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We study the stability of a zero-pressure gradient boundary layer subjected to free-stream
disturbances by means of local stability analysis. The dataset under study corresponds
to a direct numerical simulation (DNS) of a flat plate with a sharp leading edge in
realistic wind tunnel conditions, with a turbulence level of 3.45 % at the leading edge.
We present a method to track the convective evolution of the secondary instabilities
of streaks by performing sequential stability calculations following the wave packet,
connecting successive unstable eigenfunctions. A scattered nature, in time and space,
of secondary instabilities is seen in the stability calculations. These instabilities can be
detected before they reach finite amplitude in the DNS, preceding the nucleation of
turbulent spots, and whose appearance is well correlated to the transition onset. This
represents further evidence regarding the relevance of secondary instabilities of streaks
in the bypass transition in realistic flow conditions. Consistent with the spatio-temporal
nature of this problem, our approach allows us to integrate directly the local growth rates
to obtain the spatial amplification ratio of the individual instabilities, where it is shown
that instabilities reaching an N-factor in the range [2.5,4] can be directly correlated to
more than 65 % of the nucleation events. Interestingly, it is found that high amplification is
not only attained by modes with high growth rates, but also by instabilities with sustained
low growth rates for a long time.
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1. Introduction

Transition to turbulence is still an active research topic even in canonical flows. The
simplest external flow, namely the zero-pressure gradient (ZPG) flat plate, that can be very
well described by the Blasius similarity solution is not an exception to this. There are some
practical reasons for why we would like to have a general description of this phenomenon
and to be able to predict the transition to turbulence under all conditions. These practical
reasons are related to the different properties in terms of skin friction, heat transfer, and
mixing of momentum that laminar and turbulent states have, which are of interest in many
engineering applications.

The elusiveness of a simple transition prediction model is mainly due to the different
parameters, geometrical attributes and external disturbances playing a role in the transition
process. By isolating individual sources of transition, we can better characterise particular
flow configurations and gain a deeper understanding on the transition mechanisms. One of
these sources is free-stream turbulence (FST), which generates one of the most intricate
boundary layer transition scenarios.

Bypass transition has become a common notation for an FST-induced transition when
high turbulence intensity levels are present. The term bypass was originally coined by
Morkovin (1985) to refer to any route to transition ‘bypassing’ the natural one explained
by modal theory, where unstable Tollmien—Schlichting (TS) waves are exponentially
amplified to breakdown, generating a fully turbulent boundary layer. The FST bypasses
the classical route due to significant transient growth that disturbances can experience
before the dominant exponential behaviour at later times or even when modal growth is
not expected from linear theory. This transient growth can be explained by the non-normal
nature of the linearised Navier—Stokes operator for this type of flow (Butler & Farrell 1992;
Reddy & Henningson 1993; Schmid & Henningson 2001).

The process of bypass transition begins with a receptivity stage where low-frequency
vortical structures penetrate the boundary layer, while high-frequency disturbances are
filtered by the boundary layer due to the shear sheltering (Hunt & Durbin 1999).
This is followed by the formation and growth of low-frequency streaks as the primary
instability, until they either decay or grow enough to become unstable leading to secondary
instabilities, which in turn develop into turbulent spots. The initial receptivity phase can
be categorised as linear or nonlinear (Brandt, Henningson & Ponziani 2002), depending
on how the streamwise vortices are generated, where some key factors are the leading
edge geometry (Nagarajan, Lele & Ferziger 2007; Schrader et al. 2010), pressure gradient
(Mamidala, Weingértner & Fransson 2022) and the FST characteristics (Fransson &
Shahinfar 2020). The formation and amplification of streaks is due to the lift-up effect
(Ellingsen & Palm 1975; Landahl 1980), responsible for the momentum displacement
inside the boundary layer, and generating elongated alternating low- and high-speed
streamwise velocity disturbances. A mathematical account for the streak formation is
provided by optimal disturbance theory (Andersson, Berggren & Henningson 1999;
Luchini 2000), showing how streaks correspond to the optimal response, in terms of
energy amplification, of the boundary layer. This explains how randomly generated
disturbances, as in FST, will most likely develop into streaks. If a streak reaches a
sufficiently high amplitude, it can become unstable, hosting a high-frequency secondary
instability (Andersson et al. 2001) that will grow until its breakdown into a turbulent spot.
This last stage is the main focus of the present work and it will be expanded upon in
the following paragraphs, while a more detailed survey of the whole bypass transition
process can be found, for instance, from Matsubara & Alfredsson (2001) and Zaki
(2013).
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A well-known transition prediction tool is the ¢-method, stating that transition takes
place when the most amplified disturbance reaches ¢V times its initial amplitude, where
the receptivity phase controlling this initial amplitude is often ignored. In cases involving
FST, the empirical relationship between the turbulent intensity and N is commonly used
(Mack 1977). Attempts to include algebraic growth for transition prediction have been
made, for instance, by Andersson et al. (1999). The two aforementioned investigations
are principally inspired by the primary instability over the flat plate. In cases where
secondary instabilities are precursors of transition to turbulence, their analysis can be
used for transition prediction as well. This is the case for cross-flow instabilities, where
Malik et al. (1999) showed that an N-factor approach based on the secondary disturbance
growth yielded a more robust correlation of the transition onset location than a correlation
based on the primary disturbance. They proposed an optimal N-factor of approximately
8.5 for this flow, which is consistent with the experimental results of Kohama, Onodera &
Egami (1996). More recent experiments (Serpieri & Kotsonis 2016) show, for cross-flow
secondary instabilities, an N-factor of approximately 4 before transition. In the present
work, we explore the possibility of using secondary instabilities as a marker for transition
prediction in the context of FST-induced transition.

The stability results from idealised streaky base flows, as in the cases of Andersson
et al. (2001), Ricco, Luo & Wu (2011) and Vaughan & Zaki (2011), show how secondary
instabilities can be of sinuous or varicose type, depending on their spanwise symmetry.
Another way to classify the unstable modes was adopted by Vaughan & Zaki (2011),
where the modes were referred to as inner or outer instabilities, depending on their
wall-normal position in the boundary layer. The outer instability is generally formed in a
low-speed streak lifted towards the boundary layer, and examples of them in more realistic
conditions can be found, for instance, in the investigations by Jacobs & Durbin (2001),
Brandt, Schlatter & Henningson (2004), Zaki & Durbin (2006) and Mans, de Lange &
van Steenhoven (2007). Moreover, Hack & Zaki (2014) showed how a ZPG boundary
layer favours the amplification of this type of instability, while inner instabilities are
more rarely found. One interesting observation is that the outer mode exhibits a higher
phase speed compared with TS waves, being much closer to the free-stream velocity
with reported values in the range ~0.6-0.85 (see, for instance, Andersson et al. 2001;
Ricco et al. 2011; Vaughan & Zaki 2011; Hack & Zaki 2014). Furthermore, Ricco et al.
(2011) predicted a group velocity close to the phase speed with a maximum difference
of only 10 %, being consistent with the propagation speeds reported, for instance, in
the numerical work by Brandt er al. (2003) and experimental results of Mans et al.
(2007).

Evidence of streak secondary instabilities in more realistic flow conditions have been
found numerically (Brandt et al. 2004; Schlatter et al. 2008; Hack & Zaki 2014) and
experimentally (Matsubara & Alfredsson 2001; Mans et al. 2007; Nolan & Walsh 2012).
The works by Schlatter et al. (2008) and Hack & Zaki (2014) are particularly interesting in
this regard, since they showed the relevance of the secondary instabilities in the nucleation
of turbulent spots and therefore their central role in bypass transition. Schlatter et al.
(2008) compared the results from idealised models with full simulations and experiments
of bypass transition, obtaining similar characteristics in terms of secondary instabilities
and streak breakdown, independently of the level of approximation of the study. Hack &
Zaki (2014) took a different approach by detecting the nucleation of turbulent spots and
performing local stability analysis in planes normal to the streamwise direction at earlier
times and upstream positions, where unstable modes were always preceding the nucleation
of turbulent spots.

988 A6-3


https://doi.org/10.1017/jfm.2024.433

https://doi.org/10.1017/jfm.2024.433 Published online by Cambridge University Press

J.M. Faiindez Alarcon and others

Nevertheless, secondary instabilities of streaks are not always considered as responsible
for bypass transition. For instance, Nagarajan et al. (2007) observed in one of their
cases that a turbulent spot nucleation was linked to near-wall wavepacket perturbations
appearing near the (blunt) leading edge. However, the secondary stability analysis of
streaks by Vaughan & Zaki (2011) provided an explanation for this observation, showing
that the inner mode presents a similar structure and phase speed to those reported by
Nagarajan et al. (2007). Another possible mechanism for spot inception has been proposed
by Wu et al. (2017), indicating that it is analogous to the secondary instability in natural
transition with the appearance of A vortices, with streak meandering being just the
consequence of neighbouring turbulent spots. More recently, Wu (2023) has suggested that
this is likely the case for inlet FST in the range 2.5-5 % and suggests that previous research
has mistakenly thought that streak secondary instabilities dominate the breakdown for FST
levels in the range of 0.5-5 %. The reason proposed is that previous studies have missed
this mechanism because of limitation in grid resolutions, boundary conditions and visual
capabilities, or because of not paying attention to the upstream events. These sources of
error are unlikely to be present in the current investigation.

An alternative path to spot inception comes from the interaction between two subsequent
streaks, where the leading edge of a high-speed streak collides with the tail of a low-speed
streak. In this scenario, the instabilities develop without the need of background noise and
come either from the free-stream or neighbouring turbulent spots, as shown by Brandt &
de Lange (2008) and Nolan & Walsh (2012).

One key tool in our evaluation to relate secondary instabilities with turbulence
breakdown is the binary discrimination of the flow fields into laminar and turbulent
regions. Such a tool can be used to define intermittency functions, indicating the fraction
of time when the flow is in one state or another, and to detect individual turbulent spots.
One of the most common procedures involves the choice of a criterion function that must
have distinctive values for laminar and turbulent regions, and a threshold value to compare
the criterion function against that for the final binary segmentation. Examples of this
type of procedure can be found in experiments (Volino, Schultz & Pratt 2003; Fransson,
Matsubara & Alfredsson 2005b; Veerasamy & Atkin 2020) and simulations (Nolan & Zaki
2013; Kreilos et al. 2016; Bienner, Gloerfelt & Cinnella 2023), where one of the main
differences lies on the use of temporal or spatial signals for experiments and simulations,
respectively.

This work is motivated by the debate on streak instability as the key mechanism on the
FST-induced transition and whose understanding could lead to better transition prediction
tools. We examine a large, well-resolved simulation of a flat plate to investigate its role.
Here, streak stability analysis is carried out over a large region of the boundary layer in the
pre-transitional and transitional zones, seeking for quantitative relations between streak
instabilities and turbulent spots to infer the relevance of this mechanism in transition. As
instabilities are tracked and their total amplification recorded throughout the simulation,
we are able to evaluate if spots are related to high growth rates, or to low or moderate
growth rates sustained for a long time.

The paper is organised as follows. In § 2, we start by describing the flow configuration
and the numerical data under consideration. The stability analysis formulation and the
laminar—turbulent discrimination technique are outlined in § 3. The principal results are
presented in § 4. First, the main features of local stability analysis and the algorithm for
tracking secondary instabilities are presented using a canonical example of this flow case.
Then, statistical results regarding streak secondary instabilities are included, where their
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Figure 1. (a) Skin friction coefficient. The dashed lines represent the values for laminar and turbulent
boundary layer, and are included for comparison. (b) Evolution of the displacement thickness &*.

connections to transition location and individual turbulent spot nucleation are also shown.
The main conclusions of this work are summarised in § 5.

2. Dataset

The analysis performed in this paper is based on numerical data corresponding to a direct
numerical simulation (DNS) of a transitional boundary layer. The flow fields come from
one of the cases (Case 2) in the work by Durovi¢ et al. (2024), where a more detailed
description of the case and the numerical set-up can be found. The case represents a flat
plate with a sharp leading edge forced by FST under realistic wind tunnel conditions. The
asymmetric leading edge of the plate has been designed to reduce the effects of the leading
edge on the pressure gradient (Westin et al. 1994). Given the inclusion of the leading edge,
the whole transition process is resolved, from the receptivity of the incoming disturbances,
through their growth and breakdown to finally form a fully turbulent boundary layer.

The simulations were performed using the spectral element code Nek5000 (Fischer et al.
2008), solving the incompressible Navier—Stokes equations. Previous investigations have
already used Nek5000 to study the effect of FST in transition. Those studies include,
for instance, the effect of the FST characteristics in bypass transition on a wing section
(Faindez Alarcon et al. 2022), the interaction between FST and surface roughness on a
swept wing (De Vincentiis, Henningson & Hanifi 2022), and FST-induced transition on a
low-pressure turbine where comparison against experimental measurements are available
(Durovic et al. 2021).

In the simulation used in this work, for the spatial discretisation, a staggered mesh
was used following the Py — Py_, formulation where, for each element, the velocity
is expressed as a linear combination of Lagrangian basis functions of order N on
Gauss—Lobatto—Legendre nodes, while the pressure on Lagrangian basis functions of
order N — 2 on Gauss—Legendre nodes. The time integration consisted of a semi-implicit
scheme by treating the nonlinear terms explicitly with a third-order extrapolation scheme
and the viscous terms with an implicit third-order backward differentiation. Free-stream
turbulence was imposed upstream of the leading edge as a body force composed of
random Fourier modes following the von Karmén spectrum. The turbulence intensity and
integral length scale measured at the leading edge were 3.45 % and 11.53 mm, respectively.
Figure 1 presents the friction coefficient and the displacement thickness obtained from
the simulation, where both quantities are based on the mean streamwise velocity profile,
consisting on a time and span average.
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Figure 2. Two-dimensional diagram of the computational set-up. The red line and blue rectangle respectively
indicate the surface and volumetric domain extracted from the snapshots to be used in the present work.

In this work, the data are made non-dimensional by the free-stream velocity of the
unperturbed flow and the reference length L = 1 m, yielding to a Reynolds number Re;, =
478 093. A total of 1800 snapshots were used in the present investigation, containing the
three-dimensional flow fields, and collected and stored after the initial transient with a time
interval of At = 1.2 x 1073, yielding to a total time of Tpys = 2.16. The time interval
between snapshots is 500 times larger than the time step used to march the solution,
which corresponds to Ar = 2.4 x 107® in our non-dimensional units. A diagram of the
domain is sketched in figure 2, where, for the blue box shown, a total of ~ 7.4 flow
throughs take place in the time span covered by the snapshots. In the remainder of this
paper, the streamwise, wall-normal and spanwise coordinates will be referred to as x, y
and z, respectively, where the domain of interest in this work comprises the full span
extension z = [—0.075, 0.075] and Re, = [0.2, 3] x 10°. The velocity components along
the coordinates x = (x, y, z)T will be referredtoas U = (U, V, W)T and the pressure field
as P.

3. Computational methods
3.1. Stability analysis

Following a similar procedure as the one by Hack & Zaki (2014), we perform local stability
analysis in frozen planes normal to the streamwise coordinate to study the streak stability.
In this regard, the general solution of the equations is decomposed as

Q(x’y’ 2, [):QB()’, Z)+€q2(x9y9zv t)v (31)

with € « 1 the disturbance amplitude and ¢, = (u2, pz)T the disturbance state function,
where the subscript 2 is included to emphasise that the disturbance corresponds to the
secondary instability. The base flow Qjp is extracted from the DNS snapshots at a given
time ¢ and streamwise position x, taking the form Qg(y,2) = (U, V, W, P)T(y,z x,1) and
noting that corresponds to a streaky base flow. For the secondary instability, we assume a
normal mode form

4 (x,y,2,1) = @, (y, 2) exp(i(ax — wi)), (3.2)

where « is the streamwise wavenumber, and w = w, + iw; a complex frequency with w,
and w; corresponding to the angular frequency and the temporal growth rate, respectively.
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Figure 3. (a) Mean streamwise velocity profiles at Re, = [0.2 : 0.2 : 1.6] x 10°, from light to dark. (b)
Wall normal distribution of the discretisation used for stability analysis.

By substituting (3.1) and (3.2) into the incompressible Navier—Stokes equations and
linearising around Qp, we obtain the system

(C — Ny + (DyU) 02 + (D U)Wy + iapr = iwiiy, 3.3)
(C — A+ DyV)by + (D V)ivy + Dypy = iwdy, (3.4)
(DyW)ds + (C — A+ D, W)y + Dypr = iwis, (3.5)
iaity + Dyvr + Dy = 0, (3.6)

where C = Uia + VDy+ WD., A =1/Re(—a®+D; +D?), Dy=9/dy and D, =
d/dz. The system is fully defined by imposing non-slip boundary conditions at the surface,
vanishing perturbations in the far field and periodicity along the spanwise direction, in
consistency with the DNS. For the differential operators, we use a fourth-order finite
difference scheme in both spatial directions.

Given the sparsity of the matrices, the generalised eigenvalue problem (EVP) is solved
in MATLAB through the function eigs and, finding the subset of N eigenpairs closest to
a prescribed scalar o, in a shift-and-invert Arnoldi method. The fast convergence of the
spectral shifting algorithm makes our large parameter study affordable. The base flow
used for stability analysis is spectrally interpolated from the DNS solution on a mesh
with constant spacing along the span and a non-uniform grid in the wall-normal direction,
whose distribution is displayed in figure 3 together with the mean profiles in the Re, range
of interest. A summary of the list of parameters used for the eigensolver in this work is
included in table 1. Here, it is worth emphasising that a fixed o was used throughout the
stability calculations. This is arguably a strong assumption in this work and a more detailed
discussion of its choice is included in Appendix A, together with the rest of our parametric
studies regarding the stability calculations parameters.

The choice of the phase speed ¢ in table 1 requires further discussion due to its
importance for the eigenvalue problem solver and the physical implications of its value. As
mentioned before, the solver finds the closest eigenvalues to a prescribed scalar o which,
in our case, takes the form o = ca + i10. Therefore, once the streamwise wavenumber is
chosen, the parameter that dictates the frequencies of interest is ¢. The motivation for
a value of ¢ = 0.7 is based on previous work related to streak secondary instabilities
in ZPG boundary layers, where values in the range 0.6—-0.85 are commonly reported
(see, for instance, Andersson et al. 2001; Ricco et al. 2011; Vaughan & Zaki 2011;
Hack & Zaki 2014). Moreover, these values are consistent with our findings that will be
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Parameter Value Description

N, 500 Number of grid points in the span direction

Ny 44 Number of grid points in the wall-normal direction

o 1200 Streamwise wavenumber

N 100 Number of eigenvalues to find by EVP solver

o ca +i10  eigs parameter to find the N closest eigenvalues to this scalar
k 200 Maximum size of Krylov subspace

tol. 10~ Convergence tolerance of the eigenvalues

Table 1. Parameters used in the EVP solver for the secondary instabilities calculations.

presented later in this article. However, there are two other values that could be claimed
as possible candidates. The first one comes from the work by Hack & Zaki (2014), in
particular from what they refer to as inner modes (due to their wall-normal position in
the boundary layer). They showed that this type of instability has a characteristic phase
speed closer to ¢ = 0.5 and it was concluded that an adverse pressure gradient promotes
their amplification. However, for a ZPG, they showed how these instabilities not only are
more rarely found, but they also generally have lower growth rates. Therefore, we chose
not to pursue their analysis in the present case. The second possible candidate comes from
the conclusions by Wu et al. (2017), where it is claimed that the nucleation of turbulent
spots in bypass transition is analogous to the one by secondary instabilities of TS in the
classical route to transition. This would imply a choice of ¢ closer to 0.36 and a lower
streamwise wavenumber « for our temporal analysis. There are a few reasons why we think
this value can be disregarded. First, the relevance of secondary instabilities of streaks in
ZPG boundary layer breakdown has been established in the investigations by Schlatter
et al. (2008) and Hack & Zaki (2014). Second, the stabilisation effect of streaks with
sufficiently large amplitude on TS waves has been shown in experiments and numerical
simulations (see, for instance, Cossu & Brandt 2002; Fransson et al. 2005a; Schlatter et al.
2008), making the appearance of such unlikely in this flow configuration. Lastly, one of the
observations by Wu et al. (2017) is that streak instabilities are noticeable in the snapshots
only after they are strongly perturbed by neighbouring turbulent spots. However, it will be
shown in the next sections how streak instabilities can be detected before they reach finite
amplitudes in the DNS and before the appearance of turbulent spots.

3.2. Laminar—turbulent discrimination

Separating the flow field in laminar and turbulent regions is a valuable tool in transitional
flows. It allows us to estimate the intermittency function, generally referred to as y,
and to perform conditional sampling of the data. The most common procedure used for
this discrimination relies on the choice of a detector function, D, and a threshold value,
TH (see, for instance, Volino et al. 2003; Fransson et al. 2005a; Nolan & Zaki 2013;
Kreilos et al. 2016; Veerasamy & Atkin 2020), which, of course, implies some level
of arbitrariness. The detector function has to be chosen such that laminar and turbulent
regions have distinctive values. This signal is then filtered to avoid spurious events,
generally with a low-pass filter (Nolan & Zaki 2013). Such a smoothed signal is often
called the criterion function since it corresponds to the quantity that is evaluated against
the threshold for the final laminar—turbulent discrimination.
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Figure 4. Probability density function of the filtered detector function. The two lines represent different filter
sizes Al = 1.8 x 107 and Al = 9 x 1073 for the dashed and continuous line, respectively. The squares show
the minimum of the p.d.f.s, while the circles the threshold value by Otsu’s method.

Following the work by Kreilos et al. (2016), we base our detector function on the shear
at the wall. In particular, we define it as the sum of the streamwise and spanwise shear
as D = |0u/dyly=o + |0w/0yly=0 = |Tx| + |7;|, With u and w being the streamwise and
spanwise velocity perturbation with respect to the base flow without FST. This signal is
then smoothed with a mean filter with length Al = 9 x 1073 in both spatial directions. It
is worth noting that this procedure was done on a spectrally interpolated and regular grid
with spacing Ax = Az = 6 x 107, The choice of the threshold is based on the probability
distribution function (p.d.f.) of the filtered signal, where two candidates are considered.
The first one corresponds to the local minima in between the bimodal distribution, as it was
used by Kreilos et al. (2016). The second option is the use of Otsu’s method (Otsu 1979),
a technique commonly used in image analysis to threshold bimodal inputs by minimising
the intra-class variance between the two classes, in this case, laminar and turbulent. This
technique has been used in the context of bypass transition by Nolan & Zaki (2013). An
example of the use of different filter sizes and thresholding techniques is presented in
figure 4, where the p.d.f. of the smoothed detector function (D) is plotted. Moreover,
figure 5 shows the intermittency function considering the two thresholding options and
also the cases where the detector function is based on the spanwise shear only. Our
choice for the detector function rests on this analysis, where we found that after filtering
the signal, the discrimination based on the sum of the shear yielded more consistent
results independently of the threshold technique. In the following, all laminar—turbulent
discrimination results will be based on this detector function and the p.d.f. local minimum
as a threshold. An example of the laminar—turbulent discrimination described above is
presented in figure 6, where it can be compared with the snapshots, at the same time
instant, of the shear at the wall.

One implicit assumption in our procedure is that wall-normal intermittency variations
are neglected. This can be partly justified with the experimental work by Matsubara,
Alfredsson & Westin (1998), whose data show almost constant values inside the boundary
layer to then decay towards the free stream. However, the later experimental investigation
by Volino et al. (2003) and numerical work by Nolan & Zaki (2013) show greater variations
within the boundary layer. The data from Nolan & Zaki (2013) show a slight growth up
to 30 % of the boundary layer, where it reaches a plateau, to then decay. However, the
data from Volino et al. (2003) show larger variations close to the wall, especially within
the transitional region and when using the streamwise velocity for the discrimination.
Therefore, and to provide further justification for our choice, time series of the shear at the
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Figure 5. Intermittency function considering different combinations of detector functions and threshold
options. The filter size is fixed to Al = 9 x 1073.
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Figure 6. Example of the laminar—turbulent discrimination for an arbitrary snapshot. The grey contours show
the streamwise and spanwise shear at the wall in (a) and (b), respectively, while the red line is the interface
given by the laminar—turbulent discrimination.

wall together with the velocity signals in the boundary layers are presented in figure 7. In
those plots, we also include the intermittency function based on the shear, where, visually,
the discrimination seems to perform well even above the wall. Moreover, the top plot also
includes the intermittency function when the threshold is based on Otsu’s method instead
of the minimum of the bimodal distribution, which indicates that for the current data, the
results are nearly independent of that choice.

4. Results
4.1. Stability analysis and correlation of the modes

The purpose of this section is to give a detailed description of the stability analysis with a
prototypical example from our data. A plane at the first available snapshot, and at a laminar
streamwise position, was chosen for this purpose, which shows most of the features of
interest. The spectrum of this plane is shown in figure 8, which has six unstable modes
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Figure 7. Time series at Re, = 1.56 x 10° and an arbitrary spanwise position. (a) Streamwise (blue) and
spanwise (red) shear at the wall, together with the intermittency function based on the minimum of the
bimodal distribution and Otsu’s method for the solid and dashed lines, respectively. Velocity perturbations
at two different wall-normal positions: (b) y = §*(x) ~ 1.3 x 1073 and (¢) y = 26 (x) &~ 2.6 x 1073.
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Figure 8. Spectrum at x = 0.172 (Re, = 0.822 x 10°) and time instant corresponding to the first available
snapshot.

(w; > 0). The remainder of this section will be dedicated to the characterisation of these
modes and those related to them at downstream locations and later times.

Figure 9 shows the absolute value of the streamwise component of the eigenfunctions
on top of the streamwise component of the base flow from DNS, with the modes’
labels ordered according to their growth rate. From this figure, we can observe how
the modes are localised around specific streaks, particularly low-speed streaks lifted
towards the boundary layer. Moreover, it can be seen how a single streak can host more
than one unstable mode. The localised nature of the instabilities is consistent with the
apparent random appearance of turbulent spots observed in the simulations, indicating
that streaks need to fulfil certain characteristics to become unstable. Discussions about
these characteristics can be found from Andersson et al. (2001), Schlatter et al. (2008) and
Hack & Zaki (2016). To further demonstrate how localised these modes are, the kinetic
energy distribution of the eigenfunctions along the span is also included in figure 9, which
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Figure 9. Unstable modes at x = 0.172 (Re, = 0.822 x 10°) and time instant corresponding to the first saved
snapshot. (a) Gray contours show the streamwise velocity from O (black) to 1 (white), while the empty coloured
contours the absolute value of the unstable modes. The y axis has been enlarged by a factor of four for better
visualisation. (b) Energy distribution of the unstable modes along the span. The modes’ numbering is sorted in
descending order by the temporal growth rate.

has been computed from
ymax
o= [ iy .
0

with the superscript H indicating the conjugate transpose. This quantity will be used to
define the spanwise position of the unstable modes as

IL
/ E(z)zdz
_ZL—’ 4.2)

Zinst = L
/ E(z)dz

—ZL

where z7, = 0.075, corresponding to half of the flat plate span.

Streak secondary instabilities are convective in nature (Brandt et al. 2003); however,
it is not always an easy task to study their evolution, specially in this type of broadband
spectrum where they appear in a scattered fashion in time and space. Given that we are
performing local stability analysis, the problem of studying the convective evolution of
these instabilities comes down to determining the connection, if any, between unstable
modes at different times and streamwise positions. For instance, Hack & Zaki (2014) once
detected an unstable mode and repeated the same analysis in planes translated with the
phase speed until the mode could no longer be identified. In the context of cross-flow,
Malik et al. (1999) obtained the chordwise amplification ratio by computing the local
growth rate through maximisation over all unstable modes of a given type. In the present
work, we base the connection between different unstable modes on their eigenfunctions.
In this regard, we start by defining the inner product based on the perturbation

energy
<L Ymax
(u, v) :f / uvdydz, (4.3)
-z J0
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Figure 10. Maximum correlation between modes shown in figure 9 and unstable modes at planes normal to
streamwise direction shifted in time (Af) and streamwise location (Ax). The continuous lines are included as a
reference representing three speeds ¢ = {0.5, 0.7, 0.9}.

with the superscript H representing the complex conjugate transpose. Using this metric,
all modes are normalised to have unitary energy, i.e. (&2, i) = 1. Subsequently, the
correlation between the / unstable mode at plane (¢, x;) and the k unstable mode at plane
(tm, x;) is defined as

Cik = W2, 1(y, Z tn, Xi), U2, 1( Y, Z5 tims X)) 4.4

Using (4.4), we compute the correlation between the modes shown in figure 9 and the
unstable modes at shifted planes, both in time and x position. Here, we evaluated different
spacings Ar and Ax with respect to the initial plane in figure 9. The results are included in
figure 10 for the six unstable modes in that plane, where only the maximum correlation for
a given (At, Ax) translation is displayed since, and as will be shown, a high correlation
is obtained for at most one mode in the shifted plane. From these plots, we can note how
a large correlation is attained only for certain combinations of At and Ax, in particular,
the correlated modes fall in the vicinity of the line Ax/Ar = 0.7, which is consistent with
the convective character of the instability and the commonly reported value of the wave
packet speed.

To further clarify the correlation results, figure 11 shows zoomed views of the unstable
modes presented in figure 9, together with the unstable modes at two planes shifted in
time with Ar = {6 x 1073, 1.2 x 1072}, and along the line Ax/At = 0.7. Visually, it
seems quite clear which modes correspond to the same instability event but just convected
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Figure 11. Zoomed view of the unstable modes at three different planes, where each figure has a span extension
of Az = 0.01 and centred at its corresponding z;,s. The contours levels are the same for all the plots and show
the positive (red) and negative (blue) real parts of the eigenfunctions, while the black continuous line depicts
the critical layer. The phase of the eigenfunctions is matched by normalising by their corresponding point with
maximum real part in absolute value. Plane 1 corresponds to that in figure 9, while planes 2 and 3 are shifted in
time/space with a shift of Az = 6 x 1073 and Ar = 1.2 x 1072, respectively, and along the line Ax/Ar = 0.7.

downstream. In fact, it was this result that motivated us to pursue a mode correlation
based on the eigenfunctions. The correlation matrix between the different modes in shifted
planes is presented in figure 12, where the ‘visual correlation’ is retrieved and quantified.
The first point to notice here is that a correlation different from zero is attained exclusively
for modes at the same span positions, which is an obvious consequence of the localised
essence of the secondary instabilities on specific streaks. Second, when two unstable
modes are found on the same streak, only those with the same symmetry, sinuous or
varicose, present a high correlation, whereas the correlation drops to less than 50 % when
the symmetries differ. These two remarkable properties of the correlation based on the
eigenfunctions spare us from needing to visually inspect the unstable modes to follow
their convective evolution.

The process of tracking the unstable modes is done in a sequential manner and it will
be described for the unstable modes shown in this section. The main goal here is to cluster
all the modes that actually correspond to the same instability event. We start by taking
a subset of N, snapshots with a spacing in time Ar = 6 x 1073, At each snapshot, we
extract N, yz-planes with a streamwise spacing of Ax = 0.7A¢, with both quantities based
on the results presented in figure 10. Stability analysis is then performed for every plane,
resulting in N; x N, computations and yielding to a list of unstable modes @5 ;(y, z; t, x),
with the subscript representing the / unstable mode at the plane (¢, x). Starting from plane
1 in figure 11, we take the most unstable mode (mode 1) and compute its correlation
with the unstable modes in the next plane and snapshot, corresponding to plane 2 in
figure 11. The correlation is represented as the first row of the first correlation matrix
in figure 12. At this step, we have to decide which unstable mode, if any, constitutes the
same instability event and can be clustered together. This is based upon two conditions: it
has to be the one with highest correlation and the correlation has to be above a prescribed
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Figure 12. Correlation between the modes in the different planes shown in figure 11. Axes numbering as
modes in figure 11.

threshold, which for this example was set to 90 %. In this case, mode 1 in plane 2 is
the one satisfying those conditions. We then compute the correlation of this new mode
(mode 1 in plane 2) with the unstable modes in the subsequent plane, corresponding to
plane 3 in figure 11, whose values are represented by the first row of the second matrix
correlation in figure 12. The process of moving downstream, computing the correlation and
comparing against the threshold is repeated until the maximum correlation drops below the
threshold. Once this ending condition is encountered, the correlated modes are removed
from the list of unstable modes, so they can belong to only one cluster, and the process
is repeated for the next unstable mode at the first plane. The outcome of this process is
a set of clusters of instabilities where each cluster has a unique index n and is defined as
Tinst () = {u2(1), x(1), Zinst (1), 0 (1) }".

The computation of the streamwise amplification ratio, namely the N-factor, is usually
done by integrating the spatial growth rate of the instabilities. This would generally
imply solving the spatial problem instead of the temporal one, or the use of Gaster’s
transformation to convert temporal growth rates into spatial growth rates. However, in our
formulation and for a given instability event, the temporal growth rate is obtained along a
reference frame moving with the wave packet, consistent with the spatio-temporal nature
of the problem. This allows us to integrate directly the growth rate as

t
N-factor(¢) =/ w;(t) dr, 4.5)
14

with #; being the instant when the instability was detected for the first time. Since this
is computed along the moving reference frame, the dependence on x instead of ¢ follows
immediately. The resulting N-factor for the unstable modes analysed in this section are
presented in figure 13. An interesting feature arises from this figure: instabilities with
relatively low growth rate can still experience large amplifications if they can grow
for long enough. This is an interesting by-product of our procedure, where we do not
discard unstable modes based on their local growth rate. Figure 13 also includes the
mode eigenvalues at the different stations, showing that even though the variation between
two consecutive stations is generally small, it would be challenging, and sometimes
ambiguous, to base the connectivity between unstable modes on their eigenvalues instead
of eigenfunctions.
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Figure 13. (a) The N-factor corresponding to the modes shown in figure 9 and plane 1 in figure 11. The modes
are correlated with a threshold of 0.9, and, in lighter colours, the results with a threshold of 0.75 are also
included. (b) Mode eigenvalues at different stations with the marker sizes increasing with Rey.
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Figure 14. Time-space diagram showing the streamwise shear at different span locations, from (a) to (¢),
z={0.059, —0.071, 0.031}, corresponding to the span location of the modes shown in figure 9. The black line
represents the interface between laminar and turbulent regions, and the coloured markers are the same as in
figure 13.

The time evolution of the modes can be visualised in figure 14 on top of the streamwise
shear at the wall from the DNS. From these results, we can conjecture a few reasons
why the tracking stops. The first reason is that the disturbance did not develop in the
simulation, either because of the streak became stable or because another unstable mode
with higher amplitude took over. A second reason is the instability encounters a turbulent
region downstream. The third reason is the instability appearing in the DNS reaches an
amplitude comparable to the streaks, resulting in the stability calculations done over an
already significantly disturbed streak. This last option seems to be the case for mode 1,
where even though it cannot be followed until the appearance of the turbulent region,
traces of it can be observed when looking closer at the shear in between the last station of
the mode and the turbulent region. This becomes more evident when we look at the DNS
field around this region, as is shown in figure 15. Here, the velocity field is shown at two
planes: at the position where the unstable mode 1 was tracked for the last time and at a
plane following the instability before the turbulent region. For this last plane, the contours
of the unstable mode are also included, which resembles quite well the DNS solution and
more importantly, it is predicted before its appearance and before the nucleation of the
turbulent spot.
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Figure 15. Contours showing zoomed views of the velocity field from DNS. (a,c,e) Plane corresponding to

Rey = 0.883 x 10° and 7 = 1.92 x 1072, which is the last station where mode 1 was tracked (see figures 13

and 14). (b,d,f) Translated plane, At = 1.2 x 1072 and Ax = 0.7At, with the white contours representing the

absolute value of mode 1. Note that for better visualisation of the secondary instability, the streamwise velocity
corresponds to the perturbation by subtracting the streamwise velocity at the previous plane.

4.2. Statistical results

4.2.1. Statistics of unstable mode clusters
Let us now move to the results obtained by repeating the previous analysis over all
the unstable modes found in a larger streamwise extension and longer time. For this
purpose, stability calculations were performed in 70 equidistant planes in the range
Re, = [0.2, 1.6] x 10°, where the upper limit was chosen to be close to the transition
location, y & (0.5, shown in figure 5, while the lower limit was arbitrarily set but
corroborated afterwards to be a reasonable choice. The streamwise spacing between two
consecutive planes, and therefore the total number of planes, is given by the selection
of the time spacing Ar =6 x 1073 between stability calculations and along the line
Ax/At = 0.7, where both quantities are based on the results presented in figure 10. We
wish to note that the stability calculations are independent of each other and therefore
parallelised with no extra implementation. Considering the 70 wall-normal planes and
360 snapshots, the stability computations yielded a total of 152232 unstable modes.
Following the methodology described in the previous section, the unstable modes are
clustered together based on the correlation between their eigenfunctions, where again, each
mode can belong to only one cluster. A summary of the clusters is included in table 2 for
different correlation thresholds, including the number of clusters corresponding to single
modes that could not be correlated with any other unstable mode. For clusters composed
of more than one unstable mode, the table also shows the number of them reaching a
certain N-factor during their evolution. From the table, we can see the dependence of the
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Corr. No. of single  No. of N-factor

threshold modes clusters 1.0 L.5 20 25 30 35 40 45 50 55 6.0
0.75 82569 13126 2757 1808 1269 925 681 490 358 266 189 130 92
0.80 87544 12086 2585 1701 1186 874 645 455 337 246 168 119 82
0.85 93721 10853 2379 1546 1089 798 581 413 306 215 145 107 70
0.90 102 190 9363 2036 1337 931 678 494 338 247 176 110 76 48

Table 2. Number of single modes and clusters for different correlation thresholds. For the clusters composed
of more than one mode, the number of them reaching a certain N-factor is also included.

results on the correlation threshold, where, as expected, for higher thresholds, the number
of uncorrelated modes increases and the number of clusters reaching a certain N-factor
decreases.

Even though there is a dependency on the correlation threshold, whose value remains
a free parameter that has to be arbitrarily chosen, the trend and order of magnitude of the
results presented in table 2 are fairly insensitive to its choice. In particular, the number of
uncorrelated modes is large, representing more than 50 % of the total number of unstable
modes independently of the correlation threshold. Before addressing this situation in
more detail, we need to comment on one fact of our stability calculations that might be
overlooked. The last station for stability analysis was chosen to be close to the average
transition position based on the intermittency function, which means that some planes
will already contain developed secondary instabilities and mature turbulent spots. This
is an unavoidable consequence coming from the spread appearance of instabilities and
nucleation of turbulent spots, and for which we did not take any particular action when
performing the stability calculations.

As shown before, choosing a lower correlation threshold allows us to follow some
instabilities for longer, which can explain the differences between the results for different
thresholds, but still not the majority of them. That being the case, we checked whether they
were in turbulent regions or not, and an example of this is presented in figure 16. Here, a
laminar—turbulent discrimination is shown for a certain snapshot and, on top of that, the
unstable modes at the same time instant. It can be seen how most of the uncorrelated modes
reside in turbulent regions, while modes that can be correlated to other unstable modes are
in laminar ones. In fact, 69.8 % and 60.2 % of the uncorrelated modes reside in turbulent
regions when using a correlation threshold of 0.75 and 0.9, respectively. However, less than
1 % of the correlated modes are found in turbulent regions, based on our discrimination. To
further characterise the uncorrelated modes, figure 17 shows their conditional distribution,
whether they are in laminar or turbulent regions, in terms of their temporal growth rate
and their streamwise position. It can be observed how the vast majority of them, either
laminar or turbulent, appear near the transition location with relatively low growth rates.
The fact that unstable modes in turbulent regions are automatically discarded without the
need of any special treatment is a convenient outcome of our algorithm, which works even
when a given plane is composed of laminar and turbulent flow. This is a result of the
localised nature of the secondary instabilities and that it is possible to detect them before
they become appreciable in the flow field distorting the streaks.

Moving now to the clusters composed of more than one mode, we can see from table 2
that only a fraction of them reaches a significant amplification, namely the N-factor.
Figure 18 shows the distribution of the clusters reaching an N-factor > 2.5 according to
their initial growth rate, initial streamwise position and their streamwise extension, with
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Figure 16. Arbitrary snapshot showing the laminar (white) and turbulent (black) regions together with the
unstable modes at the same time instant.
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Figure 17. Conditional distribution of modes that were not correlated, with a threshold of 0.75. Mode
distributions according to (a) their growth rate and () their streamwise position Rey.

the streamwise extension ARe, defined as the difference between the last and first station
of the clusters. The distributions are shown for two correlation thresholds, indicating that
they are rather insensitive to its choice. From the first plot, it can be noted how most
of the clusters have a relatively small initial growth rate, meaning that if we were to
base our analysis on this metric, they would probably be discarded. When comparing
the distribution of the initial streamwise position of the clusters, figure 18(b), with the
intermittency function in figure 5, there is a good correspondence between the transition
region and the appearance of the instabilities, where they start developing just before the
intermittency increases and have an emergence peak around the onset of transition. The
streamwise extension of the clusters is shown in figure 18(c¢), which presents the highest
variation with the correlation threshold consistent with the fact that a lower threshold
enables a longer tracking of the instabilities. In any case, the results are rather robust and
also consistent with the outer mode tracking by Hack & Zaki (2014) (cf. figure 8), where
they were able to follow the unstable mode for ARe, = 6.4 x 10*, which is close to the

upper limit of our distribution, but only up to ARe, ~ 3.6 x 10* before the instability
became apparent in the DNS, a condition where our tracking is doomed to stop and whose
value is closer to our distribution peak.

4.2.2. Relation between unstable mode clusters and turbulent spots

So far, we have shown how the emergence and extent of the secondary instabilities
has a good correspondence with the transition zone in this flow configuration. We
now discuss our efforts to correlate the instabilities with the nucleation of individual
turbulent spots. The motivation for this comes mainly from the visual inspection of the
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Figure 18. Distribution of clusters satisfying N-factor > 2.5 for different parameters, using two correlation
thresholds (CTs). (@) Distribution for the initial temporal growth rate and () for the initial Re, where clusters
are detected for the first time, and (c) extension ARe, of the clusters.
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Figure 19. Shear at the wall at an arbitrary snapshot, where the zoomed view depicts streamwise modulation
at three different spanwise locations. Note that the colourmap of the zoomed view has been saturated for better
visualisation of the instabilities.

flow when plotted together with the instabilities, as shown in supplementary movie 1
available at https://doi.org/10.1017/jfm.2024.433. It can be seen in that time sequence
how the nucleation of turbulent spots is generally preceded by secondary instabilities,
where our laminar—turbulent criterion was not included to avoid any bias towards the
visualisation. By looking at the shear in the animation, it can also be seen that generally
before the nucleation events, regions of short streamwise wavelength appear. This is also
illustrated in figure 19, where the zoomed view of the shear at the wall shows short
wavelength streamwise modulation at three different span locations, which will later
break down. The wavelengths of these perturbations are approximately Ax; = 7.1 x 1073,

Axy ~ 5.9 x 1073 and Ax3 &~ 5.2 x 1073, giving a wavenumber of the order of that used
for the stability calculations.

To establish a relation between turbulent spots and instability events, it is first necessary
to define when and where a spot is nucleated, since they appear in a range of streamwise
positions and in a scattered distribution in time and along the span. To do so, we rely on
the laminar—turbulent discrimination described above, in § 3.2. Starting from this binary
representation of the field, we find and count the connected pixels of each snapshot, where
two pixels are connected if their corners or edges touch. Due to the growth in time of
the turbulent spots and the sampling frequency of the snapshots, the connectivity in time
between turbulent spots in consecutive snapshots is established by checking the overlap
between them and, if there is any, we assume they correspond to the same turbulent spot
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Figure 20. Time sequence, from (a) to (c¢), following one turbulent spot (red contour) after its nucleation. The
grey contours represent the streamwise shear at the wall, while the open black contours the interface between
laminar and turbulent regions. The time spacing between snapshots is Ar = 2.8 x 1072

just convected downstream. After this process, there are still some remaining events that
do not fulfil the characteristics of turbulent spots and are therefore discarded. The first type
corresponds to single events in time that cannot be connected to any later turbulent spot.
The second type corresponds to events that do not have a monotonically growing area.
An example of the tracking of one turbulent spot is presented in figure 20, where the
first frame of the time sequence represents the spot nucleation, and whose position and
time instant are tabulated together with the other nucleation events. In this dataset, each n
entry is defined as Tpo(n) = {t, x, z}". The distribution of the turbulent spots nucleation
in the streamwise location is presented in figure 21, showing a peak around the transition
location (y = 0.5), similar to the findings by Nolan & Zaki (2013) for their ZPG case.
With the evolution history of the instabilities, Tj,, and the position and time instant
where turbulent spots are nucleated, T,,;, We can now move to the connection between
these two datasets. Given the fact that it is generally not possible to follow the instabilities
after they become noticeable in the DNS within our framework, for an identified
nucleation, we are forced to look for instabilities at previous time steps and upstream
positions. A schematic of how this search is performed is presented in figure 22(a) for
one spot nucleation. In this case, the axes are centred around the nucleation, with the
black lines showing the path of the instabilities reaching a certain N-factor and that satisfy
|Zspor — Zinst| < Az, where zg, is the span position of the turbulent spot nucleation, s
the instability spanwise position as in (4.2) and Az =9 x 1073 a prescribed tolerance
parameter whose value is the same as that used for the mean filter in the laminar—turbulent
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Figure 21. Distribution of the turbulent spot nucleation along the streamwise coordinate.
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Figure 22. Correspondence between instabilities and turbulent spots nucleation. (a) Time-space diagram
showing an example of how correspondence is defined for a specific nucleation event centred at (0, 0). The grey
contour represents the turbulent region, and the red and black lines depict the instabilities’ evolution, with the
stars showing the position where the instability reaches a certain N-factor. (b) Correspondence performance, as
in (4.6) and (4.7), with filled markers showing the ratio of nucleation events that can be related to instabilities,
and open markers the ratio of instabilities that can related to turbulent spots.

discrimination (see figure 4). Moreover, this value is close to the spanwise average
extension of the instabilities corresponding to 8.8 x 107> with a standard deviation of
1.6 x 1073, From this subset of instabilities, we have to decide which ones can be
connected to the turbulent spot nucleation. This is decided based on whether they fall into
the blue area shown in figure 22 or not, which is defined by three searching parameters:
a time interval before the nucleation event AT, and a group speed ranging in between c
and c¢;. For the example in figure 22, only two instabilities, shown in red, fall in this region
and are said to be related to the nucleation event.

The process is then repeated for all the nucleation events appearing after a transient of
i = 1.2 x 1072 to allow the instabilities to develop and before Re, = 2 x 10°, since our
last stability calculation station is at Rey = 1.6 x 10° and, on average, instabilities can be
tracked for a ARe, ~ 0.3 x 10°, as can be seen in figure 18, making futile any attempt
to connect them to a nucleation taking place downstream. These constraints leave us with
289 nucleation events, where the performance of correspondence between instabilities and
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nucleation is defined as

Nucleations related to instabilities
, 4.6)

gs ot —
P Nucleation events

Instabilities related to nucleation

, 4.7)

st = Instabilities

where both metrics are dependent on the N-factor of the instabilities. Note that the
numerators in the above equations are not necessarily equal because, within our definition,
more than one instability can be related to one single turbulent spot nucleation.
Figure 22(b) shows these performance metrics as a function of the N-factor. These curves
correspond to the results using a correlation threshold of 0.85 to track the instabilities,
while for the searching parameters, AT = 0.17, ¢; = 0.65 and ¢, = 0.95 were chosen.
The time interval AT is close to that used by Hack & Zaki (2014) for their ZPG case
when looking for instabilities before spot nucleation, while the two speeds are based
on the stability results of optimal streaks by Brandt et al. (2003) (cf. figure 5). Results
for different parameters are included in Appendix C. The percentage of instabilities that
cannot be related to nucleation events, i.e. 1 — &y, can be regarded as false-positives,
while the nucleation events that cannot be related to instabilities, i.e. 1 — &gy, as a
measure of the false-negatives. By looking at figure 22(b), the trend is quite clear and
consistent: for higher N-factor, the number of false-positives decreases, meaning that
we become more certain that those instabilities will lead to breakdown; however, the
number of false-negatives increases, since there are fewer instabilities that can reach higher
N-factor before they break down. Moreover, the fact that the £y, tends to 1 as the N-factor
decreases is further evidence regarding that before a nucleation event, a streak instability
is present, in concordance with the results by Hack & Zaki (2014).

The two curves in figure 22(b) cross at N-factor =~ 3.3, reaching a performance of £ ~
0.65. This value is within the range of the single-input-feature prediction by Hack & Zaki
(2016), where neural networks were trained to classify streaks into two classes: whether
they break down or not. However, it is difficult to make a more detailed comparison with
their work given that in our approach, most of the streaks that do not break down are
already filtered out by the stability calculations. Moreover, their performance was based
on a single metric using the total number of streaks, breaking and non-breaking; therefore,
we can only conjecture that the breaking and non-breaking streak classification followed
the same performance values. Even for their best performance (= 90 %), this could be
problematic for accounting for the false-positive events, i.e. classifying non-breaking
streaks as breaking ones. This is due to the imbalance of their test data, where breaking
and non-breaking events were not equally distributed, with the latter appearing much more
often and representing 99 % of the dataset. This would imply, for their best performance, a
9.9 % of false-positives which is an overestimation of the actual data, containing only 1 %
of breaking events.

The last quantity of interest corresponds to the distance from the instabilities to the
nucleation events. Here, we wish to emphasise that our N-factor computations are only
possible in the streamwise extension where we can track the instabilities, meaning that
they can generally experience higher amplification in the DNS before their breakdown.
The distance distribution, in terms of ARey, is presented in figure 23, where the distance
is counted from the position where instabilities reach a certain N-factor. In this figure, three
different N-factor values are presented and even though their distributions are within the
same range, the trend is clear, where the higher the N-factor results in a closer nucleation
event.
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Figure 23. Distribution of the distance between turbulent spot nucleation and the instability events at the
position where they reach a certain N-factor. The dashed lines represent the mean of each distribution.
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Figure 24. Energy spectrum at Re, = 0.5 x 103 and z = 0. The black and grey lines correspond to the
wall-normal positions y/8*(x) = {2, 3}, respectively. The red shaded area shows the range of interest for our
stability calculations.

One stage of the transition process that is not considered in our calculation, and
generally in any ¢V criterion, is the receptivity phase, dictating the initial amplitude of the
disturbances. This could explain, to some extent, the N-factor range where we can correlate
instabilities with nucleation events and also the distribution of ARe, for a given N-factor
in figure 23. The presence of FST, with the different scales and amplitudes involved, makes
the accounting of this phase even more challenging for individual instabilities. To assess
the disturbance level inside the boundary layer, the energy spectrum was computed at
different positions by taking the Fourier transform of the velocity signal. Figure 24 shows
an example of this process for two wall-normal probes at a fixed span and Re, position.
The wall-normal positions were chosen to be in the upper part of the boundary layer, given
the appearance of secondary instabilities in lifted low-speed streaks. The red area in this
figure corresponds to the range of frequencies of interest for our stability calculations.
Interestingly, the disturbance amplitude in this range is only a few orders of magnitude
smaller than the dominant low-frequency streaks. Moreover, an almost constant order of
magnitude was observed for different Re,, where only low-frequencies showed a noticeable
amplification with Re,. This relatively high background noise in the range of interest
compares favourably well with the, at a first glance, low N-factor shown in figure 22.
Moreover, it is plausible that instabilities can reach slightly higher amplification before
their breakdown given that, in general, we can only track them up to the position where
they become apparent in the DNS.
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5. Conclusions

The present study considered the stability of a boundary layer on a flat plate forced by
FST. More specifically, the stability of the streaky base flow was analysed by means of
local stability analysis in the temporal framework, whereas the spatio-temporal growth
of the instabilities was established through the topological characteristics given by the
eigenfunctions of the unstable modes at shifted planes in space and time. This procedure
allows us to study the convective evolution of the secondary instabilities along the flat
plate while, locally, remaining in the temporal framework. The dataset corresponds to the
DNS performed by Durovi¢ et al. (2024), where realistic experimental flow conditions
and a sharp leading edge were considered. The numerous instabilities and turbulent spot
nucleation events taking place within the snapshots allow us to statistically assess the
relevance of secondary instabilities not only by considering their local growth rates, but
also their evolution along the boundary layer.

The linear stability analysis performed on this realistic flow scenario, with its broadband
spectrum, is able to recover the localised and scattered nature of the secondary instabilities
and their precedence to turbulent spot nucleation. Moreover, in this particular flow case,
the visual inspection of the unstable modes shows that they are generally centred around
lifted low-speed streaks close to the boundary layer. Our results represent further evidence
regarding the important role in transition that secondary instabilities of streaks play in
boundary layers forced by FST, where no sign of TS wave secondary instabilities was
seen. Certainly, since this work considers only one FST spectrum, it is not possible to rule
out other mechanisms that might be of relevance in bypass transition under different FST
conditions. With the present data, however, they are expected to be relevant for a small
fraction of the nucleation events.

We have presented a way to study the convective evolution of the streak secondary
instabilities where we follow the wave packet by performing local stability analysis in
subsequent planes shifted in time and in the streamwise direction. Here, we established the
topological connections between the different modes at shifted planes from the correlation
based on the eigenfunctions, where a high correlation is only obtained for modes at the
same span location and presenting the same symmetry. On average, instabilities reaching
a significant amplification can be tracked for up to ARe, &~ 0.3 x 10°. One main benefit
of this procedure is that unstable modes with relatively low growth rates are also included
in the analysis. By doing so, we observed that large amplification is not only attained to
instabilities with high growth rates, but also to instabilities that can sustain their growth
in spite of being low. This suggests that by only considering the local growth rate, one
could miss some breaking events and at the same time consider instabilities that are not
sustained downstream. Another interesting property of the algorithm is its capability to
filter out instabilities in already turbulent regions without any extra implementation or
flow inspection.

By integrating the temporal growth rate of the instability events, while following the
wave packet, we were able to quantify the total amplification of the secondary instabilities
during the tracking. It has been shown that the appearance of the instabilities reaching
significant amplification (N-factor > 2.5) is well correlated to the onset of transition when
contrasted to the intermittency function. Defining a critical N-factor value is challenging in
this type of flow configuration, when a broadband and evolving spectrum is present inside
and outside the boundary layer. Nevertheless, our results suggest that an N-factor in the
range [2.5, 4] is enough to predict the majority of turbulent spot nucleation, while keeping
low the number of false positives. Within this range, it is found that breakdown takes place
on average ARe, =~ [0.31, 0.36] x 107 after the instabilities reach such amplification. As
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in most " -methods, the receptivity phase is not considered in the present work. However,
the accounting of the initial disturbance amplitude will likely result in more accurate
prediction of the transition onset.

This investigation represents a step forward towards the development of new transition
prediction tools in a boundary layer subjected to FST. In this regard, the distribution of
the appearance of secondary instabilities together with the distribution of their travel
distance before breakdown can be used to model spot nucleation events. For instance,
in the work by Kreilos er al. (2016), the position-dependent rate of nucleation events
was physically motivated, but without any consideration of the stability of the flow.
The distributions mentioned above will certainly depend on the characteristics of the
free-stream disturbances, namely the turbulence intensity and the length scales, where
it is likely that the appearance of the instabilities will be the most sensitive of them due
its dependence to individual unstable streaks in the boundary layer. Therefore, for a full
predictive method, it will be necessary to incorporate models regarding the receptivity
process to be able to quantify the amplitude and scales of streaks.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.433.
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Appendix A. Parameter selection for stability calculations

The stability calculations performed in this work require the choice of some parameters
which have an impact on the results and whose final values are presented in table 1. The
purpose of this Appendix is to document the studies to decide these parameters.

The first study corresponded to the mesh convergence where we chose the number
of Ny and N, points along the wall-normal and spanwise directions, respectively. This
corresponds to the mesh used for stability calculations, which is different from that in the
DNS. However, the base flow was spectrally interpolated from the DNS solutions into the
stability mesh. Figure 25 shows the spectrum using different meshes, with panels (a) and
(b) showing the variations with N, and N,, respectively. In both plots, the black markers
represent the mesh used in this paper.

Given that we are solving the temporal problem in the local stability analysis, a
streamwise wavenumber o must be chosen. Its choice was based on the stability results
at three consecutive planes, where the most unstable eigenvalue was obtained for a range
of wavenumbers. These results are presented in figure 26(a), from which o = 1200 was
chosen. Figure 26(b) shows the spectrum comparison for three different wavenumbers at
a fixed plane, with the black markers showing the one used in this work. The choice of
a constant o for all our stability calculations could be argued to be one of the strongest
simplifications in our process. This is due to the rich disturbance population inside the
boundary layer, where, even at a fixed streamwise position and frozen time, different
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Figure 25. Mesh convergence study for the eigenvalue solver, showing the spectrum for different mesh sizes.
(a) Number of wall-normal points varied for a fixed N; = 500. (b) Number of span points for a fixed N, = 44.
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Figure 26. (@) Maximum temporal growth rate for different streamwise wavenumbers « at three different
planes. (b) Spectra at fixed plane for three different wavenumbers.

streaks might have different preferences in terms of their stability for different streamwise
wavenumbers. Nevertheless, by looking at figure 26(b), it is expected that using a different
« in a reasonable range around our choice should not affect the general results of this work.

The generalised eigenvalue problem in the stability calculations is solved using the
function eigs() in MATLAB, which takes advantage of the sparsity of the operators in the
system of (3.3). As the eigenvalue problem is large, the algorithm, based on the Arnoldi
method, aims to find the N closest eigenvalues to a prescribed scalar o. This scalar is in
general complex, which in our formulation, takes the form o = ca + i10. Therefore, once
a streamwise wavenumber « is selected, the parameter that dictates the real part of o is a
user-defined phase speed c. The spectra at a fixed plane for different ¢ values in the range
of interest for streak secondary instabilities are presented in figure 27. A value of ¢ = 0.7
was chosen in this work since it captures most of the unstable modes, in addition to being
consistent with the phase speed generally reported in the literature for streak instabilities.
Varying the imaginary part of o in the range 1-100 did not yield to significant differences
in the spectrum, where the same unstable modes were found. However, the computation
time for the eigenvalue solver is increased by a factor of & 2 when using 100 instead of 10.
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Figure 27. Spectrum closest to the value ¢ = ca + i10, considering different ¢ values and o = 1200.

Appendix B. Base flow correlation

The stability analysis performed in this work relies on the parallel flow assumption of
the frozen planes. We can justify this assumption based on the weak time dependence
of the base flow in the pre-transitional part of the boundary layer, corresponding to a
steady two-dimensional (2-D) solution populated by low frequency streaks. Moreover,
the secondary instabilities are characterised by a high frequency, relative to the streaks,
making this assumption more robust. An example of this time scale difference can be
visualised in the spectrum shown in figure 8. If strong variations in consecutive planes
where we perform stability analysis were encountered, we would expect their stability to
be different as well, which effectively leads to a low correlation of the modes. Therefore,
following the modes from their upstream positions serves as a safeguard towards strong
variations in the streamwise direction of the base flow. This can be seen from the fact that
we are not able to track unstable modes in already turbulent regions.

In any case, the correlation of the base flow in shifted planes could serve as a sanity
check regarding the time scale over which the base flow changes while following the
modes and also as a further justification of the flow parallel assumption. Therefore, we have
computed the correlation of the perturbation DNS field shown in figure 9 using the metric
defined in (4.4). Here, the perturbation field is defined as the full DNS solution subtracted
by the 2-D steady base flow without FST. Figure 28 shows these results for four different
span extensions. The first one corresponding to the full span, while the rest of them by
taking only a span extension centred around the unstable modes studied in § 4.1. To avoid
the disturbances in the free stream and for all calculations, the wall normal extension was
limited to yy,.c = 46* ~ 0.004, with §* corresponding to the displacement thickness of
the first plane. These results show that the parallel flow assumption is reasonable, given
that correlations are consistently close to 1 in the convective frame of reference, moving
with the group velocity of the streaks. Moreover, these results are consistent with the time
scale over which the instabilities can be tracked.

Appendix C. Searching parameters

The correspondence between turbulent spot nucleation and secondary instabilities relies
on three searching parameters ci, ¢o and AT, which were sketched in figure 22(a).
Moreover, this correspondence is also dependent on the correlation threshold we choose to
track the instabilities. Figure 29 includes the results when varying the different parameters
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Figure 28. Correlation of the perturbation base flow shown in figure 9 with planes shifted in time (Af) and
streamwise location (Ax). In these plots, z; = —0.071, zo = 0.031 and z3 = 0.059, while Az = 0.005.

involved, with the black lines in each plot corresponding to the results already shown in
figure 22(b).

For the searching parameters, the results behave as expected. One can observe that
whenever the searching area is increased, either by increasing the time interval AT or
increasing (decreasing) the speed c; (c1), both metrics £ defined in (4.6) and (4.7) improve
with the same rate, resulting in a shift along the y-axis. Still, the largest sensitivity of the
performance is seen for the speed c1. Note that this value, together with ¢, was chosen
based on the results by Brandt et al. (2003) for optimal streaks, whereas in this flow, a
range of wavenumbers is present in the boundary layer. This observation and the results
shown in figure 10 could serve as a justification for the use of a lower value.

The dependence on the correlation threshold is also consistent, having different effects
in the two metrics &gy and iy, Where larger differences are observed for higher N-factor.
Increasing the correlation threshold represents a less permissive tracking resulting in a
lower number of instabilities reaching higher N-factor, as is shown in table 2. Therefore,
it is not surprising that &,,; drops for higher thresholds since there are fewer instabilities
to relate to. However, this reduction in the number of instabilities plays favourably to the
metric &, since it is defined as the ratio between related and total number of instabilities
for a given N-factor.
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Figure 29. Parameter studies for the performance of the correspondence between turbulent spot nucleation
and instabilities. Open and filled markers for Ssp(,, and &5, respectively. In each plot, only one variable from
the searching parameters (AT, c; and ¢;) and correlation threshold (CT) is changed with respect to the base
case (black line) presented in figure 22.
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