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Backgrounds. Clinicians need guidance to address the heterogeneity of treatment responses of patients with major
depressive disorder (MDD). While prediction schemes based on symptom clustering and biomarkers have so far not
yielded results of sufficient strength to inform clinical decision-making, prediction schemes based on big data predictive
analytic models might be more practically useful.

Method. We review evidence suggesting that prediction equations based on symptoms and other easily-assessed clin-
ical features found in previous research to predict MDD treatment outcomes might provide a foundation for developing
predictive analytic clinical decision support models that could help clinicians select optimal (personalised) MDD treat-
ments. These methods could also be useful in targeting patient subsamples for more expensive biomarker assessments.

Results. Approximately two dozen baseline variables obtained from medical records or patient reports have been
found repeatedly in MDD treatment trials to predict overall treatment outcomes (i.e., intervention v. control) or differen-
tial treatment outcomes (i.e., intervention A v. intervention B). Similar evidence has been found in observational studies
of MDD persistence-severity. However, no treatment studies have yet attempted to develop treatment outcome equa-
tions using the full set of these predictors. Promising preliminary empirical results coupled with recent developments in
statistical methodology suggest that models could be developed to provide useful clinical decision support in persona-
lised treatment selection. These tools could also provide a strong foundation to increase statistical power in focused
studies of biomarkers and MDD heterogeneity of treatment response in subsequent controlled trials.

Conclusions. Coordinated efforts are needed to develop a protocol for systematically collecting information about
established predictors of heterogeneity of MDD treatment response in large observational treatment studies, applying
and refining these models in subsequent pragmatic trials, carrying out pooled secondary analyses to extract the max-
imum amount of information from these coordinated studies, and using this information to focus future discovery
efforts in the segment of the patient population in which continued uncertainty about treatment response exists.

Received 25 November 2015; Accepted 6 January 2016; First published online 26 January 2016

Key words: Depression, epidemiology, evidence-based psychiatry, research design and methods, treatment allocation.

Introduction

Patients with major depressive disorder (MDD) vary
substantially in treatment response and illness
course. This heterogeneity of treatment effects (HTE)

complicates clinical decision-making. Clinicians have
consistently identified the absence of dealing with
this variation as a critical gap in personalising MDD
treatment (Altshuler et al. 2001; Perlis, 2007; Hetrick
et al. 2011; Kuiper et al. 2013). Researchers have tried
to address this gap by searching for depression sub-
types defined by presumed causes (e.g., postnatal
depression) (Cooper & Murray, 1995; Cooper et al.
2007), clinical presentations (e.g., atypical or melan-
cholic depression (Fink et al. 2007; Uher et al. 2011))
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or empirically derived symptom profiles (e.g., based
on cluster analysis (Andreasen & Grove, 1982), factor
analysis (Romera et al. 2008) and latent class analysis
(Lamers et al. 2012)) in hopes of predicting differential
treatment response, but results have been disappoint-
ing (Baumeister & Gordon, 2012; van Loo et al. 2012).
More recent efforts have searched for genetic, neuroen-
docrine, electrophysiological and brain imaging bio-
markers of treatment response (Pizzagalli, 2011;
Souslova et al. 2013; Breitenstein et al. 2014; Perlis,
2014), but have failed so far to yield results of sufficient
strength to inform clinical decision-making (Simon &
Perlis, 2010). Guidelines for MDD treatment selection
consequently continue to be based on simple clinical
observations about overall MDD severity (National
Institute for Health and Clinical Excellence (NICE),
2009; American Psychiatric Association, 2010).

Another promising approach for studying predic-
tors of differential treatment response has received
much less attention: to use supervised machine learn-
ing methods to develop multivariate prediction equa-
tions of treatment outcomes based on symptoms and
other easily assessed clinical features that have been
found in previous research to predict MDD treatment
outcomes (Strobl et al. 2009; Zhang & Singer, 2010;
van der Laan & Rose, 2011; James et al. 2013).
Although such methods have been used in this way
in other areas of medicine (Chang et al. 2012; Chao
et al. 2012), applications to MDD have so far been
based on samples too small to realise the potential of
the methods (Andreescu et al. 2008a; Rabinoff et al.
2011; Riedel et al. 2011; Nelson et al. 2012; Jain et al.
2013). Yet, promising preliminary results exist in clinic-
al (Moos & Cronkite, 1999; Perlis, 2013) and commu-
nity epidemiological (Angst et al. 2011; van Loo et al.
2014) studies designed to predict MDD persistence-
severity. In addition, innovative statistical methods for
building suchmodels exist but have not yet been applied
to MDD (Kent et al. 2010; van der Laan & Gruber, 2010;
Diaz Munoz & van der Laan, 2011; Willke et al. 2012;
Burke et al. 2014; Neugebauer et al. 2014). We review
these developments in the current report.

Self-report predictors of heterogeneity of MDD
treatment effects

We reviewed the literature on self-reported predictors
(i.e., assessed by survey or questionnaire; non-
biomarker) of MDD treatment response beginning
with a PubMed search using the search string: depress*
AND predict* AND (‘treatment outcome’ OR ‘treat-
ment response’ OR ‘course’) AND (‘self-report’ OR
‘survey’ OR ‘questionnaire’). Abstracts were then
reviewed and articles read in full if the abstract indi-
cated that: (i) participants underwent treatment for

depression (randomised controlled trials, uncontrolled
treatment trials, observational studies in which partici-
pants were in a treatment during the follow-up per-
iod); and (ii) associations were examined between
baseline self-report constructs and MDD treatment
outcomes. We also accessed and read any studies
that were cited in these papers to have examined base-
line self-reported predictors of MDD treatment out-
comes. All examined associations were recorded on a
spreadsheet. If both bivariate and multivariate models
were estimated, we recorded the results from the
multivariate models.

Replicated significant associations were found
between roughly two dozen baseline self-reported con-
structs and subsequent MDD treatment outcomes
(Table 1). It is noteworthy, though, that the typical
study reviewed considered only a handful of these
modifiers and no single study included all modifiers.
Analyses considering only a small number of modi-
fiers are unlikely to provide reliable clinical guidance
due to the existence of many HTE predictors, while
more complex subgroup analyses are precluded by
the small size of MDD treatment trials (Simon &
Perlis, 2010; Cuijpers et al. 2012).

Prior attempts to develop models of heterogeneity of
MDD treatment effects

While, as noted above, no prior study of MDD HTE
has included all the predictors in Table 1, encouraging
preliminary results nonetheless exist. The first effort
along these lines was that of Perlis (Perlis, 2013), who
carried out a secondary analysis of the STAR*D data-
set, where MDD treatment response was predicted
with an area under the receiver operating characteristic
curve (AUC) of 0.71 using a simple logistic regression
equation containing a small number of easily access-
ible patient self-report measures (socio-demographics,
depressive symptoms, comorbidity and prior MDD
history). An AUC of 0.71 is similar to the levels of pre-
diction accuracy found in a number of widely used
risk prediction models in other areas of medicine
(Anothaisintawee et al. 2012; Siontis et al. 2012;
Echouffo-Tcheugui & Kengne, 2013). However, this
analysis focused on overall treatment response rather
than differential response across multiple treatments.

In comparison, Kraemer (2013) developed an
approach to estimate MDD HTE in a treatment trial
comparing the relative effectiveness of exactly two
treatment types. The three-step approach began by
estimating a conventional modifier model for each
potential modifier one at a time (i.e., including predict-
or variables for treatment type (a dummy variable), the
modifier and an interaction term between treatment
and the modifier). The second step then consisted of
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Table 1. Baseline constructs associated with poor overall depression treatment response and/or differential treatment responses in two or
more studies

Baseline constructa
References demonstrating direct effect on (poor)

overall course/treatment response

References demonstrating interaction of baseline
construct with treatment type (Treatment A v.

Treatment B differential outcome)b

Socio-demographics
Older age Dew et al. (1997), Fournier et al. (2009), Thase et al.

(1997), Vuorilehto et al. (2009)
Cuijpers et al. (2012) (PSY +MED >MED)

Less than full-time
employment

Jarrett et al. (2013), Rush et al. (2008), Trivedi et al.
(2006)

Fournier et al. (2009) (CT > SSRI)

Low income Cohen et al. (2009), Cohen et al. (2006), Trivedi
et al. (2006)

Low education Agid & Lerer (2003), Marquett et al. (2013), Perlis
(2013), Szadoczky et al. (2004)

Non-white race Perlis (2013), Rush et al. (2008), Trivedi et al. (2006)
Unmarried Frank et al. (2011), Rush et al. (2008), Trivedi et al.

(2005)
Barber & Muenz (1996) (IPT > CT)

Married/cohabitating Fournier et al. (2009) (CT > SSRI); Barber & Muenz
(1996) (CT > IPT)

Depression history, triggers and symptoms
High baseline
severity

Agid & Lerer (2003), Barber & Muenz (1996),
Bernecker et al. (2014), Hollon et al. (2014),
Jarrett et al. (2013), Perlis (2013), Rush et al.
(2008), Sotsky et al. (1991), Thase et al. (1997),
Thase et al. (1994), Vuorilehto et al. (2009)

Luty et al. (2007) (CBT > IPT); Dimidjian et al.
(2006) (BA > CT); Elkin et al. (1989) (IPT > CBT);
Hollon et al. (2014) (CT +MED >MED); Thase
et al. (1997) (IPT +MED > IPT); Thase et al. (2007)
(SNRI > SSRI); Kennedy et al. (2006) (Second
generation SSRI > Conventional SSRI)

High psychomotor
symptoms/low
energy

Frank et al. (2011), Perlis (2013) Frank et al. (2011) (SSRI > IPT)

High anhedonia/
melancholic features

Rush et al. (2008), Vrieze et al. (2014)

Atypical depression McGrath et al. (1996) (MAOI > TCA); Quitkin et al.
(1990) (MAOI > TCA); Quitkin et al. (1991)
(MAOI > TCA)

Chronic/double
depression/longer
episodes

Fournier et al. (2009), Lowe et al. (2005), Sung et al.
(2012), Trivedi et al. (2005)

Cuijpers et al. (2012) (PSY +MED >MED, PSY +
MED > PSY, MED > PSY)

Endogenous
depression

Dew et al. (1997), Ionescu et al. (1994)

Current/past
suicidality

Frank et al. (2011), Rush et al. (2008)

Greater number
prior/recurrent
episodes

Carter et al. (2011), Jarrett et al. (2013), Perlis (2013)

Earlier age of onset Andreescu et al. (2008b), Dew et al. (1997)
Comorbid disorders/symptoms
Personality disorder/
symptoms

Hoencamp et al. (1994), Joyce et al. (2007) Cuijpers et al. (2012) (PSY +MEDS >MEDS); Carter
et al. (2011) (CBT > IPT); Joyce et al. (2007) (CBT
> IPT); Fournier et al. (2008) (SSRI > CT); Bellino
et al. (2008) (SSRI + IPT > SSRI); Kool et al. (2005)
(MED + PA >MED); Barber &Muenz (1996) (CT
> IPT)

Psychotic disorder/
symptoms

Frank et al. (2011), Perlis (2013)

Continued
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estimating a multivariate model to create regression
weights for all modifiers judged to be important in
the first step. These modifiers were then combined in
a third step into a single composite HTE measure for
each patient by summing the products bm ×Mim,
where bm is the slope of the treatment outcome on
modifier M and Mim is the score of respondent i on

modifier M. ‘Importance’ of individual modifiers
in the first step was defined by the standardised correl-
ation between modifier scores and differences in treat-
ment effect across the two treatment types, where the
latter association was estimated in a person-pair data-
set for all n1 × n2 pairs of patients in either Treatment A
(n1) or Treatment B (n2).

Table 1. Continued

Baseline constructa References demonstrating direct effect on (poor)
overall course/treatment response

References demonstrating interaction of baseline
construct with treatment type (Treatment A v.

Treatment B differential outcome)b

Anxiety disorder/
symptoms

Andreescu et al. (2007), Andreescu et al. (2008b),
Barber & Muenz (1996), Cohen et al. (2009),
Dew et al. (1997), Frank et al. (2011), Perlis
(2013), Rush et al. (2008), Smits et al. (2012),
Trivedi et al. (2006)

Papakostas et al. (2008) (SSRI > AAD)

Substance use/abuse Trivedi et al. (2006) Rush et al. (2008) (SSRI > SNRI)
Sleep problems Andreescu et al. (2008b), Dew et al. (1997), Troxel

et al. (2012)
High somatic anxiety Feske et al. (1998) Frank et al. (2011) (IPT > SSRI)

Stress and adversity
Childhood
maltreatment/trauma

Carter et al. (2011), Johnstone et al. (2009), Nanni
et al. (2012)

Nemeroff et al. (2003) (CBT > SSRI)

High stress Dew et al. (1997) Fournier et al. (2009) (CT > SSRI)
Poor physical
functioning

Lowe et al. (2005), Trivedi et al. (2006)

Poor social support/
relationships

Denton et al. (2010), Dew et al. (1997), Marquett
et al. (2013)

Personality traits
Non-secure
attachment style

Constantino et al. (2013) McBride et al. (2006) (CBT > IPT)

High negative affect/
neuroticism

Joyce et al. (2007), Szadoczky et al. (2004), Vrieze
et al. (2014)

Bagby et al. (2008) (SSRI > CBT)

Low openness to
experience

Bagby et al. (2008), Marquett et al. (2013)

Other
High impairment Feske et al. (1998), Frank et al. (2011), Jarrett et al.

(2013), Lowe et al. (2005), Sotsky et al. (1991),
Trivedi et al. (2006)

High cognitive
dysfunction/low
intelligence

Fournier et al. (2009) Cuijpers et al. (2012) (PSY +MED >MED)

IPT, interpersonal psychotherapy; CT, cognitive therapy; CBT, cognitive-behavioural therapy; BA, behavioural activation; PA,
psychoanalysis; PSY, psychotherapy (non-specific); SSRI, selective serotonin reuptake inhibitor; SNRI, serotonin–norepinephrine
reuptake inhibitors; TCA, tricyclic antidepressant; AAD, atypical antidepressant (e.g., bupropion); MAOI, monoamine oxidase
inhibitor; MED, pharmacotherapy (non-specific); +, combined treatment.
aPredictor and outcome measures varied by study, and only constructs with statistically significant (p < 0.05) associations with
depression treatment outcome (overall or differential response) in two or more studies are presented here.
bDifferential treatment response depending on the baseline construct is shown in parentheses. Treatment type is operationalised
based on broad classes of psychotherapy (e.g., any PSY, IPT, CT, CBT, BA, PA) and pharmacotherapy (e.g., any MED, SSRI,
SNRI, TCA, AAD, MAOI). The treatment associated with the better response (among patients with the baseline construct) is
listed before the >. In other words, X >Y means that treatment X is favoured relative to treatment Y if the (row) construct is pre-
sent at baseline.
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In an illustration of this approach applied to a small
treatment trial in which patients were randomised to
receive either interpersonal therapy (IPT) or a selective
serotonin reuptake inhibitor (SSRI) and 32 potential
treatment effect modifiers were assessed at baseline,
Kraemer showed that even though the overall effect
size was approximately 0 (i.e., patients responded
equivalently in the aggregate to the two treatments),
the effect size was 0.50 favouring IPT over SSRI in the
segment of the sample in which a composite HTE
score (made up of 8 of the 32 original baseline mea-
sures) favoured IPT (representing 44% of the patients
in this particular trial) and 0.48 favouring SSRI over
IPT in the remainder of the sample. (See also Wallace
et al. 2013 for a more substantive presentation of the
same results.)

While this illustration makes it clear that baseline
information could be of great value in guiding clinical
decision-making about MDD treatment selection, it is
also important to point out that the Kraemer approach
to defining individual-level HTE is limited in that it
provides no practical way to estimate an optimal clin-
ical decision support model for choosing among the
wider range of treatments available for MDD (e.g.,
IPT, cognitive therapy (CT), behavioural activation,
cognitive-behavioural therapy, or some other type
of psychotherapy; SSRI, serotonin–norepinephrine
reuptake inhibitor (SNRI) or some other type of
pharmacotherapy; any combination of a particular psy-
chotherapy with a particular pharmacotherapy). Nor
does the Kraemer approach allow for the estimation
of stable models that make use of the large number of
potential modifiers, some of which might be highly
inter-correlated, in ways that consider the possible exist-
ence of complex non-linear and/or non-additive multi-
variate associations (e.g., three-way interactions) with
response to particular types of treatment.

DeRubeis et al. (2014) proposed an approach to
MDD HTE estimation very similar to the Kraemer
approach in that it began by estimating a conventional
modifier model for each potential modifier one at a
time. However, it differed from the Kraemer approach
in that subsequent steps of model-building that com-
bined important modifiers (where ‘important’ was
defined initially as significant at the 0.20 level when
modifiers were considered one at a time, at the 0.10
level when included in subsequent within-domain
multivariate models, and at the 0.05 level when
included in final cross-domain models) were carried
out at the person level rather than, as in the Kraemer
approach, at the person-pair level. This person-level
analysis allowed DeRubeis to generate a predicted
treatment outcome score for each patient based on
the final model separately for the actual type of treat-
ment received as well as based on the counter-factual

assumption that the patient had received another
type of treatment. Individual-level comparison of
these two predicted scores then allowed DeRubeis to
determine the preferred treatment for each patient.

In an application of this approach to a small treat-
ment trial in which patients were randomised to
receive either antidepressant medication or cognitive
behaviour therapy (CBT), interactions of treatment
type with 38 potential baseline modifiers (as detailed
in Fournier et al. 2009) were estimated initially one at
a time and then in sequential multivariate models to
arrive at a final model that included nine significant
(0.05 level in third-step models) predictors either hav-
ing interactions with type of treatment (five predictors)
or associated with treatment outcome equivalently for
both types of treatment (four predictors). Roughly 60%
of patients had predicted outcome scores based on the
model that differed between the two types of treat-
ment by an amount considered clinically significant
(three points on the Hamilton Rating Scale for
Depression). In the aggregate, patients in this 60% of
the sample who were randomizsed to the type of treat-
ment to which they were predicted by the model to
have better response had a treatment effect size 0.58
greater than that of patients who were randomised to
the other treatment.

This research team subsequently applied the same
method to another small treatment trial that rando-
mised patients with MDD either to IPT or CT
(Huibers et al. 2015). A total of 43 potential baseline
modifiers were available and the final model included
13 of them (eight with significant interactions and five
others that were associated with treatment outcomes
equivalently across the two treatments). In the aggre-
gate, patients who were randomised to the type of
treatment to which they were predicted by the model
to have better response had a treatment effect size
0.51 greater than that of patients who were rando-
mised to the other treatment.

As with the Kraemer study, the two studies by
DeRubeis and colleagues illustrate the potential value
of using baseline information to help clinicians select
personalised MDD treatments. As with the Kraemer
study, though, it is quite likely that the method used
by DeRubeis and colleagues would lead to model
overfitting; that is, to a situation in which application
of the models in independent patient datasets would
lead to prediction accuracy being lower, perhaps sub-
stantially so, than in the sample in which the models
were built. As we discuss later, machine learning
methods are designed to address this problem of over-
fitting. The ad hoc stepwise model-building procedures
used by Kraemer and DeRubeis are far inferior to
methods designed explicitly to maximise prediction
accuracy in independent samples.
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It is noteworthy in this regard that the last step of
the DeRubeis approach used the leave-one-out (LOO)
method to impute individual-level predicted outcome
scores. DeRubeis and colleagues asserted that this
method addressed the problem of overfitting, but
this assertion is incorrect. Overfitting almost certainly
occurred at the level of variable selection, where step-
wise analysis was used to create models with interac-
tions involving 5 of 38 (the CBT v. SSRI trial) and 8
of 43 (the IPT v. CT trial) initially examined predictors
in very small treatment samples (n = 154 in the CBT v.
SSRI trial; n = 134 in the IPT v. CT trial). This means
that any attempt to use the coefficients in these models
to predict differential treatment response in a new
sample of patients would almost certainly yield less
positive effects than those suggested by the results of
studies. The use of the LOO method to estimate the
likely strength of the model in an independent sample
is an invalid approach when LOO is applied after selec-
tion of the final model predictors. At the level of vari-
able selection, furthermore, use of LOO is widely
recognised to be suboptimal compared with other
types of cross-validation due to the fact that it has
high variance (Hastie et al. 2009).

Is there a better way?

Best practices recommendations for HTE analysis call
for a different approach. In the simple case of a single
treatment v. control evaluation, these recommendation
call for a three-step approach: (i) estimate the joint
effects of baseline predictors in multivariate prediction
equations applied either to an independent sample of
people with the disorder (Kent et al. 2010) or, if the
clinical trial sample is large enough, to the control
group of the trial in which the predictors are being
studied (Burke et al. 2014); (ii) apply the predicted
probabilities of treatment outcomes from these equa-
tions to both intervention and control patients; and
(iii) plot treatment outcomes separately in the interven-
tion and control groups to examine differences in abso-
lute risk reduction (ARR) as a function of these
predicted probabilities. Patients with high predicted
probabilities of recovery will have low ARR because
they will recover even without treatment. Patients
with low probabilities of recovery might also have
low ARR due to available treatments being ineffective
in these difficult cases. Depending on the proportions
of patients at these tails of the distribution, the trial
might be negative overall even though ARR is signifi-
cant among patients with intermediate predicted prob-
abilities of recovery. This approach to multivariate
HTE analysis has proven useful in guiding persona-
lised treatment planning in other areas of medicine
(Hayward et al. 2006; Dorresteijn et al. 2011) even

though the prediction equations have largely focused
exclusively on overall treatment response rather than
differential treatment response.

An expansion of this approach to HTE involving
multiple types of treatment would either require
estimation: (i) of a separate model for each type of
treatment v. controls; (ii) of a separate within-treatment
model for each type of treatment; or (iii) of a pooled
model across active comparator treatments that
allowed for interactions of dummy variables for treat-
ment type with baseline variables. In the ideal case,
these models would be estimated using modern
machine learning methods rather than the ad hoc meth-
ods used by Kraemer and DeRubeis in order to reduce
the problem of overfitting and maximise out-of-sample
performance when applied to independent patient
samples (Ritchie, 2005; Upstill-Goddard et al. 2013).

The results of such models could be applied in sub-
sequent patient samples by comparing estimated treat-
ment outcomes for each patient separately for each
treatment option to arrive at an estimate of the optimal
treatment for each patient. In order to do this, though,
the logic would require a large enough trial to obtain
stable coefficient estimates within treatment-specific
subsamples and the application of the coefficients
from that trial to subsequent trials. This is infeasible
in the case of MDD treatment trials, though, because
MDD treatment trials are too small to support such
an analysis. Another problem is that MDD treatment
trials do not use a stable set of baseline measures of
the sort outlined in Table 1. The problem of small sam-
ple size is largely responsible for the fact that Kraemer,
in the approach described above, carried out the ana-
lysis using patient-pair data, as the approach needed
to conserve degrees of freedom in a sample that con-
sisted of only n = 291 patients randomised between
two conditions and the analysis examined the modify-
ing effects of 32 baseline predictors. And the problem
of inconsistency in baseline measure is largely respon-
sible for the fact that no efforts have been made to pool
results across a large number of MDD treatment trials
to estimate complex MDD HTE models.

This problem of small sample size has been
addressed in other areas of medicine either by devel-
oping interactive HTE models based on very large
trials (e.g., the Use of Statins in Prevention trial, which
randomised 17 802 initially healthy men and women
to statins or placebo for 10 years to evaluate the effect
of early statin use in preventing cardiac events
(Dorresteijn et al. 2011) or by using previously devel-
oped external risk scores based on prediction equa-
tions developed either in large observational samples
or in pooled samples that combine data across the mul-
tiple observational studies and/or clinical trials (Perel
et al. 2006; Prieto-Merino & Pocock, 2012).
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The latter would be the more practical approach for
MDD HTE, possibly beginning with large observation-
al samples of patients beginning MDD treatment,
administering self-report surveys of constructs found
previously to predict MDD HTE, and following these
patients through treatment to assess treatment out-
comes. These data would then be analysed using stat-
istical methods recently developed to estimate
comparative treatment effectiveness in observational
studies (van der Laan & Gruber, 2010; Neugebauer
et al. 2014). Inspection of between-patient differences
in predicted outcomes pooled across all treatments
could be used to study individual differences in overall
treatment outcomes, while inspection of between-
patient differences in treatments associated with high-
est predicted probabilities of recovery could be used to
study individual differences in differential treatment
outcomes. Internal cross-validation could be used to
evaluate in-sample performance. If clinically meaning-
ful individual differences were documented in this
way, the same approach could be used in subsequent
MDD clinical trials to support HTE analyses.

The above approach would need to begin with large
thoughtfully constructed (Madigan et al. 2014) observa-
tional samples because the sample sizes of even the lar-
gest MDD clinical trials would be much too small to
provide stable estimates of predicted HTE (Madigan
et al. 2014). Although HTE estimates are biased in
observational studies if treatment assignment is
informatively non-random, statistical methods exist
to adjust for this bias (Picciotto et al. 2014). This is
true even for non-random variation in dynamic treat-
ment assignment (e.g., due to side effects or lack of
early treatment response) (Suarez et al. 2008; Liu et al.
2014) and for unmeasured determinants (Lin &
Chen, 2014; Tchetgen Tchetgen, 2014). Consistent
with these observations, a recent Cochrane review con-
cluded that treatment effect size estimates based on
well-analysed observational studies are very similar
to those based on randomised controlled trials
(Anglemyer et al. 2014).

Preliminary results

Although we are aware of no existing efforts to
develop a multivariate model of MDD treatment
response in a clinical trial sample along the lines sug-
gested above, a potentially useful model can be
found in a series of studies designed to examine multi-
variate predictors of long-term depression persistence-
severity in secondary analyses of the 1990–1992
National Comorbidity Survey (NCS; Kessler et al.
1994), 2001–2003 NCS follow-up survey (NCS-2;
Kessler et al. 2003), 2001–2003 NCS Replication
(NCS-R; Kessler et al. (2004)), and WHO World

Mental Health (WMH) surveys (Demyttenaere et al.
2004). We briefly review the results of these studies
in this section of the paper and then discuss prospects
for extending the methods used to examine of
MDD HTE.

The NCS and NCS-R were nationally representative
community epidemiological surveys of common men-
tal disorders in the USA. The NCS-2 was a follow-up
survey of NCS 10–12 years after baseline. The WMH
surveys were national or regional surveys based on
NCS-R in 15 other countries. Initial exploratory ana-
lyses based on unsupervised clustering found patterns
suggesting that significant associations existed
between retrospective reports about incident episode
symptoms and subsequent illness course in the
NCS-R data. These results were sufficiently promising
that subsequent supervised machine learning analyses
were carried out to maximise the prediction of MDD
persistence-severity from retrospectively reported
information on incident episode symptoms in the
much larger WMH series, where there were 8261
respondents with lifetime DSM-IV MDD (van Loo
et al. 2014; Wardenaar et al. 2014).

Two machine learning algorithms (ensemble recur-
sive partitioning, penalised regression) were used to
examine associations of the outcomes with predictors
that consisted of retrospectively reported parental his-
tory of depression, temporally primary comorbid dis-
orders, and characteristics of incident MDD episodes.
The outcomes were two measures of retrospectively
reported subsequent MDD persistence (number of
years with episodes and with episodes lasting most
days throughout the year) and two measures of subse-
quent MDD severity (hospitalisation; work disability).
K-means cluster analysis of the four predicted values
found three risk strata that parsimoniously charac-
terised multivariate associations. The high-risk cluster
(32.4% of cases) accounted for 56.6–72.9% of high
persistence-severity, with area under the receiver oper-
ating characteristic curve (AUC) of 0.63–0.70.

As these WMH results were retrospective, a valid-
ation study was subsequently undertaken in the
NCS/NCS-2 panel. Predicted outcome scores were gen-
erated from information collected in the baseline sur-
vey scored using model coefficients estimated in the
WMH analysis. Associations of these predicted values
with outcomes over the intervening 10–12 years were
then examined using reports obtained in the NCS-2
follow-up survey. These prospective associations
were comparable to the retrospective associations
found in WMH (Kessler et al. 2016). Importantly,
meaningful discrimination was found both at the
upper and lower ends of the predicted outcome distri-
butions. For example, the respondents classified at
baseline as being in the top quintile of risk accounted
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for 55.8% of all suicide attempts over the subsequent
10–12 years, while the respondents in the lowest base-
line risk quintile accounted for only 1.5% of subse-
quent suicide attempts.

It is instructive to compare these NCS/NCS-2 results
to those of other prospective studies that used baseline
measures to predict MDD persistence-severity over 10+
years in samples of initially depressed patients (Moos
& Cronkite, 1999; Mueller et al. 1999; Klein et al.
2008; Cronkite et al. 2013) or community residents
(Mattisson et al. 2007; Bradvik et al. 2008; Eaton et al.
2008; Fichter et al. 2010; Angst et al. 2011). Although
these studies were all quite small (n = 87–424) and
none reported AUC, AUC could be computed post
hoc from two of them. The first study was a 50-year
follow-up of the 191 respondents in the Lundby com-
munity study with baseline MDD, 20 of whom subse-
quently died by suicide (Bradvik et al. 2008). A
composite measure of baseline depression severity
predicted subsequent suicide with AUC = 0.69 com-
pared with AUC = 0.70 for the most comparable
NCS-2 outcome (attempted suicide). The second
study followed 313 depressed outpatients 1, 4 and 10
years after baseline and defined chronic depression as
either (i)meeting full criteria forMDDat any2 follow-ups
or (ii) meeting full criteria at the 10-year follow-up and
partial criteria at both earlier assessments (Moos &
Cronkite, 1999). Twenty baseline predictors (depressive
symptoms, self-concept, social function and coping) pre-
dicted chronicity with AUC= 0.70 compared to AUC=
0.66 for the most comparable NCS-2 outcome (high per-
sistence of episodes). In making these comparisons, it is
important to remember that the AUCs in these other
studies were not validated in independent samples.

It is also noteworthy that the predictors in the WMH
and NCS/NCS-2 studies as well as in the above studies
were much less comprehensive than those in Table 1.
This means that the estimates of prediction strength
in these studies are likely to be lower bounds. A pre-
liminary expansion of the NCS/NCS-2 analysis to go
beyond the incident episode predictors considered so
far and include all the predictors in the baseline survey
listed in Table 1. While still only a subset of all the pre-
dictors in Table 1, AUC increased to more than 0.80 for
each NCS-2 outcomes when the predictors were
expanded in this way.

Implications for developing models of heterogeneity
of MDD treatment effects

Given the above results, one potentially useful next
step in studying MDDHTE would be to develop a self-
report questionnaire based on the predictors in Table 1,
administer that questionnaire to large observational
samples of patients at the beginning of MDD

treatment, monitor treatment types and responses,
and analyse these data to generate predicted MDD
treatment outcome scores that could be used as the
basis of HTE analyses in subsequent clinical trials. If
many different researchers carrying out prospective
observational studies and controlled MDD treatment
trials used a consistent questionnaire of this type,
results could be pooled to predict HTE. There is prece-
dent for this kind of pooling of observational and con-
trolled studies to study consistency of estimated
treatment effects and the roles of observational study
confounding, compositional differences and variation
in treatments in accounting for between-study discrep-
ancies (Prentice et al. 2006; Toh & Manson, 2013).

Another possible extension would be to carry out
subsequent pragmatic trials (Lurie & Morgan, 2013)
in the same treatment systems where prior observa-
tional studies were carried out by randomising partici-
pating clinicians either to receive or not to receive
actuarial information about optimal treatments based
on HTE models for individual patients based on
administration of questionnaires prior to initiation of
treatment. The treatment outcomes of the patients
included in this randomisation could then be tracked
to evaluate the effects of making this personalised clin-
ical decision support tool available to clinicians. These
predictions could also be used to determine which
patients should be targeted for randomisation to inter-
ventions involving expensive biomarkers (Uher et al.
2010; Williams et al. 2011; Dunlop et al. 2012;
Kennedy et al. 2012; Wallace et al. 2013) that would
only be needed if the actuarial model based on self-
report questionnaire data yielded equivocal results
(Van Staa et al. 2012). It would also be valuable in
this context to evaluate the incremental value of prom-
ising biomarkers in improving prediction beyond the
level achieved less expensively using only self-report
data (Li & Lu, 2010; Steyerberg et al. 2014).

Conclusions

Significant associations exist between numerous self-
report measures and subsequent MDD outcomes.
These associations have been documented both in the
controlled treatment trials, where the outcomes were
measures of treatment response, and in observational
studies, where the outcomes were more general mea-
sures of MDD persistence-severity. Although no
large-scale prospective study has been carried out to
evaluate the joint effects of all these predictors at
once, the preliminary results reviewed above make a
good case that the resulting multivariate equations
might be of clinical value in predicting both absolute
and differential treatment response. The use of recent
advances in machine learning methods to detect
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interactions could be valuable in refining these equa-
tions, while the use of recent advances in statistical
methods to make causal inferences from observational
data could help reduce bias in estimating HTE due to
non-random treatment assignment and informative
loss to follow-up. These equations could then be
used both to generate individual-level predicted out-
come scores to support the investigation of MDD
HTE in subsequent controlled treatment trials and pro-
vide useful decision support for clinicians attempting
to optimise the treatment of their depressed patients.
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