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Abstract

The waste-recycling Monte Carlo (WRMC) algorithm introduced by physicists is a
modification of the (multi-proposal) Metropolis—Hastings algorithm, which makes use
of all the proposals in the empirical mean, whereas the standard (multi-proposal)
Metropolis—Hastings algorithm uses only the accepted proposals. In this paper we extend
the WRMC algorithm to a general control variate technique and exhibit the optimal
choice of the control variate in terms of the asymptotic variance. We also give an
example which shows that, in contradiction to the intuition of physicists, the WRMC
algorithm can have an asymptotic variance larger than that of the Metropolis—Hastings
algorithm. However, in the particular case of the Metropolis—Hastings algorithm called
the Boltzmann algorithm, we prove that the WRMC algorithm is asymptotically better
than the Metropolis—Hastings algorithm. This last property is also true for the multi-
proposal Metropolis—Hastings algorithm. In this last framework we consider a linear
parametric generalization of WRMC, and we propose an estimator of the explicit optimal
parameter using the proposals.
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1. Introduction

The Metropolis—Hastings algorithm is used to compute the expectation (7, f) of a function
f under a probability measure, 7, difficult to simulate. It relies on the construction, by an
appropriate acceptance/rejection procedure, of a Markov chain (Xy, k£ > 0) with transition
kernel P such that 7 is reversible with respect to P and the quantity of interest (w, f) is
estimated by the empirical mean

l n
() =—3 fXo).
k=1
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We shall recall the well-known properties of this estimation (consistency, asymptotic normality)
in what follows. In particular, the quality or precision of the algorithm is measured through the
asymptotic variance of the estimator of (7, f).

The waste-recycling Monte Carlo (WRMC) algorithm, introduced by physicists, is a mod-
ification of the Metropolis—Hastings algorithm, which makes use of all the proposals in the
empirical mean, whereas the standard Metropolis—Hastings algorithm uses only the accepted
proposals. To the authors’ knowledge, the WRMC algorithm was first introduced in 1977 by
Ceperley, Chester, and Kalos (see [4, Equation (35), p. 3085]). Without any proof, they claimed
that “The advantage of using this form is that some information about unlikely moves appears
in the final answer, and the variance is lowered’. It is commonly assumed among physicists
and supported by most of the simulations that the WRMC algorithm is more efficient than the
Metropolis—Hastings algorithm, that is, the estimation given by the WRMC algorithm is consis-
tent and has a smaller asymptotic variance. Another way to speed up the Metropolis—Hastings
algorithm could be to use multiple proposals at each step instead of only one. According to
Frenkel [7], the waste recycling can be particularly useful for these algorithms where many
states are rejected.

Our aim is to clarify the presentation of the WRMC algorithms with one proposal and with
multiple proposals, and to present a first rigorous study of these algorithms. We will give in
Section 2 an introduction to our results in the finite state space case. Our main new results are
stated in Theorem 3.1, which is a first step towards the comparison of the asymptotic variances.
We shall detail their consequences in the didactic Section 2 for

e the WRMC algorithm through Propositions 2.1 (consistency of the estimation), 2.2
(asymptotic normality), and 2.3 (a first partial answer to the initial question: Does waste
recycling really improve the Metropolis—Hastings Monte Carlo algorithm?),

o the multi-proposal WRMC algorithm through Propositions 2.4 (consistency of the esti-
mation and asymptotic normality) and 2.5 (a second partial answer to the initial question:
Does waste recycling really improve the Metropolis—Hastings Monte Carlo algorithm?).

The study of the WRMC estimator in the form I, (f) + J,,(f), for a given functional J, leads
us to rewrite the WRMC algorithm as a particular case of a general control variate problem by
considering the estimators 1,,(f) + J, (1), where the function  is possibly different from f.
In the multi-proposal framework, the consistency (or convergence) of this general algorithm
and its asymptotic normality are stated in Theorem 3.1 in Section 3. We also give its asymptotic
variance and prove that the optimal choice of ¥ in terms of asymptotic variance is the solution,
F, of the Poisson equation (2.6). This choice achieves variance reduction, but the function F
is difficult to compute. It is possible to replace it by an approximation. In some sense, f is
such an approximation and, for this particular choice, we recover the waste-recycling estimator
introduced by physicists. In Section 5, which is dedicated to the single-proposal case, we give
a simple counterexample (see Subsection 5.2) which shows that the WRMC algorithm does
not in general improve the Metropolis—Hastings algorithm: the WRMC algorithm can have an
asymptotic variance larger than that of the Metropolis—Hastings algorithm. Athenes [3] also
observed variance augmentation in some numerical computations of free energy. However, in
the particular case of the Metropolis—Hastings algorithm called the Boltzmann algorithm, we
prove in Section 4 that the (multi-proposal) WRMC algorithm is asymptotically better than the
(multi-proposal) Metropolis—Hastings algorithm. In this particular framework we determine
the optimal value b, of b for the parametric control variate J,, (bf). This optimal value can be
estimated using the Markov chain (X¢, 0 < k < n).
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2. Didactic version of the results

For simplicity, we assume in the present section that E is a finite set. Let (v,h) =
Y e V(X)h(x) denote the ‘integration’ of a real function defined on E, h = (h(x), x € E),
with respect to a measure on E, v = (v(x), x € E).

Let m be a probability measure on E such that w(x) > O for all x € E, and let f be a
real function defined on E. The Metropolis—Hastings algorithm gives an estimation of (r, f)
as the almost-sure limit of the empirical mean of f, (1/n) Y ;_, f(Xx), as n goes to infinity,
where X = (X,, n > 0) is a Markov chain which is reversible with respect to the probability
measure 7.

2.1. The Metropolis—Hastings algorithm

The Markov chain X = (X,, n € N) of the Metropolis—Hastings algorithm is built in the
following way. Let Q be an irreducible transition matrix over E such that, for all x, y € E, if
Q(x,y) = 0then Q(y, x) = 0. The transition matrix Q is called the selection matrix.

For x, y € E such that Q(x, y) > 0, let (p(x, ¥), o(y, x)) € (O, 112 be such that

px, y)Tx)0x,y) = p(y, )7 (y)0(y, x). 2.1

The function p is viewed as an acceptance probability. For example, we obtain such a function
p by setting

(O, x)
T(x)Q(x,y)

where y is a function with values in (0, 1] such that y(#) = wuy(1/u). Usually, we take
y (#) = min(l, u) for the Metropolis algorithm. The case y () = u/(1 + u) is known as the
Boltzmann algorithm or Barker algorithm.

Let X( be a random variable taking values in E with probability distribution vy. At step n,
Xo, ..., X, are given. The proposal at stepn + 1, f(n_H, is distributed according to Q (X, -).
This proposal is accepted with probability p(X,,, X,+1) and then X, 41 = X,41. Ifitis rejected
then we set X1 = X,,.

It is easy to check that X = (X, n > 0) is a Markov chain with transition matrix P defined
by

plx,y) = y( ) for all x, y € E such that Q(x, y) > 0, 2.2)

P(x,y) = Q. y)p(x. y) ifx 7. forall x,y € E. (2.3)

1-— ZH&X P(x,z) ifx =y,
Furthermore, X is reversible with respect to the probability measure 7: 7w (x)P(x,y) =
m(y)P(y, x)forall x, y € E. This property is also called detailed balance. By summation over
y € E we deduce that 7 is an invariant probability for P (i.e. w P = m). The irreducibility of
Q implies that P is irreducible. Since the probability measure 7 is invariant for P, we deduce
that X is positive recurrent with (unique) invariant probability measure . In particular, for any
real-valued function f defined on E, the ergodic theorem (see, e.g. [9]) implies the consistency
of the estimation:
lim I,(f) = (mw, f) almost surely (a.s.),
n—oo

where

1 n
() =—3 fXe). 2.4)
k=1
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The asymptotic normality of the estimator I, () is given by the following central limit theorem
(see [6] or [9)):

(L (f) = (70, f) = N(0,0(f)?) asn — oc.

Here N (0, 02) denotes the Gaussian distribution with mean 0 and variance o2, the convergence
holds in the distribution sense, and

o (f)? = (m, F?) — (x, (PF)?), 25)
where F denotes the unique solution up to an additive constant of the Poisson equation
F(x) — PF(x) = f(x) — (7, f), x €E, (2.6)

and Ph(x) = Zye g P(x, y)h(y). Improving the Metropolis—Hastings algorithm means
exhibiting other estimators of (mr, f) that are still consistent (i.e. estimators which converge
a.s. to (7, f)) but have an asymptotic variance smaller than o (f)?.

2.2. WRMC algorithm

The classical estimation of (7, f) by the empirical mean I, ( f) makes no use of the proposals
X which have been rejected. For a long time, physicists have claimed that the efficiency of the
estimation can be improved by including these rejected states in the sampling procedure. They
suggest to use the so-called WRMC algorithm, which consists in replacing f(Xy) in I,(f) by
a weighted average of f(Xr—1) and f (f( x). For the natural choice of weights corresponding
to the conditional expectation of f(Xy) with respect to (X;_1, X k), we obtain the following
estimator of (m, f):

n—1

1 ~
DYRMC(fy = = S B (Xir) | Xieo Xig]
n k=0
i ~ _ i
= = 20Xk, X 1) f Kiep) + (1= p (X, Xiey ) f (X))
k=0

We shall study in Section 6.2 another choice for the weights also considered by Frenkel [8].
Note that the WRMC algorithm requires the evaluation of f for all the proposals whereas the
Metropolis—Hastings algorithm evaluates f for only the accepted proposals. Other algorithms
using all the proposals, such as the Rao—Blackwell Metropolis—Hastings algorithm, have been
studied; see, for example, [12, Section 6.4.2] and the references therein, as well as [5] for
a different approach. In the Rao-Blackwell Metropolis—Hastings algorithm, the weight of
f(X k+1) depends on all the proposals X1,..., X,. Itis thus necessary to keep in memory the
values of all proposals in order to compute the estimation of (7, f).

We can easily check that I,YV RMC f)— L,(f) = J,(f), where, for any real function

defined on E,
1 n—1 .
) =~ D CEW Xirn) | X, Xit] = ¥ (Xag)
k=0

n—1

== 20Xk, Xer )Y Ke) + (= p X, Xip DI (X)) = ¥ (Xier1).
k=0
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Note that J, () = 0 when ¥ is constant. We can consider a more general estimator of (7, f)
given by
In(fs 1/’) = In(f) + Jn(W)

Note that IYRMC( ) = I,(f, f) and I,(f) = I,(f,0). Itis easy to check that the bias of
the estimator 7, ( f, ¥) does not depend on v : E[1,(f, ¥)] = E[,(f)]. Theorem 3.1, below,
implies the following result on the estimator I, (f, ¥).

Proposition 2.1. For any real functions v and f defined on E, the estimator I, (f, V) of (w, f)
is consistent: a.s., lim,_. o I, (f, V) = (7, f).

From this result, J, (1) can be seen as a control variate and it is natural to look for i which
minimizes the variance or the asymptotic variance of I,,(f, ). Another class of control variates
has been studied in [2] in the particular case of the independent Metropolis—Hastings algorithm,
where Q(x-) does not depend on x.

The last part of Theorem 3.1, below, implies the following result, in which we use Lemma 5.1,
below, to derive the asymptotic variance expression. We shall write E, when X is distributed
under its invariant measure 7 (in particular, (7, f) = E;[f(X0)]).

Proposition 2.2. For any real functions r and f defined on E, the estimator I, (f, V) of (w, f)
is asymptotically normal:

Iy (f. ) = (. ) = N0, 0(f.9)?) asn— oo,

with asymptotic variance o (f, ) given by

o (f,¥) = o (f)* —Ex[(1 — p(Xo, X)) (F(X1) — F(X0))*]
+ Ex[(1 — p(Xo, X1)) (¥ (X1) — F(X1) — ¥(Xo) + F(X0))?1,

where F solves the Poisson equation (2.6). In particular, for fixed f, the asymptotic variance
o (f, ¥)? is minimal for v = F and this choice achieves variance reduction: o (f, F)* <

o ()

Although optimal in terms of the asymptotic variance, the estimator /,,(f, F') is not for use in
practice, since computing a solution of the Poisson equation is more complicated than computing
(m, f). Nevertheless, the proposition suggests that using I, ( f, 1), where ¥ is an approximation
of F, might lead to a smaller asymptotic variance than in the standard Metropolis—Hastings
algorithm. Some hint at the computation of an approximation of F by a Monte Carlo approach
is, for instance, given in [10, p. 418-419]. Because of the series expansion F = Zk>0 Pk(f —
(, f)), f can be seen as an approximation of F of order 0. Hence, the asymptotic variance of
IWVRMC( £y — [ (f, f) might be smaller than that of I, (f) in some situations. It is a common
belief in the physicist community (see [4] or [8]) that the inequality is always true. Note that, as
remarked by Frenkel [8] in a particular case, the variance of each term of the sum in I,}V RMC D)
is equal or smaller than the variance of each term of the sum in /,,(f) by Jensen’s inequality.
But we also have to compare the covariance terms, which is not so obvious. We investigate
whether the asymptotic variance of the WRMC algorithm is smaller than that of the standard
Metropolis algorithm and reach the following conclusion that contradicts the intuition.

Proposition 2.3. (i) In the Metropolis case, that is, when (2.2) holds with y (u) = min(1, u),
then it may happen that o (f, f)*> > o (f)>.
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(ii) When (2.2) holds with y (u) = au/(1 + u) for some a € (0, 2), then we have o (f, f)2 <
o (f)?. Furthermore, for f nonconstant, the function b — o (f, bf)? is minimal at

(7, f3) — (7, f)?
(m, f2— fPf)

and by, > 1/a. When a = 1, and if, moreover, o (f, f)2 > 0, then b, > 1.

b, =

2.7)

Remark 2.1. Assume that f is not constant. The optimal parameter b, defined in (2.7) can be
estimated by

- L(f?) = In(f)?
T L) = (A/m) 2 f XD f(Xe)

Note that, a.s., lim,_, o b, = b, thanks to the ergodic theorem. Using Slutsky’s theorem,
we can deduce from Proposition 2.2 that I,,(f) + b J.(f) = LI,(f, b f) is an asymptotically
normal estimator of (7, f) with asymptotic variance o ( f, b, f). Thus, in the framework of
Proposition 2.3(ii), using the control variate l3n Jn (f) strictly improves the WRMC estimator
as soon as either &« < 1 or & = 1 (Boltzmann algorithm) and o (£, f)? is positive. Note that
when its asymptotic variance o (f, f )2 is 0, then the WRMC estimator I,YV RMC( £y = L,(f, f)
is equal to (7, f).

To prove assertion (i), we give an explicit counterexample such that o (f, f 2 > o(f)?in
the Metropolis case (see Section 5.2 and (5.3), below). Assertion (ii) is also proved in Section 5
(see Proposition 5.1). Let us make some comments on its hypothesis, which holds with o = 1
for the Boltzmann acceptance rule.

e By (2.1) and since p(x, y) is an acceptance probability, the constant o has to be smaller
than
(O, x)

1+ min .
x#y, Qx>0 T (x) Q(x, y)

e If there exists a constant ¢ > 0 such that, for all distinct x, y € E such that Q(x, y) > 0,
the quantity 7 (x) Q(x, y)/m(¥) Q(y, x) is equal to ¢ or 1/c and (2.2) holds with y such
that y (1/c) = y(c)/c, then the hypothesis holds with ¢ = y(c) + y(1/c). For example,
assume that the transition matrix Q is symmetric and that 7 is written as a Gibbs
distribution: for all x € E, w(x) =e )/ Y veE e "0 for some energy function
H. If the energy increases or decreases by the same amount ¢ for all the authorized
transitions, then 7w (x) Q(x, y) /7 (y) Q(y, x) is equal to ¢ or 1/c with ¢ = e®.

According to [11], since, for all u > 0, u/(1 + u) < min(l, u), in the absence of waste
recycling, the asymptotic variance o ( £)? is smaller in the Metropolis case than in the Boltzmann
case for given r, Q, and f. So waste recycling always achieves variance reduction only for the
worst choice of y. Note, however, that the Boltzmann algorithm is used in the multi-proposal
framework where we generalize our results.

Remark 2.2. When the computation of Pg is feasible for any function g: E — R (typically
when, for every x € E, the cardinality of {y € E: Q(x, y) > 0} is small), then it is possible to
use I, (Y — Pr) as a control variate and approximate (7, f) by I,(f — (¢ — Py)). Since 7 is
invariant with respectto P, (w, ¥ — Py¥) = O and, a.s., I,,(f — (¢ — Py)) converges to (r, f)
as n tends to co. Moreover, the asymptotic variance of the estimator is o (f — 1 + P1r)%. Now,
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remarking that
1 & 1
Li(y — PY) = " Z(l/f(Xk) — Py (Xk—1)) + ;(PW(XO) — Py (Xy)) (2.8)
k=1

we find that the bias difference
1
E[L,(f — ¥ + PY)] —E[L,(f)] = - E[P¥(Xo) — PY(Xy)]

is smaller than 2 maxycg [ (x)|/n.

For the choice ¢ = F, this control variate is perfect, since according to (2.6), for each
n € N*, I,(f — (F — PF)) is constant and equal to (r, f).

Setting fo = f — (7, f), we find that the asymptotic variance for the choice ¢ = bf with
belRis

o(f +b(Pf — ) = (m, (F — bfo)*) — (7, (PF — bPfp)*)
= (m, F>* — (PF)?) = 2b(n, fo(F — PF + PF — P*F))
+ b3, f§ — (Pfo)?)
=0 (f)? = 2b(m, folfo+ Pfo)) + b*(n, f§ — (Pfo)*),

where we have used the Poisson equation (2.6) for the first and third equalities, and the
reversibility of w with respect to P for the second equality. The parameter

i _ T folfo+ Po) _ {m, f(f + PP)) =2, f)?

(7, f3 — (Pf0)?) (r, f2 = (Pf)?)

which minimizes this variance, can be consistently estimated by

Li(f(f + Pf)) —2L,(f)?
L(f2 = (Pf)?) '

Note that the control variate J, () is similar to I,(yy — Pr) except that the conditional
expectation Py (Xy—1) of ¥ (Xy) given Xj_ in the first term on the right-hand side of (2.8)
is replaced by the conditional expectation of v (X;) given (Xx_1, Xx), which can always be
easily computed. From this perspective, the minimality of the asymptotic variance of I, ( f, ¥)
for = F is not a surprise.

The comparison between o (£, ¥)? and o (f — ¥ + Pv)? can be deduced from Section 6.1,
which is stated in the more general multi-proposal framework introduced in the next subsection.
Note that the sign of o (f, ¥)*> — o (f — ¥ + Pv)? depends on .

2.3. Multi-proposal WRMC algorithm

In the classical Metropolis—Hastings algorithm, there is only one proposal X,41atstepn+1.
Around 1990, some extensions where only one state among multiple proposals is accepted
were proposed in order to speed up the exploration of E (see [1] for a unifying presentation of
MCMC algorithms including the multi-proposal Metropolis—Hastings algorithm). According
to Frenkel [7], waste recycling can be particularly useful for these algorithms where many states
are rejected.
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To formalize these algorithms, we introduce a proposition kernel @: E x P (E) — [0, 1],
where £ (E) denotes the set of parts of E, which describes how to randomly choose the set of
proposals: forall x € E,

Qx,A) =0 ifx¢gA and Y Q@ A)=1. (2.9)
AeP(E)

The second condition says that @(x, -) is a probability on #(E). The first condition ensures
that the starting point is among the proposals. This last convention will allow us to transform
the rejection/acceptance procedure into a selection procedure among the proposals.

The selection procedure is described by a probability k. For (x, A) € E x P(E), let
k(x, A, x) € [0, 1] denote the probability of choosing X € A as the next state when the
proposal set A has been chosen. We assume that ZieA k(x,A,x) =1 (thatis, k(x, A, ) isa
probability measure) and that the following condition holds:

T(xX)Q(x, A)k(x, A, X) =1 (X)Q(Xx, A)k(x, A,x) forall A e P(E)andallx,x € A.
(2.10)

This condition is the analogue of (2.1) for a multi-proposal setting. For examples of nontrivial
selection probabilities k, see the text following Proposition 2.4, below.

The Markov chain X = (X,, n > 0) is now defined inductively in the following way. Let X¢
be a random variable taking values in E with probability distribution vy. At step n, Xo, ..., X,
are given. The proposal set at step n + 1, A,41, is distributed according to Q(X,,, -). Then
X,+1 18 chosen distributed according to « (X,,, A,+1, -). Itis easy to check that X is a Markov
chain with transition matrix

Pl,y)= ) Qx, A(x, A, ).
{AcP(E): x,yeA}

Condition (2.10) ensures that X is reversible with respect to the probability measure

m:rx)P(x,y) =a(y)PQ,x).

Remark 2.3. The multi-proposal Metropolis—Hastings algorithm generalizes the Metropolis—
Hastings algorithm which can be recovered for the particular choice Q(x, {x, y}) = Q(x, y)

and, for y # x, k(x, {x, y}, y) =1 —«(x, {x, y}, x) = p(x, y).
We keep the definition of I,,(f), (2.4), but adapt the definitions of J, () and I,,(f, V) as

follows:
1 n—1
Fn ) = — Y (Y (Xiern) | Xi, Ap] = ¥ (Xiey1))
k=0
1 n—1
=_Z< Z K(Xk’Ak-‘rlvi)W()z)_W(Xk—ﬁ—l)) (2.11)
" =0 ¥eArq

and L, (f, ¥) = I,(f)+ . (¥). The waste-recycling estimator of (7, f) studied by Frenkel [7]
is given by SWVRMC( ) = 4, (f, f). Note that the bias of the estimator 4, (f, 1) does not
depend on v (i.e. E[4,(f, ¥)] = E[1,(f)]). It turns out that Propositions 2.1 and 2.2 remain
true in this multi-proposal framework (see Theorem 3.1, below) as soon as P is irreducible.
Note that the irreducibility of P holds if and only if, for all x" # y € E, there exist m > 1
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distinct xo = y, x1,x2,..., %y, = x' € E and Ay, Ar..., A, € P(E) such that, for all
k e {1,...,m},xk,1,xk € Ak and
m
H(Q(kal, A (xx—1, Ag, x) > 0. (2.12)
k=1

Proposition 2.4. Assume that P is irreducible. For any real functions W and f defined on E,
the following assertions hold.

e The estimator 4, (f, ) of (w, f) is consistent: a.s., lim,_ o L, (f, ¥) = (7, f).

o The estimator 4,,(f, ) of (w, f) is asymptotically normal:

G (f, ) = (71, £)) = N, 0(f,¥)%) asn — oo,

where the asymptotic variance (still denoted by) o (f, ¥)? is given by

o(f, ) =0o(f)>+ Z ()@ (x, Avare, , (¥ — F) — vare, , (F)],
2250k
with s
vare, ,(8) = Y _k(x, A, y)g(y)* — (Zx(x, A, y)g(y)) :
YEA yeA

o Moreover, for fixed f, the asymptotic variance o (f, V)? is minimal for = F, where F
solves the Poisson equation (2.6). In particular, this choice achieves variance reduction:

o(f, F)> <o(f)~

We now give two examples of a nontrivial selection probability « which satisfies condition
(2.10). The first nontrivial selection probability, « ™, defined by

Mx, A, %)
T(X)Q(x, A) e e
— — if x # x,
= I max(r(x)Q(x, A), t(x)Q(x, A)) + ZZGA\{X’;C} w(z)@(z, A)
1—ZeA\ M(x, A, 2) if ¥ = x,
(2.13)

generalizes the Metropolis selection given by (2.2) with y(#) = min(1, u). (Note that, for

x # X, we have kMx, A, %) < m(X)QR, A)/ ZzeA\{X}n(z)(fZ(z A), which implies that

1= A\x) K M(x, A, z) is indeed nonnegative.) The second nontrivial selection probability,
« B, which does not depend on the initial point x, and is defined by

T(x)Q(x, A)
Y eaT(2)Q(z, A)’

generalizes the Boltzmann (or Barker) selection given by (2.2) with y (u) = u/(1 4+ u). Note
that, for both choices, the irreducibility condition (2.12) can be expressed only in terms of @:

KBix, A, ) =«B(A, %) = (2.14)

m
[ @G, Ap@Gx, A > 0.
k=1
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For the selection probability in (2.14), we prove in Section 4 (see Proposition 4.1) that the
waste recycling improves the Metropolis—Hastings algorithm.

Proposition 2.5. When k = kB is given by (2.14) (Boltzmann or Barker case), then we have
o(f, £)* < o(f)% Furthermore, for f nonconstant, the function b — o (f, bf)? is minimal
at b, defined by (2.7) and b, > 1 when o (f, f)* > 0.

Note that the optimal value b, can be estimated by by, which s computed using the proposals;
see Remark 2.1. The control variate b, J,, (f) therefore improves the WRMC algorithm.

2.4. Conclusion

According to Proposition 2.3, the WRMC algorithm does not in general improve the
Metropolis—Hastings algorithm. Nevertheless, even in the multi-proposal framework, it
achieves variance reduction for the Boltzmann (or Barker) selection probability (see Propo-
sition 2.5). In this case we improve it by computing the optimal multiplicative constant b* of
the associated control variate and by providing a convergent estimator of b* (see Remark 2.1).
Since the Metropolis selection probability is larger than the Boltzmann selection probability
outside the diagonal (for ¥ # x € A, KM(x, A,X) > KB(A,)?)), according to [11], the
asymptotic variance without any control variate is smaller in the Metropolis case than in the
Boltzmann case. From formulae (2.13) and (2.14), it is likely that the difference decreases
when the cardinality of the proposal sets increases. This is why we may expect the waste
recycling to reduce the asymptotic variance even for the Metropolis selection probability in the
multi-proposal framework when the cardinality of the proposal sets is large.

3. Main result for general multi-proposal waste recycling

Let (E, ¥g) be ameasurable space suchthat {x} € Ff forallx € E, andletw be a probability
measure on E. Note that E is not assumed to be finite. Let » = {A C E; card(A) < oo} be
the set of finite subsets of E. Let E = Un>1 E", and let £ be the smallest o-field on E that
contains A| X --- X A, forall A; € ¢ and n > 1. We consider the function I" defined on E
and taking values on & such that I'((xy, ..., x,)) is the set {x1, ..., x,} of distinct elements
in (x1,...,x,). We define Fp, a o-field on P, as the image of ¥ by the application I'. We
consider a measurable proposition probability kernel @: E x F» — [0, 1] such that

/(Q(x,dA):l and /@(x,dA)l{x¢A}=o
P P

(this is the analogue of (2.9)), and a measurable selection probability kernel x: E x &£ x
Fg — [0, 1] such that, for x € A, we have «(x, A, A) = 1. Let §, be the Dirac mass at
point y. In particular, since A is finite, with a slight abuse of notation, we shall also write
k(x,A,dy) =) 4 k(x, A, 2)8,(dy) and so Z},GA Kk(x, A, y)=1.

We assume that the analogue of (2.10) holds, that is,

w(dx)@Q(x,dA)x(x, A,dy) = n(dy)@Q(y,dA)k(y, A, dx). 3.1

Example 3.1. We give the analogue of the Metropolis and Boltzmann selection kernels defined
in (2.13) and (2.14) when E is finite. We consider N(dx,dA) = n(dx)@(x,dA) and a
measure No(dA) on F» such that f veg N(dx, dA) is absolutely continuous with respect to
No(dA). Since x € A and A is finite N (dx, dA)-a.s., the decomposition of N with respect to
Ny gives N (dx, dA) = No(dA)ra(dx), where ra(dx) = )" .4 ra(y)8y,(dx) if A is finite and
ra(dx) = 0 otherwise, and (x, A) — r4(x) is jointly measurable.
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The Metropolis selection kernel is given by, for x, y € A andr4 # 0,

M ra(y)
k" (x, A, y) = , (3.2)
ZZGA\{x,y} ra(z) + max(ra(x), ra(y))
ifx #yandeM(x, A, x)=1— > eAvin) Mx, A, y).
The Boltzmann selection kernel is given by, for x, y € A andr4 # 0,
Bl Ay =kBAy) = <A (3.3)
ZZEA rA(Z)

We choose these two selection kernels to be equal to the uniform distribution on A whenry = 0.
For these two selection kernels, (3.1) is satisfied.

Example 3.2. Let us give a natural example. Let v be a reference measure on E with no
atoms, and let 7w be a probability measure on E with density with respect to v, which we still
denote by . Let @(x, A) = Py({x, Y1,...,Y,} C A) for A € Fpbe a selection procedure,
where Y1, ...,Y, are E-valued independent random variables with density with respect to
v given by ¢g(x, -) under P, and n > 1 is fixed. We use the notation of Example 3.1. In
this setting we choose No(dA) =[] v(dx) and the function r,4 is given by, for x € A,

ra(x) =m(x) l_[zeA\{x} q(x,2).

x€eA

The Markov chain X = (X,,, n > 0) is defined inductively in the following way. Let X be
arandom variable taking values in £ with probability distribution vy. At step n, Xo, ..., X, are
given. The proposal set at step n 4 1, A, 41, is distributed according to @(X,, -). Then X, 11
is chosen distributed according to « (X, A,+1, -). This is a particular case of the hit-and-run
algorithm [1], where the proposal sets are always finite. It is easy to check that X is a Markov
chain with transition kernel

P(x,dy):/ Q(x,dA)x(x, A, dy). (3.4)
P

For f areal-valued measurable function defined on E, we shall write P f (x) for f g P(x,dy) f(y)
when this integral is well defined.
Condition (3.1) ensures that X is reversible with respect to

m: a(dx)P(x,dy) = x(dy)P(y, dx).

We also assume that X is Harris recurrent (see [9, Section 9]). This is equivalent to assuming
that, forall B € F suchthatr(B) > 0, wehaveP(card{n > 0; X,, e B}=o0 | Xg=x) =1
forallx € E.

Example 3.3. It is easy to check in Example 3.2 that X is Harris recurrent if the random walk
with transition kernel g is itself Harris recurrent and, forall x € E, @(x,dA) a.s.,forally € A,
k(x, A, y) > 0@e. o Lorall yea, c(xr,A,y)>0) @(x, dA) = 1).

For f areal-valued measurable function defined on E and v a measure on E, we shall write
(v, f) for f v(dy) f (v) when this integral is well defined.

Let f be a real-valued measurable function defined on E such that (7, | f|) < co. Theorem
17.3.2 of [9] asserts that, a.s., lim,—, o0 I, (f) = (7, f), with I,,(f) defined by (2.4).
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We consider the functional ¢, defined by

n—1

1
Fn(B) =~ D EIB(Xk, Acyr, Xis1) | X, A1l = B(Xk, Akgr, Xit1))
k=0

n—1
1
= ;Z( Y k(Xi, Akt DBXk, Ak, H) — B(Xk, Ak, ka) (3.5)

k=0 “Xe€Aiy1

for B any real-valued measurable function definedon E x P x E. Weset 4,,(f, B) = L,(f) +
Fn(B). To prove the convergence and the asymptotic normality of the estimator 4, (f, 8) of
(7, f), we shall use a martingale approach. In particular, we shall assume that there exists
a solution F to the Poisson equation F — PF = f — (m, f) such that (7, F?) < oo (see
Theorem 17.4.2 and Condition (V.3) of [9] to ensure the existence of such a solution).

We introduce the following convenient notation. For a probability measure v on E and
real-valued functions / and g defined on E, we respectively write, when well defined,

covy(h, g) = (v, gh) — (v, g)(v,h) and var,(h) = (v, hz) — (v, h)2

for the covariance of g and &, and the variance of 4 with respect to v. We also write «x 4 (dy)
for the probability measure x (x, A, dy) and B, 4(-) for the function B(x, A, -).

Theorem 3.1. We assume that X is Harris recurrent, that (w, f%) < oo, that there exists a
solution F to the Poisson equation F — PF = f — (1, f) such that (m, F?) < oo, and that p is
square integrable: f m(dx)@(x,dA)k(x, A,dy)B(x, A, y)2 < 00. Under these assumptions,
the following assertions hold.

(1) The estimator 4,,(f, B) of (w, f) is consistent: a.s., lim,_ o L, (f, B) = (7w, f).
(i1) The estimator 4, (f, B) of (r, f) is asymptotically normal:

V(L (f. B) = (7. f)) > N(©.0(f.p)%) asn — oo,

and the asymptotic variance is given by
o(f.B) =0(f)*+ / m(dx)@(x, dA)[vare, ,(Bx,a — F) — vare, ,(F)],  (3.6)

with o (f)? = (m, F?2 — (PF)?).

(iii) The asymptotic variance o (f, ,3)2 is minimal for By o = F and

2
o(f, F)? :fﬂ(dx)(/ Q(x,dA) (ky 4, F)? — </ (:z(x,dA)(Kx,A,F)) )

<o(f)* (3.7)

Proof. We shall prove the theorem when X is distributed according to 7r. The general case
follows from Proposition 17.1.6 of [9], since X is Harris recurrent.
We set, forn > 1,

AM, = F(X,) = PF(Xn-1) + n(Xp—1, An, Xp),
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where
n(x, A, y) = ) ((x, A, B) — Li—g)B(x, A, B).
XeA
Note that AM,, is square integrable and that E[AM,,41 | §,] = 0, where §, is the o-field
generated by X¢ and (A;, X;) for 1 < i < n. In particular, M = (M, n > 0) with M,, =
Y i1 AM is a martingale with respect to the filtration ($,, n > 0). Using the fact that
solves the Poisson equation, we also have

1 1
In(f, B) = —M ——PF(X)+ PF(X0)+<7T f). (3.8)

As (1, F?) < oo implies that (7, |PF|) < oo, we deduce from Theorem 17.3.3 of [9] that,
a.s., lim,_,»(1/n) P F(X,) = 0. In particular, part (i) will be proved as soon as we check that,
a.s., lim,— o M, /n = 0.

We easily compute the bracket of M,;:

M), =) E[AM] | Gx1l=)  h(Xi-1),
k=1 k=1
with
h(x) = P(F?)(x) — (PF(x))* + / Q(x,dA)[—2coVe(x,a,)(Bx,a, F) + vare 4, (Bx,a)]

Elementary computation yields

_2C0VK(X,A,~)(/8X,A’ F) + VarK(x,A,~)(ﬂx,A) = VarK()C,A,')(ﬁ)C,A - F) - VarK(x,A,~)(F)-

Since (7, F2) < ooand [ 7(dx)Q(x, dA)k(x, A, dy)B(x, A, y)* < 0o, his 7 integrable. We
set o (f, ﬁ)2 = (m, h), that is, o (f, ,3)2 is given by (3.6), thanks to (2.5) and the fact that
is invariant for P. Theorem 17.3.2 of [9] asserts that, a.s., lim,—~(M),/n = (w, h). Then
Theorem 1.3.15 of [6] implies that, a.s., lim,_,oc M, /n = 0. This completes the proof of
part (i).

The proof of part (ii) relies on the central limit theorem for martingales; see Theorem 2.1.9
of [6]. We have already proved that, a.s., lim,_coc(M),/n = o(f, ,3)2. Let us now check
Lindeberg’s condition. Note that theorem 17.3.2 of [9] implies that, for any a > 0, we have

lim —ZE[AMk Lapoa) | Ga—1]= (7 ha),

n—oon

where h,(x) = E[AM l{AM2>a} | Xo = x]. Note that 0 < h, < h and that (h,;, a > 0)
decreases to 0 as a goes to co. We deduce that, a.s.,

lim su E[AM 1 ] < lim sup{rw, h,) = 0.
n»oopn ;; k Yamisym) | Gr—1 m p( a)

This gives Lindeberg’s condition. We then deduce that (M,,/+/n, n > 1) converges in distri-
bution to N (0, o (f, ﬂ)z). Then we use (3.8) and the fact that, a.s.,

. 1
lim —(PF(Xnt1))? =
n—-oon

(thanks to Theorem 17.3.3 of [9]) to complete the proof of part (ii).
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The proof of part (iii) is as follows. The asymptotic variance o (f, 8)* is minimal when
vary, ,(Bx,a—F) = 0, thatis, atleastfor B, 4 = F. Ofcourse, o (f, F)* < o (f,0)*> = o (f)>.
Using (2.5), the fact that 7 is invariant for P, and definition (3.4) of P, we obtain

o(f)* = {m, PF?) = (m,(PF)?)
2
= /rr(dx)é‘l(x, dA)(kx A, F2) — /n(dx)(/ Q(x,dA)(kx, A, F)) .
The expression of o (f, F )2 follows from (3.6).

4. The Boltzmann case

We work in the general setting of Section 3 with the Boltzmann selection kernel « given
by (3.3) (or simply (2.14) when E is finite). The next proposition generalizes Proposition 2.5.
It ensures that the asymptotic variance of the waste-recycling algorithm, o (f, f)?, is smaller
than that of the standard Metropolis—Hastings algorithm, o ( f )2, and that b — o (f, bf)? is
minimal at b, given by (2.7). At the same time, we show that this o (f )2 variance is at least
divided by 2 for the optimal choice S(x, A, y) = F(y) in our control variate approach.

For f such that (, f2) < oo, weset fo = f — (m, f) and

A(f) = ! 7 (dx) P (x, dy) (fo(x) + fo)* = (7, fo(fo+ Pfo))- 4.1
2

Note that the second equality in (4.1) is a consequence of the invariance of 7 with respect to P.

Proposition 4.1. We assume that X is Harris recurrent, that (m, f>) < oo, and that there
exists a solution F to the Poisson equation F — PF = f — (w, f) such that (r, F2) < Q.
We consider the Boltzmann case: the selection kernel k is given by (3.3). For B(x, A, y)
respectively equal to F(y) and f(y), we have

o(f. F)?* = Yo (f)* —varg (f) and o(f, )* =0 (f)* — A(f).

The nonnegative term A(f) is positive when vary (f) > 0.
Furthermore, if vary (f) > O then (, 2 — fPf) = S Ex[(f(Xo) — f(X1))?] is positive,
the function b +— o (f, bf)? is minimal at

(m, %) =z, )?

b*z s
(m, f2 = fPf)

4.2)

and b, > 1 when o (f, f)*> > 0.

Proof. Recall the notation from Example 3.1. We set Kf (dy) = kB(A,dy). For g and h
real-valued functions defined on E, we have

/ 7A@, dA) (K, g}k h) = / No@A)ra(dx){icy. &) tea’ h)
_ / No(dA)(ra. g) (c% . h)

:/n(dx)(fl(x,dA)g(x)(Kf»m
= (m, gPh), “4.3)
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where we have used (3.3) for the second equality. Using this equality with # = g = F in the
first term of the expression of o (f, F )2 given in (3.7), we obtain

o(f,F)* = (nm, FPF —(PF)*) = Y(n, F> = (PF)* = (F — PF)?) = $(a (f)* — varz (f)),

where we have used the Poisson equation (2.6) for the last equality.
We also obtain

/n(dx)(fl(x, dA)[VarKg bf — F) — var, s (F)]

- /n(dx)(fl(x, dA (B, (bf — F)?) — B, bf)? + 2B, bf) (B, F)
— k5, F)? — (&, F?) + (. F)*]

= (m, B> f* —2bfF —b>fPf +2fPF)

=b*(m, f*— fPf) —2b((m, f7) — (n, [)P),

where we have used (4.3) for the second equation and (2.6) for the last equality. We deduce
from (3.6) with B8 4 = bf that

o (f.bf)* —a(f)* =b*(m, f* — fPf) —2b((m, f*) — (n, [)P).

We first check that var, (f) > 0 implies that (7, f> — fPf) > 0. If, when X is distributed
according to , a.s., f(X1) = f(Xp), then, a.s., k — f(Xy) is constant and, by the ergodic
theorem, this constant is equal to (i, f). Therefore, var, (f) > 0implies positivity of (i, f 2_
fPf), which is equal to % Ex[(f(X0) — f(X1))?] by the reversibility of & with respect to P.
Hence, when var, (f) > 0, then b — o (£, bf)? is minimal for b = b, defined by (4.2).

For the choice b = 1, we obtain

—a(f, P+ () = (r, f(f+PP))=2(n, £)* = A(f) = varz (f) + (7, foPfo). (4.4)

By (4.3), (&, fo P fo) =f71(dx)(,‘2(x, dA)(Kf, fo)2 > 0 and A(f) is positive when var, () > 0.

Moreover, the difference (i, f Pf) — (m, f)? = (7, foPfo) is nonnegative thanks to (4.3)
and when it is equal to 0, then (4.3) implies that (7, foPg) = (m, g P fo) = O for each function
g on E such that (77, g2) < 4o00. In this case, by (4.4),

a(f, P =0 (/) +a(f, )’ —o(f)
= (n,(F + PF)(F — PF)) — var; (f)
= (7, (fo+2PF)fo) — varz (f)
=0.
Hence, when var, (f) > 0 and o (f, f)* > 0, then we have (7, foPfo) > 0 and b, > 1.

5. Further results in the single-proposal case

The Metropolis—Hastings algorithm corresponds to the single-proposal case, which is the
particular case of the multi-proposal algorithm of Section 3 where @ (x, -) gives full weight to
the set of subsets of £ (not assumed to be finite) containing x and at most one other element
of E. The acceptance probability is then given by p(x, y) = k(x, {x, y}, y) and the selection
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kernel Q(x, -) is the image of @ (x, -) by any measurable mapping such that the image of {x, y}
is y. See Remark 2.3 in the particular case of E finite. Equation (3.1) is then equivalent to the
following generalization of (2.1):

7(dx)Q(x,dy)p(x, y) = m(dy)Q(y, dx)p(y, x). (CRY
Moreover, the transition kernel of the Markov chain X is given by
Liyzx) P(x,dy) = 12y p(x, y) Q(x, dy)

and P(x,{x}) =1 —f p(x,2)0(x,dz).
ZFX

(5.2)

Motivated by the study of the WRMC algorithm which corresponds to ¥ = f and of the
optimal choice i = F, we first derive more convenient expressions for o ( f, ¥)? in the single-
proposal framework. We then use this new expression to construct a counterexample such that
o (f, £)* > o(f)?. Furthermore, when p(x, y)+p (v, x) is constant on Ef = E\{(x,x): x €
E}, again using the expression of o (f, )%, we compute the value of b such that o (f, bf)? is
minimal and check that o (f, f)? < o (f)? as soon as f is nonconstant.

5.1. Another expression of the asympotic variance

We recall that in the notation E,, the subscript # means that X is distributed according
tom.

Lemma 5.1. We assume that (i, f?) < oo and that there exists a solution F to the Poisson
equation (2.6) such that (i, F*) < 4o00. Let  be square integrable: (m,¥?) < oo. In the
single-proposal case we have

o (f,¥) =0 (f)> —Ex[(1 — p(Xo, X1))(F(X1) — F(X0))*]
+Ex[(1 = p(Xo, X)) (¥ (X1) — F(X1) — ¥(Xo) + F(X0))°].

Proof. In the single-proposal case, «(x, {x, y},y) = 1 — k(x, {x, y},x) = p(x,y) for
x # y. Therefore, for a real-valued function g defined on E, we have

Vare(x, vy}, (&) = p(x, (1 — p(x, () — g(x))*%.
Thus, we deduce that
/;2 7(dx)Q(x, dy) VarK(x,{x,y},v)(g)

- /E (@) Qx, dy)p(x, 1)(1 = p(x, 1) (8 () — (x>

_ /E 7 (dx) P(x, dy)(1 — p(x. 1) (8(y) — g(x))?

= E;[(1 — p(Xo, X1))(g(X1) — g(X0))?1,

where we have used (5.2) for the second equality. Substituting this formula with g = ¢ — F
and g = F into (3.6) gives the result.

Taking ¥ = F and ¢ = f in the previous lemma gives the following corollary.
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Corollary 5.1. We assume that (w, f*) < oo and that there exists a solution F to the Poisson
equation (2.6) such that (, F?) < +o0. In the single-proposal case we have
a(f, F)* =0 (f)* = =Exl(1 = p(Xo, X)) (F(X1) = F(X0))’l,
a(f. [)? =0 (f)® = =Exl(1 = p(Xo. X1))
x [(F(X1) = F(X0))* = (PF(X1) = PF(Xo)*1l.
5.2. A counterexample

We construct a counterexample such that o (f, f)? > o(f)? in the Metropolis case, thus
proving the statements concerning this case in Proposition 2.3. This counterexample is also
such that the optimal choice ¥ = F does not achieve variance reduction: o (f, F)> = o (f)>.
Let P be an irreducible transition matrix on E = {a, b, c}, with invariant probability measure
7 such that P is reversible with respect to 7,

P(a,b) >0, P(a,a) >0, and P(a,c) # P(b,c).
Let f be defined by f(x) = 1{y=¢} —P(x, c) forx € E. We have
(m, fy=m(c) = Y _m(x)P(x,c) =0.

xeE

The function F'(x) = 1{y—) solves the Poisson equation (2.6): F — PF = f — (=, f).
Let p € (P(a,b)/(P(a,a)+ P(a, b)), 1). We set

P(‘;‘)’ b) if (x, y) = (a, b).
Q(xﬂy): P(a7a)—P(a,b)<%—l> if(x,y)=(a,a)7
P(x,y) otherwise.
We choose
oy = 1P if (x, y) = (a, b),
P Y 1 otherwise.

Since p(a, b)m(a)Q(a, b) = pr(a)P(a,b)/p, we have p(x, y)m(x)Q(x,y) = w(x)P(x,y)
for all x # y € E. Equation (2.1) follows from the reversibility of & for P. Note also that
(2.2) holds with y () = min(1, u).

By construction, the matrix P satisfies (2.3). By Corollary 5.1 we have o (f, F 2 —

o(f)* = 0and
a(f. [)? = o (f)* =n(@P(a,b)(1 = p)(P(b,c) = P(a,))* > 0. (5.3)
Let us illustrate these results by simulation for the following specific choice:
6 38 21 1
1 1 4

=15 3], P=—142 0 18], P=1p

0\ 0 \6 54 0 0
p (13 105 2
and O9=—1[8 0 36
120 \12 108 0

Then o (f)? — o (f, f)*> = —0.010 115 amounts to 14% of o (f)* ~ 0.072 833 3.
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TABLE 1.

n 0"3 a\?VRMC,n Ur% - U\%»’RMC,n

1 [0.1213,0.1339] [0.1116,0.1241] [0.0091, 0.0104]
2 [0.0728,0.0779] [0.0758,0.0815] [—0.0041, —0.0025]
5 [0.0733,0.0791] [0.0798, 0.0859] [—0.0075, —0.0058]
10 [0.0718,0.0772] [0.0800, 0.0859] [—0.0094, —0.0074]
100 [0.0702,0.0751] [0.0803, 0.0858] [—0.0114, —0.0092]
1000 [0.0719,0.0769] [0.0811, 0.0867] [—0.0105, —0.0083]

Using N = 10000 simulations, in Table 1 we give estimations of the variances anz of I,(f)
and a&,RMC,n of I,(f, f), and of the difference a,% — U&,RMCM with asymptotic confidence
intervals at level 95%. The initial variable X is generated according to the reversible probability
measure 7.

5.3. Case of a constant p(x, y) + p(y, x)

Under the Boltzmann selection rule, according to Proposition 4.1, the asymptotic variance
a(f, £)? of INRMC( £y = I,(f, f) is smaller than the asymptotic variance o (f)? of I,(f),
and o (f, bf) is minimal for b = b, given by (4.2). In the single-proposal case, the Boltzmann
selection rule ensures that p(x, y) + o(y,x) = 1 on Ef = E%\ {(x,x): x € E}. It turns out
that we are still able to prove the same results as soon as p(x, y) + p(y, x) is constant on Ef
Note that var,; (f) > 0 and that the trivial case var, (f) = 0 corresponds to f constant -a.s.

Proposition 5.1. We assume that (7, f 2) < 09, that var, (f) > 0, and that there exists a
solution F to the Poisson equation (2.6) such that (w, F 2y < oco. We consider the single-
proposal case and assume that there exists a € (0, 2) such that

m(dx)Q(x,dy) a.s. on Ef, px,y)+p(y,x)=a. 5.4)

Then we have
() (m, f2 = fPf) = 3 Ex[(f(X0) — f(X1))*] s positive,
(ii)

o

o(fy ) —o(f)? = —(1 2) E-[(F(X1) — F(X0))’]

N <1 _ %) Ex[(¥(X1) — F(X1) = ¥(Xo) + F(Xo)?] (5.5)

for any real-valued function  on E such that (w, ) < oo,
(iii) the function b — o (f, bf)?* is minimal at b, given by (4.2) and b, > 1/a,

(v) o(f, )2 —o(f)? = -2 —a)A(f) < 0, where A(f) is given by (4.1).

Proof. Statement (i) follows from the proof of Proposition 4.1.
For statement (ii), note that, by the reversibility of 7, we deduce from Lemma 5.1 that

o(f,¥) —o(f)* = —Ex[(1 — p(X1, X)) (F(X1) — F(X0))*]
+ Ex[(1 — p(X1, X0)) (¥ (X1) — F(X1) — ¥ (Xo) + F(X0))?1.
This and Lemma 5.1 imply (5.5).
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For statement (iii), using (5.5) with ¢ = bf, it is straightforward to find that o (f, bf)? is
minimal when b equals

Ex[(f(XD) = fXO)FXD) = FXo)] _ (m, f(F = PF)) _ {7, f*) = (x. f) _,

E-[(f(X1) — f(X0))?] ~ (m, fr— fPf) (m, f2 — fPf)

Remarking that

(7, 3) _ (7, £2)
(., f& — foPfo)  a(m, f}) —(m. foPfo+ (@ — D) f)

x =

and using Lemma 5.2, below, we deduce that b, > 1/c.
We now prove statement (iv). Recall that fo = f — (7, f). Since

(7, folfo+ Pfo)) = 2 — &) varg (f) + (7, foPfo+ (@ — 1) f),

we deduce from Lemma 5.2 that A(f) given by (4.1) is positive. We have

FEX[(f(X1) — F(X1) — f(Xo) + F(X0))* — (F(X1) — F(X0))*]
= JEx[(fo(X1) — fo(X0)*] — Ex[(fo(X1) — fo(Xo))(F(X1) — F(Xo))]
= (. f§ — foPfo) — 2(n, fo(F — PF))
= —(m, fo(fo + Pfo)),

where we have used the facts that 7 is invariant for P and P is reversible with respect to 7 for
the second equality, and the fact that F solves (2.6) for the last equality. We conclude using
(5.5) withy = f.

Lemma 5.2. Let h be a real-valued function defined on E such that (, h*) < oo. Under
hypothesis (5.4), we have

(7w, hPh + (& — %) > 0.
Proof. Using (5.2) then (5.4), we obtain
(. hPh + (a — %) = /E : 7 (dx) Q(x, dy)p(x, Y)h(X)h(y)
+ /E n(dx)(a— /E 1y Q(x,dy>p<x,y>>h2(x>
- fE , @000 LoLE DA + (3, DR ()
+a/En(dx)Q(x,{x})h2(x).

To conclude, it is enough to check that the first term on the right-hand side is nonnegative.
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Using (5.4) and (5.1) for the first equality, we obtain
a/EEN(dX)Q(x,dy)[p(x,y)h(X)h(y) + p(y, )% (x)]
= /Egn(dx)Q(x, dy)p(y, )[p(x, MhEA(Y) + p(y, X)h*(x)]
+/EEn(dy)Q(y,dX)p(y,X)[p(x,y)h(x)h(y) + p(y, )% (x)]
= /Egn(dx)Q(x, dy)[p(y. V) + px, MhO)]

> 0.

6. Other remarks
We work in the general setting of Section 3.

6.1. About the estimator I,,(f + Py — ¥)

Motivated by Remark 2.2 on the study of 1,(f + Py — ), we compute the asymptotic
variance & (f, B)* of

n—1

1
In(f) + ; Z(/ Q(Xk’ dA)K(Xk’ A’ di)ﬁ(Xk, A? i) - ﬂ(Xk’ Ak+11 Xk+1)>
k=0
1 n—1
=)+ D EBIB(Xk, Akt Xes1) | Xil — B(Xk, Ast, Xig1)).
k=0

Following the proof of Theorem 3.1, we find that the above estimator of (r, f) is under the
hypotheses of Theorem 3.1, convergent, and asymptotically normal with asymptotic variance

G(f, B =a(f. B+ / m(dx)[varg, ) (kBx — Kk Fy) — varg .y (k Fy)],

where varg(x,.)(¢) = [ Q(x,dA)p(A)* — ([ @(x,dA)¢(A))?, kB (A) = (kx 4, Br.a), and
kFy(A) = <K)C,A7 F).
Note that the sign of & ( f, 8)> — o (f, B)* depends on g (take B, 4 = F and By 4 = —F).

6.2. Changing the selection kernel in &,

Let «” # k be such that (3.1) (or simply (2.10) if E is finite) still holds when « is replaced
by «’, and let &, () and g,,(8) be defined like &, () and g, (B8) with the chain X unchanged
but with k (X, Ag+1, X) replaced by «'(Xg, Ag+1, X) in (2.11) and (3.5). Thus, we have

1 n—1

Fa ) =~ D WKk Ayt ©) = L =)V ().

k=0 Fe Ay

Note that in general ZieAkH k' (X Aps1, DY (X) # B[ (Xis1) | X, Agr1].
In the single-proposal case, Frenkel [8] suggested that ), (f) can also be used as a control
variate. In general, for a real-valued function 8 defined on £ x £ x E, the almost-sure
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limit of g, (B) is different from zero, which means that the estimator 7, (f) + &, (8) of (, f)
is not convergent. However, when B(x, A, ) = ¥ (-), Lemma 6.1, below, ensures that the
estimator 7, (f) + &, (¥) of (z, f) is convergent. It is also easy to prove that this estimator
is asymptotically normal and compute the asymptotic variance, but we have not been able to
compare it with the asymptotic variance o (f Y2 of I, ).

Lemma 6.1. We assume that X is Harris recurrent, that (w, f>) < oo, that there exists a
solution F to the Poisson equation F — PF = f — (m, f) such that (w, F?) < oo, and that
is such that (7, y2) < oo. Under these assumptions, the estimator I,( f) + Ir () of (m, f) is
consistent: a.s., limy,_ o0 I, (f) + 3, (¥) = (7, f).

Proof. We set

ARy = / (X1, Ans AW (F) — / Q(Xn_1, dAW (X1, A, dDVW ().

Note that AR, is square integrable and that E[AR,y1 | $,] = 0, where §, is the
o-field generated by Xo and (A;, X;) for | < i < n. In particular, R = (R,, n > 0)
with R,, = ZZ: | ARy is a martingale with respect to the filtration ($,, n > 0). Note that

1 1
IoW) = = Ru+ 1)~ ;/a(xn,dmfc’(xn, A, 4DV ()
+ % / Q(Xo, dA)K/(X(), A, dxX)y (),

where y (x) = f Q(x,dA)x'(x, A, dX)¥ (X) — ¥ (x). Following the proof of Theorem 3.1, we
easily find that, a.s., lim,_, o (1/7)R,, = 0 and that, a.s.,

Jim (W) = Jim I, (y) = (7, y).

Using (3.1) satisfied by «’ instead of «, we find that (7, ) = 0. This completes the proof of
the lemma.
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