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ITERATION OF PIECEWISE LINEAR MAPS
ON AN INTERVAL

JAMES B. MCGUIRE AND COLIN J. THOMPSON

A complete analysis is given of the iterative properties of two

piece-piecewise linear maps on an interval, from the point of

view of a doubling transformation obtained by functional

composition and rescaling. We show how invariant measures may be

constructed for such maps and that parameter values where this

may be done form a dense set in a one-dimensional subset of

parameter space.

1. Introduction

The behavior of first order difference equations

where f{x) has the form shown in Figure 1 (see p. h3k), has been the

subject of much recent study [Z]. Typically when / depends on a para-

meter A that decreases the (negative) slope of / at its non-trivial

fixed point x* as X increases, one obtains a cascade of bifurcations of

x* to stable 2 -cycles at values X that approach a limit X^ < °°

exponentially fast. In fact this rate of convergence,

(1.2) \n - A ^ - 6 - " as n - - ,

was recently found by Feigenbaum [4], [5], to be universal, in the sense

Received 1 June 1981. The second author would like to thank the
Institute for Advanced Study, Princeton, New Jersey, for their kind
hospitality while he was on leave there.

433

https://doi.org/10.1017/S0004972700004950 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004950


434 James B. McGuire and Colin J. Thompson

y = x

FIGURE 1. Relevant part of the function inside the square where iterates

are confined to the interval I .

that 6 appears to depend only on the shape of / in the neighborhood of

its maximum. There are now elaborate theories of this phenomenon some

parts of which have been made rigorous by Col let, Eckmann and Langford [3]

when f(.x) near its maximum has the shape IX-XMI f o r £ sufficiently

small. In the following section we discuss some aspects of this theory and

in Section 3 we give a complete analysis of the piecewise linear case

e = 0 .

In the so called chaotic regime X > Xm one also has exotic micro-

scopic behavior but there one is also interested in macroscopic properties,

such as the existence of "time averages"
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(1.3) F = lim N~L £ F{x)

where the x , w = 1, 2, , are obtained from x by iteration of

(l.l), and whether or not there exists a probability measure p such that

(1.10 F = | F(x)du(x)

for almost all x. , where f maps a set E into itself (and u(i?) = 1 ).

This is the classic ergodic problem which has seen renewed interest in

recent years, particularly with regard to simple first order difference

equations [6]. In this case one is usually after a little more; namely,

invariant measures that are absolutely continuous with respect to Lebesgue

measure, so that the derivative V'(x) gives the density of iterates in

truly chaotic situations.

The problem of constructing invariant measures for two-piece piecewise

linear maps on an interval is discussed in Section 5- Some examples are

given and it is shown that the set of such ergodic maps is dense in a sub-

set of its parameter space.

Our results and conclusions are summarized in the final section.

2. The doubling transformation

Since our primary concern is with long sequences of iterates of (l.l)

(equations (1.2) and (1.3)) it is clear that the only relevant part of /

is that part shown in the boxed square of Figure 1. ("That is, if x. is

in the interval I , subsequent iterates will all be in I and if x is

not in I , xn will be in J for some small n .) Furthermore, by a

suitable change of variables and scale we need only consider such

restricted functions defined on the unit interval. Finally, we will find

it convenient to make one further conjugacy

(2.1) g'^'f-gix) with g(x) = l - x

which has the effect, as shown in Figure 2 (see p. U36), of turning the

boxed part of Figure 1 upside down and back-to-front.
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I +f(x) /

1 x t

\> 1 - b

FIGURE 2. Form of conjugated / . The relevant part of /(/(x)) is

contained in the small square.

The class C of functions we consider, then, is maps f , of the unit

interval into itself, such that /(0) = 1 ; / is strictly monotone

decreasing to zero at x = 1 - b and strictly monotone increasing for

X-b < x < 1 to /(l) = a .

From the point of view of iteration it is now natural to compose such

functions with themselves to form functions f (x) = /[/(x)) , also shown

in Figure 2 for the case a < x* .

The interesting feature in this case (a < x*) , as can be seen from

(2)
Figure 2, is that iterates of f (x) below (above) x* always remain

below (above) x* . This means that one can have only even cycles of f

(including the 2 bifurcating harmonics of x* ) . It also means that

(2)
f is partitioned naturally into two disjoint pieces so that one can

focus attention on either one, say the piece corresponding to 0 < x < x* .

(in fact these two pieces are conjugate to one another [7].) For the same

reasons as given above, iterates in this region are soon confined to the

(2)
part of / in the small boxed square which resembles a scaled down
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version of a function in our class C . Scaling the small square up to the

unit square in fact amounts to defining a transformation T : f •* f on C

by

(2.2) flx) =±f[f{ax)) [a = f(l)) .

This transformation can obviously be repeated, but for reasons given

above it only makes sense to do so if

(2.3) 0 < a = 7(1) < x* = J(x*) .

The interesting situation of course, is when (2.2) itself iterates to a

fixed point (of T ).

Transformations similar to (2.2) have been discussed by

Feigenbaum [4], [5], Collet, Eckmann and Lanford [3] who refer to

it as the doubling transformation, and others [2].

A discussion of our version will be given elsewhere [7]. Here we will

mainly be concerned with the piecewise linear subset of C .

3. Iteration of two-piece, piecewise linear maps

In the piecewise linear case, the class C defined in the previous

section reduces to two-piece, piecewise linear maps shown in Figure 3 (see

p. 1*38) and characterized uniquely by the two parameters a and b . We

will denote such functions by [a; b] .

The doubling transformation T : [a, b] •* [a; 5] defined in general

by (2.2), in this case is found, after some simple algebra, to be given by

a = (l-b)~Z[l-b(l-b)/a] ,

(3.1) 5 = 1 - b{l-b)/a .

Repeated application of the transformation T results in a sequence

of maps [a ; b ] defined by

with a. = a and b = b .
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It turns out that these recurrence relations can be solved exactly.

Thus if one defines

(3.3) »n=
bn/an » * Cn = 1 - b n

it is an easy matter to show that equations (3.2) become

(3'M y» = W e« ^ Vl = %
which yield the second order non-linear equation

(3-5) Vi = V«-i

with initial conditions

(3.6) aQ = 1 - bQ and ̂  = MQCQ = [±-bo)bQ/aQ .

Before proceeding, it should be stressed again that it only makes

sense to transform \a ; b ~\ according to (3.2) when the requirement

(3.7) an<^= (l-bn)/{2-bn)

is satisfied. In terms of the c 's this is equivalent to the condition

(3.8) 2

If this condition is violated when n > N the iteration defined by (3.2)

and (3-5) should cease at n = N - 1 .

Returning now to the solution of (3.5), the substitution

ct B
(3.9)

gives the same linear equation for a and 3 to solve, namely

(3.10) x ., = x + 2x 7
M+1 n n-1

with appropriate initial conditions

x0 = 1 ' xl = ° ^for an J

and

(3.11) xQ = 0 , xx = 1 (for Bn ).
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The solution of (3.10) has "eigenvalues" 6 = 2 and -1 , resulting

in

(3.12) oVj = I[2
M
+2(-l)

n] , B^ = I[2"-(-l)"]

or, from (3.9),

(3.13) cn = [ V l ]
2 /

By definition O ^ c = l - 2 > < 1 but a = [l-b )b la , while always

non-negative, may exceed or equal unity. When this happens, however, the

second functional iterate of [a ; b j has the form shown in Figure h. In

this case [a.; i> ] has a stable fixed point, or equivalently [a • fcQ]

has a stable two cycle.

FIGURE 4. The second functional iterate of [aQ; bJ when [l-bo)bQ > aQ

When a < 1 , on the other hand, c approaches zero exponentially

fast with increasing n in which case (3.8) is violated for large n and
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in the first instance when n = N say.

We are now in a position to completely classify the behavior of two-

piece piecewise linear maps [a; b] on the unit interval. This is done in

Figure 5.

1 b

FIGURE 5. Regions for the piecewise linear map [a; b] :

I. a < b(l-b) : stable two-cycle;

II. fc(l-£>) < a < (l-fc)/(2-Z>) : maps transformed to maps

in region JJJ under the doubling transformation;

III. (1-fc) / (2-Z>) < a < 1 ; a > b .

There are only three relevant regions in the unit square, in the a, b

plane. Firstly

(3.l!») Region I : a < b(X-b)

corresponds as above to c > 1 ; that is, a stable two cycle. Secondly,

we have
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(3.15) Region II : b(l-b) < a < (l-b)/{2-b) .

Equation (3.7) holds in this region tut only for N - 1 steps of the

iteration. After N steps, condition (3.8) is violated giving (a.., bj)

in the

(3.16) Region III : 1 > a > (l-b)(Z-b)~1 .

Note also from (3.2) that a > b so that points in region II are

in fact transformed under (3.2) to that part of region III satisfying

a > b .

So while the doubling transformation can toe carried through exactly

for functions [a; b] there is unfortunately no fixed point function of

the type mentioned in the previous section. The "pseudo fixed point"

(3.17) a* = lim a = 0 (for (a , b ) t II u III)

also makes little sense since in terms of parameters a and b the

limiting values corresponding to (3.17) are a* unbounded and b* = 1

which do not give a legitimate piecewise linear function.

Nevertheless the fact that functions of the type [a; b] either have

a stable two cycle or iterate under the doubling transformation to chaos in

region III has some interesting consequences concerning the existence of

invariant measures for such functions. In fact we show in the following

sections that for fixed b , the set of a for which [a; b] has an

absolutely continuous invariant measure is dense on a subset of the

interval [b(l-b), l) .

4. Reconstruction of invariant measures under doubling

Before discussing the piecewise linear case let us first consider the

general doubling transformation f •*• f defined by

(U.l) fix) =±f[f(ax)) , x € [0, 1] ,

and let us suppose that / is ergodic with atosolutely continuous measure

y , so that for any integrable g{x) on [0, l] ,
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(U.2) limJT1 £ g[xA = g(x)v'(x)dx
tf-Ko fc=i * Jo

for almost all xQ wbere

(U.3) *k+1

Define

(U.I*) yk

so that from (U.l) and (U.3),

Z2n-1 = »n ^ 32n = ^ J ' n = 1, 2,

Next define a , n = 1, 2, ... , by

and note that

and

That is

(U.7) 3 k + 1 = /(3fc) , * = 1, 2, ... .

Now choose the function g in (k.2) to be

(U.8) g(x) = G[ax) + c(f(ox))

where ff is integrable.

Prom (k.k) and (U.6) one obtains

(u-9) £

_ y

and hence, from (k.2),
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. 2N • r l
(U.10) lim (2N) £ G[zk) = ±[G{ax)+G[f(ax))]v'(x)dx .

N-**> fe=l ^ 0

By assumption

(H.ll) f(0) = 1 , f(a) = a > x* = f(x*) > a

so that f(y) on 0 < y < a is invertible. Denoting the inverse of

f/{(0, a)} by 7z and changing variables in (It. 10) one easily shows that

^ _x 2N ^ Gzm, zdz

W-K3O /C—1 0

where Sj, is obtained from (U.7) and (ff'(z) < o)

^ V'U/a) , 0 < z < a ,

0 , a < z < a ,

- ^ \i'{Hz)/a)h'{z) , a < z < l .

It follows that / is ergodic and m is the invariant measure for / .

5. The piecewise linear case

Turning now to the piecewise linear case we can, in view of the

results of Section k, and the observations of Section 3, restrict our

search for invariant measures to the region III , a > x* . Thus, if one

can find an invariant measure for an [a; b] in this region (with a > b )

we can run the transformation (3.2) backwards to find a map in region II

having an invariant measure that can be obtained by repeated application of

(U.13).

With regard to ergodicity it is known that whenever a map [a; b] has

a cycle that includes the minimum it has a piecewise constant and unique

absolutely continuous invariant measure [7]. The first problem then is to

construct maps [a; b] that iterate from the minimum back to the minimum.

This is most easily done by fixing b and iterating backwards from the

minimum on the "2>-piece". The odd iterates obtained in this way and

denoted by a , a , ... then provide a countably infinite set of maps

U12k i» Ĵ » fe = 1, 2, ... , with the desired property, as shown in Figure

6 (see p. UU5).
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FIGURE 6. Backwards iteration giving rise to maps having stable odd cycles

including the minimum.

In more detail, the "b-piece" is the function

(5.1) fix) = 1 - — • (0 5 x 5 1-b)

and by iterating backwards from the minimum we mean solving the recurrence

relation

( 5 ' 2 ) ^ a « + l ) = a « ' n = 1 > 2 > ••• i a l = 1 ~ b ) •

The solution of this recurrence is

so that
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(5.U) a2k_x = (2-b)-1(l-b)ll+(l-b)2k-1'] , k = 1, 2, . . . .

It will be noted that a . 1 > (2^fc)~
1(l-i) = x* so this set of

functions is in region III .

In order to construct the invariant measure for [a. ,: b] for
u 2p-l J

example, ve iterate backwards from the minimum 2p - 1 times and partition

the intervals O i j i l and 0 5 x 2 1 into the sets

(5 .5) Ik = [<*-2k-\' a2k-3^ ' k = 1 > 2 ' " • ' P ^ a - l H X) '

^k = K k - 2 ' a2l) ' * * 1. 2, . . . . p-1 (aQ H 0) ,

and

We then seek a piecewise linear invariant measure of the form

(5.8) v'(y)
k=i K Lk

where Xj is the characteristic function of the set I , that is,

1 if y € J ,

(5-9) Xx(2/) = '

0 if y f I .

The case p = 2 is illustrated in Figure 6.

In order for y(x) to be invariant with respect to \ci , bj we

require, [6],

(5.10) v'(y) + U'Cf^d/) ) /^) = 0 , a < y < 1 ,

and

(5.11) U'iy) + M ' ^ t e ) ) / ^ ! / ) + P'(/2(2/))^(2/) = 0 , 0 < y <

where from Figure 6 (for general p now)

(5.12) fx(y) =

and

https://doi.org/10.1017/S0004972700004950 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004950


I t e r a t i o n o f p i e c e w i s e l i n e a r maps 4 4 7

(5.13) f2(y) = e~Xy + b~x{l-b)

where

(5.11*) s = (l-fe)[fc(2-b)]-1[l+(l-fe)2p-1] .

In terms of the ou and B^ defined by (5.8), equations (5.10) and (5-ll)

become

(5.

(5,

.15)

.16)

and

(5,.17)

The

Bj, = (l-fc)otj, , k = l,

«k - s~\ • U-b)h+1

ap = s~\

solution of these equations

2,

*

is

= 1, 2, . . . . p-1 ,

^ V - k =x- 2> •••' p -
with 3, given by (5-15). It is to be noted that these equations are

internally consistent and that the (apparently arbitrary) constant 3 is

determined by the obvious normalization condition,

fl
(5.19) V'(y)dy = 1 .

J0

So by the simple device of iterating backwards from the minimum we

have constructed a countably infinite number of maps [a_ .; b] ,

p = 1, 2, ... , with explicit and unique invariant measures (5.8), (5-15)

and (5.18).

This set of maps can be further enlarged to a dense set of maps

[a; b] for x* < a < a. by essentially showing that for two maps [a1; b]

and [a"; b] , a' < a" having cycles containing the minimum there is a

third map [a; b] with a' < a < a" that also has a cycle containing the

minimum.

As a special case and as a first step in an induction argument,
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consider the maps [a ; b] and \a ; bj defined above. By construction,

the third iterate of x = 1 under the action of \a ; b] [\a ; b])

intersects the line y = a_ at point P_ (P ) as shovn in Figure 7. It

follows that the third iterate of x = 1 under the action of [a; b] for

a < a < a intersects y = a at P which is in the interior of the

segment P-J1-, &ni s u c h t h a t t h e line aP intersects y = 0 at the point

<2 , also shown in Figure 7. Now since the distance from the origin to Q

is large and negative when a is close to a (+) and approaches the point

(l, 0) as a approaches a , it follows by continuity that there is an

<Zg € [a , a ) such that $ coincides with the minimum M at x = 1 - b .

It is then obvious that the sixth iterate of Qẑ -j b] from a;. = 1 is at

FIGURE 7. The construction of a dense set of a values for which [a; b]

has an absolutely continuous invariant measure.
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the minimum and hence that the minimum is part of an eight cycle.

In order to complete the proof of denseness we argue inductively.

That is, suppose we have maps {f-u} ^3 a n d \?l> Ĵ w -̂*b aj, K aj that

iterate a;. = 1 to the minimum in k and I steps respectively, and that

there exist non-negative integers n and m such that

(5.20) n(l+2) = m(k+2) + k = N .

(The above special case corresponds to k = 3, 1 = 1, m = 0, n = 1 •) This

implies that under the action of [a,; b] [[Pii b]) the Nth iterate

from x = 1 is at the minimum and intersects y = a, at P, (at unity

and intersects the line y = a, at x = 1 ). Choosing an a € (a,, aS)

and iterating N times from x= 1 , the continuity argument above

establishes the existence of an Ea#+fe» ^0 (iterating x= 1 to the

minimum in N + k steps] with

(5.21) ak <

Denseness will then be established once we have shown that given

k, I, n, m and N defined by (5.20), there exists n' and m' and n"

and m" such that

(5.22) n'(l+2) = m'(N+k+2) + N + k = N'

and

(5.23) n"(N+k+2) = m"(k+2) + k = N" .

Since (5-22) ((5.23)) is equation (5-20) with k replaced by N + k (I

replaced by N + k ) the above argument establishes the existence of

{ * ] a n d Eaw"+fe' k] having cycles containing the minimum and

aN»*k

satisfying

Repetition of this argument establishes denseness, and our proof is

completed by noting that (5-22) and (5.23) follow from (5.20) by choosing

(5.25) n' = «(w-2)(Z+3) + 2 , m' = (1+3)(ml) - l

and
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(5.26) n" = k + 3 , m" = (m+2)fe + 3(^+1) .

6. Discussion

In this paper we have presented a different version of the so called

doubling transformation of maps on an interval [2] and have discussed in

detail the case of two piece-piecewise linear maps. This represents an

extreme case (e = 0) of functions having the form \x - xffl| in the

neighborhood of their (single) extremum. For small e > 0 , some aspects

of the doubling-type transformation, and its relevance to Feigenbaum

universality, have been made rigorous by Collet, Eckmann and Lanford [3].

When e = 0 , however, there is no universality as such, since transitions

or bifurcations in this case, take place solely from stable fixed points,

to stable two-cycles and then to chaos. In other words, there is no

cascade of 2 -cycle harmonics prior to chaos. A detailed analysis of this

behavior for the piecewise linear case is given from the doubling trans-

formation point of view in Section 3 of this paper.

Another important aspect in the study of maps on an interval is the

ergodic problem, or more precisely the existence of invariant measures

which are absolutely continuous with respect to Lebesgue measure. We have

examined this problem in detail for the piecewise linear case and have

shown how such invariant measures may be constructed. We have also shown

that parameter values where this may be done form a dense set in a one-

dimensional subset of parameter values describing such functions. It is

quite likely, we feel, that the set of parameter values where there exists

an invariant measure, in fact has positive (Lebesgue) measure.
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