are of order r. The canonical Lie algebra homomor-
phism of 2F(C) onto ® induces a group homomorphism 0 of Aut ( ? F ( Q ) 

into Aut (®). Then we can view 0(@) as the twisted subgroup, associated 
with T and a-, of the elementary subgroup of a Chevalley group of adjoint 
type over F[T, T"1]. We note that © and 0(@) are isomorphic. In this 
paper, we will consider not only the group 0(®) of adjoint type but 
non-adjoint types as follows. 

Let $ be a reduced irreducible root system (cf. [2]). Let G be a Chevalley 
group over K[T, T~l] of type <ï>, and E the elementary subgroup of G 
(cf. [11]), where K[T, T -1] is the ring of Laurent polynomials in T and 
T~l with coefficients in a field K and the characteristic of K does not need 
to be zero. We fix a diagram automorphism a of $ (cf. [2], [3]). We say 
a pair (<ï>, a) is of r-type if a is of order r. We assume that K has a primi
tive rth root of unity when (3>, a) is of r-type. Let r be a Galois auto
morphism (with the same order as a) of K[T, T~l] over K[Tr, T~T]. 
Then we can construct the twisted subgroup E' of E associated with r 
and c Of course, if r = 1, i.e., a is trivial, then E — Ef. 

Our assertion is that E' has a ZW-pair structure (cf. Theorem 3.1/3.4). 
In [11], it is confirmed that E has a ZW-pair structure, therefore we will 
assume r = 2 or 3, i.e., 3> is of type An (n ^ 2), Dn (w ^ 4) or £6 , and o-
is not trivial (cf. Table 1). In Section 1 we introduce the twisted root 
system $ff defined by (<i>, a) and argue about the connection between 
twisted root systems and affine Weyl groups of type Bh Ch FA and G2. 
We will construct twisted Lie algebras in Section 2 and twisted Chevalley 
groups in Section 3 respectively. Our assertion can be reduced to the case 
of rank 1, which is essential and considered in Section 4. In Section 5 we 
complete the proof of our assertion. 

Let x and y be elements of a group, then [x, y] denotes the commutator 
xyx~ly~l of x and y. For two subgroups G2 and G% of a group Gi, let 
[G2, Gz] be the subgroup of Gi generated by [x, y] for all x G G2 and 
3> G G3. We shall write G\ = G2 • G3 when a group Gi is a semidirect 
product of two groups G2 and G3, and G3 normalizes G2. 

The author wishes to express his sincere gratitude to Professor Eiichi 
Abe for his guidance. 

1. Twisted root systems. Let $ be a reduced irreducible root system 
in a Euclidean space V (over R) of dimension n with an inner product 
( , ), and II = {«i, . . ., an) a simple system of $ (cf. [2], [3]). For any 
nonzero element a in F, let wa be the orthogonal transformation of V 
defined by wa{v) = v — (v, a)a for all v 6 F, where (v, a) = 2(v, a)/ 
(a, a). Let 3> be of type An (w ^ 2), Dn (n ^ 4) or E$. We fix a nontrivial 
diagram automorphism a of $ (cf. Table 1). The automorphism induces 
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TABLE 1. 

$/<ïv n/n. 

(m ^ 1) 

dm OCm-\ Oil 

o a 

« m + 2 « m + 3 -o-

Oil 

-o 

—o 
« 2 m + l 

a {ai) — a2m+2-i 

(1 ^ i ^ 2m + 1) 

a: dm 
-o-- a2 

aj = \{<*j + «2m+2-j) 

(1 ûj û m + 1) 

A 2m 

(m ^ 1) 

« m OCm—l Ot-m—2 # 2 

o——o o o~ 

Oim+l Gtm+2 Oim+Z 

Oil 

-o 

-o 

a (ai) = a2m+i-i 

(1 ^ t ^ 2w) 

5CW OCZZD- - O - - O 
a2 

-o 
ai 

ay — s(ay 4~ «2m+i-i) 
(1 ^ j ^ m) 

2a m = am + % + i 

An 
(m ^ 4) 

-O-
«2 

- o 

o"(a{) = a ; 

(1 ^ * ^ m - 2) 
<r(am-i) = OLm 

a{cLm) = am~\ 

Bm-l O 
a2 

-O— 
Ctm-Z 

<H 
dm~2 5° 

0>m-l 

ay = ay 

(1 ^ i ^ w - 2) 
a m _i = iC^m-i + oim) 

E6 

«4 

o-

«1 

-o 
<r(ai) = a 6 

0"(ûf2) = « 5 

<r(o:3) = a 3 

a («4) = «4 
a ( a 5 ) = a 2 

<r(a6) = <*i 

O 
#4 

- Œ 5°-
a2 

0 1 «2 = è(c*2 + a 6 ) 

# 3 = « 3 » di — Oil 

DA 

cr(ai) = a i 

^ ( 0 : 2 ) = « 3 

< r ( a 3 ) = 0:4 

(r(a4) = a 2 

^> 
#i a2 

a i = a i 

#2 = J(«2 + «3 + «4) 
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an automorphism of V, also denoted a. Let Va be the subspace of fixed 
points of V under a and / = dim Vff, and let II be the natural projection 
of V onto Va. We let $ , (resp. Iïff) denote the image of $ (resp. II) under 
the projection T. Then $, is an irreducible root system with a simple 
system 11, in Va, but it is not necessarily reduced (cf. Table 1). Let <Év+be 
the positive system of $a with respect to II„, and <£«/" = $, — 3v+. We 
note $ff

+ = 7r(3>+) and 3v~ = 7r($~), where 3>+ is the positive system of 
$ with respect to II, and <£~ = $ — <£+. 

We shall identify the set of c-orbits in $ with the set $a. Then we have 
the following four types of roots in $«,. Let c € $,. 

(R- l ) c = {7}, 7 = *(y) 

(R-2) c = {71, 72}, 71 ̂  72 = o-(7i), 7I + 72 ? $V 

(R-3) c = {yu 72}, 71 ?* 72 = o-(7i), 71 + 72 G $, 

(R-4) c = {71, 72, 73}, 7i 7e 72 3̂  73 5* 7ii 72 = (̂71)1 

73 = ^(72), 7i = «KTS). 

For each c G $a
+, we fix an order of elements in c according to the 

action of a-, so we sometimes view the set c as an ordered pair (71, 72) 
(resp. an ordered triple (71, 72, 73)) if c is of type (R-2) or (R-3) (resp. 
of type (R-4)). Then we let — c = ( — 71, —72) or ( — 71, —72, —73) if 
c = (71» 72) or (71, 72, 73) respectively. 

If $„ is of type B, (/ ^ 3), C, (I ^ 2), FA, BCX or G2, then $, has two 
root lengths, and we distinguish long roots from short roots. If $ , is of 
type BCi (I ^ 2), then $a has three root lengths, and we differentiate 
long roots, middle roots and short roots (cf. Table 2). 

TABLE 2. 

\ $<r roots lengths 

(a) 
Bi (I ^ 
Ci (I ^ 

F* 

3) 
2) 

( R - l ) long 
(a) 

Bi (I ^ 
Ci (I ^ 

F* 

3) 
2) 

( R - 2 ) short 

W BCi 
( R - l ) long 

W BCi 
( R - 3 ) short 

(R - 1) long 

(c) BCi (R - 2) middle 
(/ ^ 2) 

(R - 3) short 

(R - 1) long 
(d) G2  

(R - 4) short 
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Now we consider the subset 0 = 12i U 122 of $ , X Z defined as follows. 

Type (a): 

121 = {(c, 2n) ; c is long, w ^ Z ) 

^2 = {(c, n) ; c is short, w ^ Z ) 

7^y£e (b): 

121 = {(c, 2n + 1) ; c is long, w ^ Z ) 

^2 = {(c, n) ; c is short, n t Z} 

r ^ e (c): 

121 = {(c, 2w + 1) ; c is long, n t Z} 

122 = {(c, w) ; c is middle or short, n £ Zj 

7y/* (d): 

01 = j (<:, 3n) ; 6 is long, n G Zj 

02 •-• ( (c, n) ; c is short, w Ç Z}. 

We see that 0 corresponds to an affine root system, denoted 5(<ïy)v 

(cf. [11, Proposition 2.1/Theorem 5.2]), and that an element (c, n) of 0 
can be regarded as an element c + n% of the corresponding Euclidean root 
system (cf. [8, Table 2]). 

For each (a, w) Ç 0, let wat7l be a permutation on 12 defined by 

ix, A'\m) - (w.ht m — (b> a)n) 

t»»* all , />, ) !.:. Let if {il) be the permutation group on 12 generated by 
w()t„ for all {a, n) ( 12. We note that W(12) acts on $ff X Z similarly. For 
each (a, r/) t 12, set 

ha,n '•= wajlway
l if \a € $„ 

and set 

ha,n = W a . w ^ . o " 1 if 6 = | a € $ , . 

Let I be the subgroup of PF(12) generated by ha>n for all (a, w) G 12, and 
let J be the subgroup of W(tt) generated by wat0 for all a £ Red (3\r), 
where 

Red ($,) - {6 G $,;£& g * , } . 

We see that / is isomorphic to the Weyl group IF of $a. 

LEMMA 1.1. (1) Let (a, n) and (b, m) be in 12. Then 

hain(b,m) = (b,m+ (b,a)n). 
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(2) Suppose that 3>ff is of type BCX. Let a be in 3>ff and of type (R-3). Then 

(3) Let (a, n) and (b, m) be in 12, and set c = wab. Then 

It'a ,n^b ,m&'a ,n = f^c.m-

Let 12 7 be the subset of 12 defined below, where notation is as in Table 1 : 

127 = {{au 1), (am+if 2); 1 <; i <; m\ if $ , is of type Cw+i, 

12 7 = {(a,, 1), (2amt 1) ;1 g i ^ m - 1} if * , is of type 5Cro, 

12 7 = {(ai} 2), (am__i, 1) ; 1 g i ^ w - 2} if $ , is of type 5OT_i, 

12 7 - {(ai, 1), (a2, 1), (a3, 2), (a4, 2)} if $ , is of type F4 | 

12 7 = {(ai, 3), (a2, 1)} if <£v is of type G2. 

Then / is the free abelian group generated by ha>n for all (a, n) £ 12 7, 
so TT(fi) = J • / . 

Let n a = {ai, . . ., az} and let a0 be as follows: 
(1) a0 is the highest short root in <£, with respect to IT, if <ïv is of type 

Bh Ch Fi, or G2, 
(2) a0 is the highest root in 3v with respect to IL if <ïv is of type BCh 

Set at+1 = —a0. 
Let A be the dual root system of Red ($,) and A0 = {ôi, . . ., 81} be a 

simple system of A. Let W* be the affine Weyl group of A, and let <50 be 
the highest root in A with respect to A0. Put ôz+i = — <50. Let Ai = 
A X Z , and an element of Ai is denoted by <5(n), where 5 £ A and w 6 Z. 

For each <5(w) £ Ai, let w§(n) be the permutation on Ai defined by 

Wi(n)x(m) = (WsXym-(x,B)n) 

for all x(w) ë Ai. Let Wi be the permutation group on Ai generated by 
ws

(n) for all 8(n) 6 Ai, and W0 the subgroup of W\ generated by WB{0) for 
all ô e A. Set 

h^n) = ws^ws^-1 

and Hi be the subgroup of W\ generated by hs{n) for all ô(n) Ç Ai. Then 
Wo is isomorphic to the Weyl group of A, and Hi is the free abelian group 
generated by h§l

{l) for all ôt G A0, hence Wi = Hi • W0 and Wi ^ W* 
(cf. [11, Lemma 1.1/Proposition 1.2]). Clearly I o^ Hi c^. Zl and J ~ 
Wo c~ W. 

We fix simple roots of <£>a and A as follows, then we have ai+i and <5z+i 
as above. (We add the vertices of at+i and di+i, and the corresponding 
edges.) 
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(i) The case $«, = 5* and A = Cx (I ^ 3): 

$,: o< f.) o o M V> 
al+i ai a 2 a i-2 a^_i at 

A: C> >Q O O 0<Z=ZD 

ài+i 5 i Ô2 ài-2 &i~i ai 

(ii) T h e case <ïv = BCi and A = A\: 

a2 ai 

52 Ô 

(iii) T h e c a s e <Jv = BCX a n d A = Cx (I ^ 2 ) : 

<ï>„: (1 >Q O O CEZ=>0 

A : Q ) p O O cV t) 

5 / + 1 Ôi Ô2 Ô j _ 2 5 f_i Ôi 

(iv) T h e case <ïv = C2 and A = B2: 

ai a2 a3 

A: () >Q<=ZZD 

Ôi 5 2 Ô3 

(v) T h e case 4>, = C* and A = i ^ (Z ^ 3 ) : 

$,: ^>° ° ° O^ZZZD 
a2 a 3 a* -2 ^ J - I Ui 

(ii+i 

A : y ^ > 0 O O O >Q 

j Ô2 Ô3 5 /_2 5 / - 1 0/ 
O1+1 
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(vi) The case $ , = F\ and A = F4: 

<*V O O fV n O 

«5 rti (12 «3 ti4 

A : O O n >0 O 

Ô5 ô i £2 ^3 ^4 

(vii) The case €>, = G2 and A = G2: 

<*>,: O ) 0 O 

a i u 2 ^3 

O 

Ôi ô 2 Ô3 

The map ^ defined by 

\p(wSi
(0)) = wai>0 

for 1 ^ i ^ / and 

lK«>8,+ 1
( 1 )) = W a z + 1 , i 

induces an isomorphism, again called ^, of VF* onto W(Œ). This fact is 
easily verified by the next lemma and proposition. 

LEMMA 1.2. Let (a, ra) be in Œ and w in W(Q), and set (b, n) = w(a, m). 

Thenwwn<mw~l = wb>n (cf. [11, Lemma 1.3]). 

Set 

fio = {(a0, 1), ( - a , , 0); 1 g ^ /} and 

Y' = (w M ; (a,») G O0}. 

PROPOSITION 1.3. Let W($l) and Y' be as above. Then W(tl) is generated 
by Y' (cf. [11, Proposition 1.4]). 

Thus, the following result has been proved. 

PROPOSITION 1.4. The group W(Q) is isomorphic to the affine Weyl group 
of type A as in the following table. 

T A B L E 3. 

$ ° Bi BCi Ci F4 G 2 

A Ci Ci Bi Fi Gi 
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When w £ IF (12) is written as WiW2 . . . wk (WJ £ Y', k minimal), 
we write l(w) = fe: this is the length of w. Set 

12+ = 12 H ($,+ X Z>0 U $„- X Z^o) 

and 

12" = 12 - 12+. 

For each w £ IF(12), set 

r(w) = {(a, ») G î2+;w(a, w) G 12~} 
and 

iV(w) = Card T(w). 

The following two propositions hold (cf. [4, Lemma 2.1/2.2] and [11, 
Proposition 1.5/1.8]). 

PROPOSITION 1.5. Let (a, n) be in 120 and w in W($l). Then: 
(1) T(wa>n) = {(a,»)}, 
(2) wa,n(T(w) - {(a,»)}) = T(wwa,n) - {(a,»)}, 
(3) (a, w) is in precisely one of T(w) or T(w, wa<n), 
(4) N(wwa>n) = N(w) - 1 if (a, n) £ r (w) , N(wwa>n) = N(w) + 1 

if (a,n) & T(w). 

PROPOSITION 1.6. Let wbe in W(Q). ThenN(w) = l{w). 

2. Twisted Lie algebras. Let $ be a reduced irreducible root system 
with a simple system II = {a\, . . ., an\ and Qc a finite dimensional complex 
simple Lie algebra of type $. Then there is a Chevalley basis 
{h{lea; 1 ^ i ^ n,a £ <ï>} of $c satisfying 

(1) [htl ea] = (a,ai)eaj 

(Na,pea+p if a + P G $, 
(2) K, ^ ] = U a if a + 0 = 0, 

(O otherwise, 

(3) iVa,̂  - ±(p + 1) if p - pa, ..., P, ..., P + qa is the a-string 
through p, Na,p = -Nfi,a = -7V_a>_^, 

(4) ha is a Z-linear combinations of fe/s, feai = /&*, for any a,j8 G $ and 
1 ^ i ^ n. We set 

&z = X)Z/^ and Qz = f)z + Z) Z e«. 

Let i£[T, r _ 1 ] be the ring of Laurent polynomials in T and T~l with 
coefficients in a field K, i.e., 

X[ r , T-1] = { X /wrm (finite sum) \tm£K 
ImÇZ • 
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and set 

L = K[T, T-1] ® z flz and & = K[T, T~'] ® z t)z. 

From now on we will assume that <ï> is of type 4̂„ (» ^ 2), Z>n (w ^ 4) 
or E6. We fix a nontrivial diagram automorphism a of $ (cf. Table 1). 
Associated to o-, we can find an automorphism of gz, again denoted or, 
such that 

0"(&a») = Aj8*, 0-(^±«t) = e±Pi 

for all a,- G II, where fii = <r(<Xi). We write 

for each a G $>, where ka £ Z. Then we have ka = ± 1 for all a G $. 

PROPOSITION 2.1. Le£ (<£, o-) 6e of2-type. Then we can choose a Chevalley 
basis which satisfies the following condition: 

(1 ) ka = —1 if $ is of type A<in(n^ 1 ) and a (a) = a; 
(2) ka = 1 otherwise (cf. [1, Proposition 3.1]). 

PROPOSITION 2.2. Le£ ($, <r) 6e of 3-type. Then we can choose a Chevalley 
basis such that ka = 1 for alla Ç $. 

Proof. We have &« = &_« as a(ha) = /^(a), so we may assume a is posi
tive. Suppose a (a) = a. Then (ka)

z = 1 and ka = 1. Next suppose 
o- (a) ^ a, and set/3 = a (a) and 7 = a2 (a). Then kak^ky = 1, and (ka, kp, ky) 
= (1, 1, 1), (1, - 1 , - 1 ) , ( - 1 , 1, - 1 ) , or ( - 1 , - 1 , 1). To establish 
this proposition, we may assume (fea, k$, ky) = (1, —1, —1). Replacing 
ey by — ey, we have o-(ea) = e$, a(ep) = ey and <r(ey) = ea. Arrange the 
bases for negative roots similarly, and ka = 1 for all a ^ $. 

We shall fix a Chevalley basis of gc with the properties of Proposition 
2.1 or 2.2. We assume that K has a primitive rth root of unity when 
($, o") is of r-type. Therefore, in particular, we have char K ^ r. If r = 3, 
we let co denote a primitive cubic root of unity in K. Let r be the Galois 
automorphism of K[T, T~l] over K[Tr, T~r] defined by 

(l) r ( r ± 1 ) = - r ± H f r = 2, 

(2) T(T^) = (cor)±Mf r = 3. 

Let Z/ (resp. Ï)') be the subalgebra of fixed points of L (resp. f)) under 
r 0 0-. (For more general cases, see [5], [6]). 

For each (c, m) £ Œ, we define an element ec,m of £ ' a s follows. 

Type (a): 

ec,m = Tmey if c = (7) is of type (R-l) and m = 0 (2) 

ec,m = r % 1 + T % 2 if c = (71, 72) is of type (R-2) andra = 0 (2) 
ec,m = Tmeyi — Tmey2iîc = (71,72) is of type (R-2) and m = 1 (2). 
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Type (b): 

ecm = Tmey if c = (7) is of type (R-l) and m = 1 (2) 

ec,m = Tme7l + Tme72 if c = (71, 72) is of type (R-3) and 

m = 0 (2) 

ec,m = Tme7i — Tme72 if c = (71, 72) is of type (R-3) and 
m = 1 (2). 

Type (c): 

eCf7n = Tme7 if c = (7) is of type (R-l) and m = 1 (2) 

*cm = r % 1 + r % 2 if c = (71, 72) is of type (R-2) or 

(R-3), and m = 0 (2) 

eCj7n = Tme7l — Tme72 if c = (71, 72) is of type (R-2) or 

(R-3), and m = 1 (2). 
Type (d): 

eCtm = Tme if c = (7) is of type (R-l) and m = 0 (3) 

eCtm = ^ % ! + ^ % 2 + ^m^73 if c = (71, 72, 73) is of type 

(R-4) and m = 0 (3) 

ec,m = Tme7l + coP%2 + œ2Tme7z if c = (71, 72, 73) is of type 

(R-4) and m = 1 (3) 

ec,m = Tme7l + œ2Tme72 + uTme7z if c = (71, 72, 73) is of type 
(R-4) and m = 2 (3). 

Then Z/ = fy' © ^(C>OT)€a ^C )m- For each c G $<,, set hc = h7 if c = (7) 
is of type (R-l) , /&c = ^ + ^T2 if c = (71, 72) is of type (R-2) or (R-3), 
and hc = h7l + h72 + h7z if c = (71, 72, 73) is of type (R-4). Let 

For each (c, m) £ 12, we have [h, ec>m] = c(h)ec>m for all h £ ï)", where c 

is regarded as an element of (ï)")*> the dual of !)". 

PROPOSITION 2.3. Le/ (c, m) be in 12. Then: 

(1) [Ac, «cm] = 2e C i T O i fcwo/ /y^(R- l ) , (R-2)or (R-4) , 
(2) [hc,eCt7n] = ec,mifcisoftype (R-3), 
W/ lec,mi 6—c,—m\ = ^c-

Proof. The case when c is of type (R-l), (R-2), or (R-4) is easy. 
Assumée = (71,72) is of type (R-3). Then hc = h7l + h72,andec>m = Tme7l 

+ Tme72 (resp. Tme7l - Tme7l) if m = 0 (2) (resp. m = 1 (2)). Hence, 

[h7l + h72, T
me7i ± Tme72] = 2Tme7l - Tme7l =F r % 2 ± 2 P % 2 

= Tme7l ± T % 2 

and 
[Tme7l ± Tme72, T~me_7i ± T'me^2] = A7l + Z^. 
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3. Twisted Chevalley groups. Let p be a finite dimensional complex 
faithful representation of Qc- We let G be a Chevalley group over K[T, T~1} 
associated with gc and p. Set $1 = $ X Z. For each (a, n) Ç $1, there 
exists a group isomorphism 

t y-^xjn)(t) 

of the additive group K+ of K onto a subgroup Xa
{n) of G (for the defini

tion, see [11]). The elementary subgroup E of G is generated by Xa
{n) for 

all (a, n) G $1. Let K* be the multiplicative group of K. For each 
(a, n) Ç $1 and / £ i£*, we define 

Let iV be the subgroup of E generated by wa
{n) (t) for all (a, n) Ç $1 and 

/ G K*, and let if0 be the subgroup of E generated by ha
(0) (t) for all 

a ^ $ and / £ K*. Let £/ be the subgroup of E generated by xa
{n) (t) for 

all (a, n) £ $ i + and / G K, where 

* i + = ($+ X Z>0) U ( $ - X Z^o). 

Leti3 be the subgroup of £ generated by [/ and H0. 

THEOREM 3.1. Notation is as above. Then: 
(1) (E, B, N) is a Tits system, 
(2) N/(B C\ N) is isomorphic to the affine Weyl group of <ï> (cf. [11, 

Theorem 2.1]). 

For any (c, m) (E 12 and / G K, we define xc>m(t) as follows. 
Type (a): 

xc>m(0 - x / m ) ( 0 if c = (7) is of type (R-l) and m = 0 (2) 

*ClW(0 = Vm>(0*T2
(w)(0 if c = (71' 72 ) i s o f t yP e (R-2) 

and w = 0 (2) 

*c«(0 = V 0 ( 0 ^ 2
( m ) ( - 0 if c = (71, 72) is of type (R-2) 

and m = 1 (2). 
Type (b): 

*c.m(0 = x7
(7n)(0 if c = (7) is of type (R-l) and m = 1 (2) 

#C,ml// = ^ 7 i V*/^7 2 V^/*^7i+72\2"^72>7i^ / 

if c = (71, 72) is of type (R-3) and m = 0 (2) 

^ C , m W = = ^7x W ^ 7 2 V ^/^7i+72\ ^ * 7 2 ' T r ' 

if c = (71, 72) is of type (R-3) and m = 1 (2). 
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Type (c): 

Xc,m(t) = xy(
m)(t) if c = (7) is of type (R-l) and m = 1 (2) 

xe,m(t) = *7 l
( w )(0*72

( w )(0 if c = (71, 72) is of type (R-2) 

and m = 0 (2) 

Xc.n(t) = xy™(t)xy™(-t) if c = (71, 72) is of type (R-2) 
and m = 1 (2) 

Xc,m\P) == Xfi \P)Xy2 \t)Xyl-\-y1\~2iyy2<ylt ) 

if c = (71, 72) is of type (R-3) and m = 0 (2) 

Xc,m{t) = X7l (t)Xy2 ( — t)Xyl+y2(— 2Ny2tyit ) 

if c = (71, 72) is of type (R-3) and m = 1 (2). 

Type (d): 

xc,m(0 = Xy(m)(t) if c = (7) is of type (R-1) and m = 0 (3) 

Xc,m\t) Xy^ \t)Xy2 \t)Xy^ \t ) 

if c = (71, 72, 73) is of type (R-4) and m = 0 (3) 

X c W = x7 l^)(0x7 2^)(a;0x7 3^)(w20 
if c = (71, 72, 73) is of type (R-4) and m = 1 (3) 

*c.mW = x7l
(w)(0*72

(,,,)(«20*7,(,,l)(«0 
if c = (71, 72, 73) is of type (R-4) and m = 2 (3). 

For each (c, m) G 12, let Xc>m be the subgroup of E generated by xc>m(t) 
for all t G i£. Then X c m is isomorphic to the additive group K+ of K. 
Let £ ' be the subgroup of E generated by XCtM for all (c, m) G 12. For 
each (c, m) G 12 and £ G i£*, we define 

'^c,m\J') Xcm yt)X— c —. m { t )Xcm\t) 

if c is of type (R-l), (R-2) or (R-4), 

<Wc,m\J') = X Crn\t)X—Cr-m\ Zt )XCfVl\t) 

if c is of type (R-3) and m = 0 (2), 

<^c,mV) ~ X cm\t)X—Cr-m\Zt )XCtm\t) 

if c is of type (R-3) and m = 1 (2). 
Let iV7 be the subgroup of FJ generated by wc<m(t) for all (c, m) G 12 

and K P . 

LEMMA 3.2. L^ (c, w) be in 12 awd £ in K*. Then: 

(1) wCtTO(0 = wy
(m)(t) ifc = (7) is of type (R-l) , 

(2) ™cw(0 = w7/w>(/)w72 <*>(*) # c = (7 l , 72) is of type (R-2) 

awd m = 0 (2), 

https://doi.org/10.4153/CJM-1981-089-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-089-6


CHEVALLEY GROUPS 1195 

(3) wc,m(t) = wTl<*>(0 V ° ( - 0 tfc = (7i. 72) is of type (R-2) 

<mrf m = 1 (2), 

(4) We ,m(/) = < > ( - 1 ) < ? 7 2 (*iV7„Y / ) 

if c = (TI> T2) ^ of type (R-3) and m = 0 (2), 

(5) «^(O = < ( - l ) < ? T 2 ( - f A ^ , 7 / ) 
# £ = (71» 72) is of type (R-3) and m = 1 (2), 

(6) wc.m(0 = ^ ^ ( K ^ t K ^ H Q 
^/^ = (7i, 72, 73) is of type (R-4) and m = 0 (3), 

(7) wCfTO(0 = w7 /w)(Ow7 2
( , , l )(«OwT , ( m )(co20 

if c = (71, 72, 73) is of type (R-4) and m = 1 (3), 

(8) w c ,m(0 = w7l<
w>(Ow72

(ro)(«2Ow7,(, , ,)(coO 

^ / c = (7i> 72, 73) is of type (R-4) and m = 2 (3). 

Proof. (1), (2), (3), (6), (7), and (8) are easy. Here we shall establish 
(4). By the Jacobi identity, we have 

N7 l + 7 2 ,~7 liV7 2 ) 7 l = N_7l_72,7liV_72,__7l - 1 and 

^7i+72 ,-72^Y2 ,7i = "^-Tl-^o ,72 ^ -T 2 . -Ti = _ ^ " 

Thus , 

= x™ (t)x% 0)x^72 W1t.yj V^)(-2-,)*t^> (-2r1) 
X X_7l_72(2A^72)_7l/ )X7l (t)Xy2 (t)Xyl+y2 ('H-Ny^rfJ ) 

= x7l {t)X-7l { —2t )x7l (t)X-yl ( — 2/ )x7j+72(2À'72,7l^ ) 

X x_7l_.72(^iV_72)_7l£ jx7l+72(2"iv72)7l^ ) 

= <)(ox^)(-/)<)a)^r)(-ri)<:T2(iivT2,T/) 
= <)(Os«'!*ïyi(èJVTrT/) 
^«(DC' l - rKS.dJV, , , , / ) 

= *£'(- lK^tt iW"). 
(5) is similarly shown. 

By Lemma 3.2 and [11, Lemma 2.3 (2)], the next lemma can be 
established. 

LEMMA 3.3. Let (a, n) and (b, m) be in 12, and t in K*, and set (&', m') = 

wa,n(b, m). Then 

wa,n{t)Xh>mwa,n(t)-
1 = Xb>im>. 
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By Lemma 3.3, we see that there is a group homomorphism v of N' 
onto W{$l) defined by v(wa,n(t)) = wa>n for all (a, n) G 12 and / £ i£*. 
Let HQ' be the kernel of v. We sometimes identify an element of W(12) 
with a representative in iV of N''/Ho'. Let £/' be the subgroup of Ef 

generated by XCi7n for all (c, m) £ 12+, and let B' be the subgroup of Ef 

generated by Ur and i^o'. 

THEOREM 3.4. Let Y' be as in Section 1. Then (£ ' , £ ' , TV', Y') is a Tits 
system. 

This theorem will be established in Section 5. For that purpose it is 
necessary to prove the next proposition. Let s be in Y'. For some (c, n) G 
120, we have 5 = wCjn. Set 

û+(s) = {(a, w) G H + ; a É Qc}. 

Let P s be the subgroup of U' generated by Xa,m for all (a, w) £ 12+(s). 

PROPOSITION 3.5. Le/ 5 6e w F' . rfeera 

sPsS-1 QB'VJ B'sB'. 

We shall show this proposition in Section 4. 

4. Proof of proposition 3.5. Let s be in F' , and write 5 = wCtTl for 
some (c, w) £ 120. Let 

fi(.s) = {(a, m) £ 12;a £ Qc} 

and E'(s) be the subgroup of E' generated by xa,m(t) for all (a, m) £ 12(5) 
and t £ K. H $„ r\ Qc = { ±c} , then we can view Ef (s) as the elementary 
subgroup of a Chevalley group of type Ai over K[T, T - 1 ] , K[T2, T~2] or 
K[Ts

y T~3], therefore Proposition 3.5 can be shown using the result in 
[11, Section 3]. Thus, to establish Proposition 3.5, we may assume that 
<ï> is of type A2 and $ff is of type BC\. In this section, from now on we 
assume G is a Chevalley group of type A2 over K[T, T~l], so &a = 
{±a, ±2a} , 

12+ = {( + a, »), ( - a , m), (±2a, fc) G 12; 

n > 0, w ^ 0, k > 0, & = 1 (2)j. 

We simply write 

Wo = w_a,o = w_a(l)w2a,i(2)w;2a>i( —1) and 
Wi = W 2 a , l = W 2 a , l ( l ) . 

Let 5X = B' VJ £'wxJ3', where X = 0, 1. 

LEMMA 4.1. The following statements hold. 
(1) WoXia.nW1 = ^+a,n Ç 5 ' iftl^l. 

(2) WoXiaa.nWo"1 = ^+2a,, Ç 5 ' i f f l ^ l 9 n = l ( 2 ) . 
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(3) WoX-a^Wo'1 = Xttto C S0. 

(4) wl Xa^wr1 = X_fl,n_! QBf if n 2:1. 
(5) w1 X.a,nwrl = Xa>n+1 QB' ifn^O. 
(6) wi X ^ w r 1 = X_2a,„_2 C 3 ' # n ^ 3, n = 1 (2). 
(7) wi Z-aa.nwr1 = X2a,n+2 C B' if n ^ 1, n = 1 (2). 
(8) WiZ2fl,l^r1 = -X"-2a,-l £ Si. 

Definition. Let x be in £ ' . 
(1) x is called a (QS, 0) -element if x can be written as 

X-a,o(t)Xa,o(u)xbl>ni](ti) . . . Xbk >mjc (tk)X-a,o (v) , 

where (bj,mj) Ç 12+ - { ( - a , 0)},fe ^ 0,t,u,tu . . ., tk G i£, and t; G X*. 
(2) x is called a (QS, 1)-element if x can be written as 

X2a,l(t)X-2a-1(u)xblimi(ti) . . . Xb/c t7rl/c (tk)x2a,l (v) , 

where (bjt mf) ^ + - {(2a, 1)}, k ^ 0, /, u, tu . . .,tk£ K, and v G X*. 
(3) x is called an (5, 0)-element (resp. (S, 1)-element) if x is a (QS, 0)-

element (resp. (QS, 1)-element) with u = 0. 

LEMMA 4.2. Le/ x 6e in E' and X = 0, 1. If x is an (S, X)-element, then 
W\XW\ G 5 . 

Proof. Set X = 0. We proceed by induction on k. If t = 0, clearly 
WoXWo-1 G So by Lemma 4.1. Assume / =̂  0. 

Case 1: (bi} mi) = ( — a, m), m > 0, m = 1 (2). 

Woxwo-1 = w0x_a)o(/)x_a)m(/i)xÔ2im2(/2) • • . 

. . . ^ . ^ ( ^ - a . o W î f o " 1 = WtiX-2a,m(±2th)X-atm(h)X-a,o(t) 

X ^&2,m2 (^2) • • • Xbk,mk 

(k)X-ato(v)Wo 1 e X2a,mXa,mWoX-.a>o(t) 

X xÔ2,m2(/2) . . . xÔA.i^(4)x_a)0(y)wo~1 Ç -B'So Ç So. 

Case 2: (61, Wi) = ( — a, m), m > 0, m = 0 (2). 
WoXWo-1 = WûX-aAt)x-a.m(h)xb2tm2(t2) . • . *&* ,m,, ( 4 ) x _ a > 0 (^)Wo"1 

= w0x_aim(/i)x_aio(/)x&2(m2(/2) . . . xbktmk(tk)x-a^{v)w{r
l 

e Xa,mWoX-a!Q(t)xb2!mk(t2) . . . Xbk,mK(tk)X-a,Q(v)w0-
1 

Ç B'So = So. 

Case 3: (bi, m\) = ( — 2a, w), m > 0, m = 1 (2). 

WoXWo-1 = w0x_a)0(/)x_2a)m(/i)x62)m2(/2) . . . ^ ^ f e J x - f l . o W ^ o " 1 

= W0X_2aim(/i)x_a,o(0^&,,m2(^) . . . X ^ ^ / J O X - ^ O W W O " 1 

€ X a,o(t)Xt,,,m,(t2) • • • Xbk ,mt (h)X-a,e(v)Wo 1 

ç B'S0 = 50. 
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Case 4: (61, mi) = (a, m), m > 0, 

WoneXT 1 = W<&-a,o(t)Xa,m(h)Xb2,m2(t2) • • • *&Jfc ,mk (h)X-a.O 0 ) ^ 0 _ 1 

= xa7o(-t)x-atm( — ti)x2 . . . aWz.oC —«0 

= x_fl>0(-2r1)w_aio(2r1)x_a(o(-2/-1)x_fl>m(-/1) 
X x2 . . . xifcx_a>o(-2z;-1)w_aro(2z;-1)x_fl(o(-2y-1) 

Ç B'wtiX-a,o( — 2trl)x-a,m( — h)x2 . . . xkX-a^( — 2v-l)w<rlB' 

(xj = w&tjwit^wo-1, 2 ^ j S k). 

Case 5: (61, mx) = (2a, m), m > 0, m = 1 (2). 

WotfWo"1 = W o ^ - f l > o ( 0 ^ 2 o f m ( ^ l ) ^ 6 2 , m 2 ( ^ 2 ) • • • Xbje >rnk (h)X-a,0 W WQ'1 

= Xato(-t)X-2a,m(h)x2 . . . XkXato( — v) 

= X _ a > o ( - 2 r 1 ) W - a ) o ( 2 / - 1 ) x _ a i û ( - 2 r 1 ) x _ 2 a , m ( ^ l ) 

X x2 . . . xA;x_a)0(-2z;-1)^-a,o(2y-1)^-a>o(-2^-1) 

G £ ' ï W - a , o ( — 2 r 1 ) x _ 2 a ) m ( ^ l ) ^ 2 . . . XkX-a,0 ( ~ 21T"1) W^B' 

(x,- = wtxtjwit^wo-1, 2 ^ j ^ k). 

The case when X = 1 is similarly shown. 

LEMMA 4.3. Let x be in Ef. 

(1) If x is an (S, 0)-element, then 

WoXWo'1 G ^ ' W o I - a . c I a . O ^ O - 1 . 

(2) If x is an (S, 1)-element, then 

WiXWr1 G B/WiX2a,lX-2a,-lWr1. 

Proof. Proceed by induction on k as in Lemma 4.2. Then we have (1) 
and (2). 

LEMMA 4.4. Let x be in E' and \ = 0, 1. If x is a (QS, X)-element, then 
w\xw\~l G S. 

Proof. Lemma 4.2 implies this lemma as in [11, Lemma 3.6]. 

LEMMA 4.5. Let x be in E'. 

(1) If x is a (QS, 0)-element, then 

WQXWQ-1 G B'WoX^a^Xa^Wo-1. 

(2) If x is a (QS, 1)-element, then 

Wixwr1 G B'wiXu^X^a^xWi-1. 

Proof. Lemma 4.3 implies this lemma. 

These five lemmas lead to Proposition 3.5 as in [11, Section 3]. 
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5. Proof of theorem 3.4. Notation is as in Section 3. By using the 
commutator relations in [11, Lemma 2.2], we can establish the following 
proposition. 

PROPOSITION 5.1. Let (a, m) and (b, n) be in 12 such that a + b ^ 0. Then 

[Xa>m,Xbtn]Q (Xe,k;(c,k) e 12, 
c = ia + jb, k = im + jn, i,j>0 ). 

Let 5 be in Y', and let 12+(<0' = 12+ - 12+(s). Let Qs be the subgroup of 
U' generated by Xai7n for all (a, m) £ 12+ (s)'. Then, by Proposition 5.1, 
we have 

(5.2) Ps normalizes Qs, 

(5.3) U' = PSQS. 

By the définition of H J', 

(5.4) Ho' normalizes Xc>m for all (c, m) £ 12, 

(5.5) 5 ' = Z/'vffo'. 

Clearly, Bf C\ N' ^ H0'. Conversely let * be in B' C\ N'. Then 
x G W(12), where â is the image of x under the canonical group homo-
morphism ~ of N' onto N'/Ho '. Since x is in Bf, we have £12+ C 12+, hence 
iV(x) = Oandx £ iZV.Thus, 

(5.6) Bf C\N' = Ho'. 

By Proposition 3.5, (5.3) and (5.5), 

SB'S-' = s(PsQsHo')s~l = (5PS5-1)(5(355-1)(5W5-1) 

C (^' W B'sB')B'HJ. 
Hence, 

(5.7) 5 ' U 5'5J3' is a subgroup of £ ' . 

We see that E acts on L via the adjoint representation (cf. [11, Section 
4]). Then U is stable under the action of E'. Let g be in U' and (a, w) Ç 
120, and set 

If a is of type (R-l), (R-2), or (R-4) (resp. of type (R-3)), then we can 
write 

g&—a,— n == 6—a,—n \ Ç^a f ^a,n \ % 

(resp. ge-a,-n = e-a.-n + Çha - %Ç2ea,n + z) for some f Ç X and z d Za>n 

(cf. Proposition 2.3). Let Sa,n be a map of £/' onto K defined by da,n(g) = 
r. As 

g*a = K - 2Çea>n + z' 
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(resp. gha = ha - Çeatn + zf) and gZa>n C Za<n, the map 0fl,n is a group 
homomorphism of U' onto the additive group K+ of K, where z' 6 Za>n. 
Let Z)an be the kernel of the homomorphism 0fltW. By (5.7), 

For any x Ç Dfliffi, we have 

V^a.w^^a.n )&a,n &a,n \ % » 

where s" G Za>n, so ^ V n * ^ ^ - 1 can not be in BfwatnB''. Thus, 

(5.8) watnDa<nwa,-
1 Q B'. 

If g is in [/', (a, n) 6 120 and 0a,n(g) = f > then 

Hence, 

(5.9) U' = Dfl,n • X«tW. 

Therefore, as in [11, Section 4], we have 

(5.10) {B'wB,){B,sB') C (BfwsB,)(B,wB/) 

for any w £ W(12) and 5 G Y''. These facts imply Theorem 3.4. 

Remark. If ($, a) is of r-type, then L' has the structure of an r-tiered 
Euclidean Lie algebra (cf. [5], [6], [8], [9], [13], Table 4 below). We 
follow the classification in [8], so here we use the notation Dz instead of A 3. 

T A B L E 4. 

2 -type 3-type 

(<ï>, <r) ^ 2 n + l ^ 2 n 

(n ^ 2) in ^ 3) 
£ 6 ^ 2 D, 

V Cn+1,2 £Cn>2 $ n - l , 2 •^4,2 A 1 > 2 Gtti 
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