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AN UPPER BOUND FOR Ax FOR T(g) AND T0(q)

by C. J. MOZZOCHI

(Received 21st December 1988)

Under the assumption of the Selberg conjecture I establish by means of the Selberg trace formula the
following:

Theorem. Let F denote F(<j) or Va(q), q square-free. Let Aq denote the Laplace operator on L2(T\H), and let
£, denote its discrete spectrum. Then there exists an absolute positive constant A such that for q^A
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1. Introduction

In this paper we concentrate on obtaining an upper bound for At, the smallest
positive eigenvalue of the noneuclidean Laplacian for F(q) or ro(q) for q square-free.

The Riemannian geometry of the Laplace operator is concerned with (among other
problems) the closed eigenvalue problem, the Neumann eigenvalue problem, the
Dirichlet eigenvalue problem, and the mixed eigenvalue problem. These problems are
discussed in depth in [3]. For a report on Cheeger's lower bound for the first eigenvalue
?n of the Laplacian on a compact Riemannian manifold, see [1]. For a discussion of
lowest-eigenvalue inequalities see [2], and for a general discussion of the Laplace
operator on compact Riemann surfaces, see [6]. Interesting insights on estimates for lt

of the Laplace operator of a compact, oriented, connected n-manifold isometrically
immersed in Rn+P are discussed in [15], and for geometric bounds on the low
eigenvalues of a compact surface, see [17].

The central consideration for the groups that we explore is the Selberg conjecture
[18] that states that for any congruence group we have A ^ s i.e. At lies on the
continuous spectrum. The conjecture has been proved for groups of small level by H.
Maass, W. Roelcke, and M.-F. Vigneras, with the record for ro(q) being q^ 17 due to
M. N. Huxley (see [8] and [9]). The first step toward a proof of this conjecture is due
to Selberg himself [18], who was able to show unconditionally that At ̂ ^ .
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Recently, H. Iwaniec [10] has made remarkable progress by showing that for almost
all p there is no spectrum below 44/225 of the Laplace-Beltrami operator acting on
automorphic functions with respect to the group T0(p) and with a multiplier system
given by the quadratic character (mod p).

B. Randol [14] constructed groups for which the first positive eigenvalue is as small
as one desires (this was known to Selberg), and J.-M. Deshouillers and H. Iwaniec
[unpublished] have established that for V(q) and T0(q), q square-free, as q tends to
infinity, one may find eigenvalues arbitrarily close to 1/4.

Specifically, in this paper we consider r = T(q) and T0(q) where q is square-free.
Let

be the eigenvalues of the hyperbolic Laplacian associated with F. We set

lj = Sj(l-Sj) and s^j + itf, so A,-= £ + *?.

Therefore, the t/s must be purely real or purely imaginary in order for the 1/s to be real
and positive. Clearly, if the Selberg conjecture is false, l i < i . Hence it is assumed that
the Selberg conjecture is true; so the t/s must be real.

We establish the following:

Theorem. Let T denote F(q) or F0(q), q square-free. Let Aq denote the Laplace
operator on L2(T\H), and let Z? denote its discrete spectrum. Then there exists an absolute
positive constant A such that for q^A

Clearly, since an eigenvalue for T0(q) is also one for T(q), it is sufficient to establish
the theorem for f = T0(q).

2. An application of the trace formula

The proof is based on the Selberg trace formula for T = V0(q).

JS1

say where C is the contribution of the identity and E, H, and P respectively stand for
the contribution of the conjugacy classes of the elliptic, hyperbolic, and parabolic
elements of T.

We apply the trace formula with the test function defined

https://doi.org/10.1017/S0013091500018162 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018162


AN UPPER BOUND FOR Xv FOR F(q) AND ro(q) 243

cos2(fcLt)sin6(cLt)
()~(l-(2kL/n)2t2)L*t*'

where L=L(q) is real-valued and goes to infinity with q, and the parameters c,k will be
chosen later in Section 3 subject to 0<c^k.

Observe that h(t) satisfies the conditions for the trace formula, in particular h is even.
Further, we have

^O if t'k. or t is purely imaginary.
Z / C /

and

Since h(i/2)<0, if one could show F(q)>0 for q^A, then tl<L(n/2kL)2

3. A lower bound for C

_ vol (F/ t f ) ? t ,. .....
C = —v ' ' \ t tanh(nt)h(t) dt.

Choose q^qx so that (\/L(q))^. Then, using the inequality

x - ^ x 3 ^ t

it is easy to see that

j CO QO J. ni£.K

— J ti&nh(nt)h{t)dt^\ | t2h{t)dt~— |
oo 2 <t/2lcL

By a simple change of variable we have

00

1
0

where

/(C, k) = | j—2 2 ^*-

It is easy to see that
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n

where

00 r,nt,2

0

and

cos2((7r/2)Q(sin(7i/2)tg)6

1 —t

Clearly, Ii(6)>0 for all 0>O, and it is very easy to see that /2(0) = O if 0=1; so that if
we choose c = k, then I(c, k) > 0. However, for reasons which will become clear later we
also want to choose c and k so that 6 is as small as possible.

Consider

(2/TT)|/2(0)|
1 ; / (0 ) '

We want to choose c and k so that 6 is as small as possible and

0>F(9).

The following two lemmas, together with the proofs presented here, were kindly
communicated to me by Richard Bumby.

Lemma 3.1.

(1) ForO<0^ we have 1^6)=^-.

(2) For\<,9<L{ we have Iy{9)=-
c

(3) For ̂ 9^ 1 wehaveIl(0)=^(j-6\.

(4) For 1 ^9 we have 7,(0)=^-( 6 - | ).
32 \ 61
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Proof. This follows immediately from the identities cos2x=3(l+cos2x); sin6x =
^{10—15cos2x + 6cos4x-cos6x); cosxcosy=|{cos(x + y) + cos(x —y)Y, and cos2x =
(l-2sin2x), and (9, page 446 in [4]).

Lemma 3.2.

(1) For O<0^ i we have

l2(9)=~jk{

(2) For j g 0 ^ ^ we have

= - ^(15sin(7r0)-6sin(27r0)).

(3) F o r i g 0 ^ 1 we have

(4) For 1 g 0 we have

/2(0) = O.

The result follows by straightforward calculation from the identities:

sin6 x - sin6 y=jj( — 15(cos 2x—cos 2y) + 6(cos 4x — cos 4y)—(cos 6x—cos 6y)),

x + y\ . (x—y\
——*-I sin I —~ ; and

sin2 x sin y = |(2 sin y — sin(2x + y) — sin(y - 2x)),

and (3.721(1), page 405 in [4]).
For

0^0.821897500

we have

0>F(0).

In particular
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0.822 > F(0.822) = 0.821677012.

Choose Ci>0, /q>0 so that (cjkl) = 0 = 0.822. Hence

2 it/2*,i

Clearly,

so that

so that

4. The parabolic contribution

Lemma 4.1. For r = ro(q), q square-free we have

P«ql'2L.

Proof. By (4.6), page 538 in [5], we have

/

where

g(6) = 2n [Fourier transform of h evaluated at (— 0)];

so that

P\I P

5. The elliptic contribution

Lemma 5.1. For F = ro(q) we have E«q1/2L.

Proof. We have

https://doi.org/10.1017/S0013091500018162 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018162


AN UPPER BOUND FOR A, FOR T(q) AND ro(q) 247

m - 1 i ao ^-Inkfm

where m = ord{i?} = 2 or 3. The number of elliptic classes is bounded by

2 F W 1 + !/p)<«?1/2 (cf- C19])' a n d t h e r e s u l t follows.

6. The hyperbolic contribution

Let J({q, ri) denote the multiplicity of distinct primitive hyperbolic classes in F(q) or
ro(q) with trace n ^ 3, and set

Denote by ® the set of positive ring discriminants, that is, {d>O\d = O, I(mod4), d not
a square}. To each such d let h(d) denote the number of inequivalent primitive binary
quadratic forms of discriminant d, and let (xd, yd) be the fundamental solution of the
Pellian equation

x
2-dy2=4.

Let

Lemma 6.1. The norms, A(n), of the conjugacy classes with trace n of primitive
hyperbolic transformations of To(\) are E2 where deS>, with multiplicity h{d). Or put
another way, the lengths of the closed geodesies on H/T are the numbers 21oged with
multiplicity h(d).

Proof. See [16] for a recent proof.

Therefore, Jt{ 1, n) can be viewed either as a class number or as the number of closed
geodesies with a given length. See Section 2 in [11] for a discussion of this fact, giving
more insight.

The following lemma is established in [7].

Lemma 6.2. For T = ro(q) we have J?(q,n)«qen2(\nn)s.

We now compute the contribution of the hyperbolic classes for ro(q).
Clearly, we have n^A(n)^n2, and by Lemma 6.2 we obtain
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Hm ]T ,
x-* oo n = 3

We will show

\g(k\nA(n))\^B(n,q)

with B(n, q) to be specified later. From this we deduce that

Since 3 ^ A(n), it follows that

But

Hm t n2(\nn)9B(n,p)
x->oo n=3

Hence

H«qe Hm £ i
*-oo n=3

It is immediate by Section 28 in [20] that g(a) = 0 for each a such that

|z/i(z)e""z|->0 as z->oo and Imz^O.

Using the estimates

|cosz|^coshy£cy for y^O

|sinz|^coshy^e> for

we obtain

so that

g(oc) = 0 if (2/c1L+6c1L)<a.
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Since n^3 , O = k\nA(n)^k\nn'Z 1; so g(0) = O, if \nn>(2kl+6ci)L. Hence
g(0) = 0, if n>eak' + 6ct)L. Consequently, \g(0)\^C6L-1, if 1 ^n^ei2k' + 6ci)L. Hence

0 if n>e(2k%+6ci)L

B(n,q)='
if l ^

Hence, for F = F0(g) it is easy to see

H«qcl3e2{2kl+6c')L.

Let

Then we have

~I
for q^/4, and the proof is completed.
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