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1. Introduction. Much work has been done in the investigation of the 
properties of solutions of linear elliptic systems of partial differential equations. 
Among these systems, the class of Beltrami systems has been studied for many 
years and has been shown to be of fundamental importance. Another class, 
perhaps of equal importance, is the class defined by Bers (1), which the author 
has taken the liberty of calling Bers systems. Solutions of these systems will 
be called Beltrami and Bers functions respectively. 

Gergen and Dressel (5), as well as Bers himself, have shown that the Bers 
and Beltrami systems are in a sense the canonical forms of systems of linear 
elliptic equations. The purpose of this paper is to investigate further the 
topological and algebraic properties of collections of Bers and Beltrami 
functions and to show explicitly the connections between linear elliptic systems 
8 of type (2.1) having C1 coefficients and uniquely determined Bers and 
Beltrami systems. Most of this work was accomplished by developing and 
exploiting a matrix representation for the Jacobian matrices of an elliptic 
system 2 of type (2.1). 

In 1954, Titus and McLaughlin (9) proved that if 23 is a vector space of 
real 2 X 2 matrices with non-negative determinants and having the rank 
property, then 33 is either one-dimensional and isomorphic to the real numbers 
or two-dimensional and equivalent to the complex numbers. This result 
suggested the possibility of a matrix representation of the Jacobian matrices 
of solutions to an elliptic system of type (2.1). In the same year, Golomb (6) 
showed that if SB is a real linear vector space of pseudo-regular functions in a 
domain 35 which contains two functions / = u + iv and g = p + iq such 
that vx qy — vy qx 9e 0 in 35, then SB contains only solutions of a uniquely 
determined elliptic system of first-order partial differential equations. In 
Section 3, it is shown that if S3 consists of the Jacobian matrices of solutions to 
such a system defined in a domain 3) in the complex plane, then there exists 
a uniquely determined matrix representation of S3. Conversely, Theorem 3.1 
shows that if S3 is a vector space over the real numbers of Jacobian matrices 
with non-negative determinants and having the rank property, and if 33 
contains two linearly independent elements, then 33 consists of Jacobian 
matrices of solutions to a uniquely determined elliptic system of type (2.1). 
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Solutions of a system 8 of type (2.1) are, of course, light and interior. While 
such functions do not in general have derivatives, Theorem 3.2 shows that if 
the coefficients of 8 are C1, one can associate with 8 a uniquely determined 
system 8* of type (3.18) such that if / is a solution of 8, there corresponds 
a unique solution g of 8* whose zeros are the critical points of/. Since Bers (1) 
has shown that the zeros of a solution of 8* are isolated and have no interior 
limit point (in the domain 3) of definition), it follows that the solutions of 8 
are pseudo-regular functions. In view of Bers' result, one would like to conclude 
that solutions of a system of type (3.18) are light. Unfortunately, one can find 
functions mapping © into the real line which are solutions of a system 8* of 
type (3.18). 

In one of the classic theorems in topological analysis, Stôilow (8) proved that 
if / is light and interior in 3), there exists a homeomorphism h defined in 3) 
and a function g analytic in A(3)) such t h a t / = g o h. In general, h depends 
on / and one is led to wonder what conditions must be placed on two linearly 
independent functions / i and / 2 defined in 2) to ensure that there exist two 
functions gi and g2 analytic in A(3)), such that ft = gt o h for i = 1, 2. A 
partial answer to this question was given in 1938 by Kakutani (7), who 
showed that a necessary and sufficient condition for a collection of pseudo-
regular functions to form a ring is that they all be analytic functions of a 
fixed pseudo-regular function. In an earlier paper (3), the author showed that 
such collections are algebras of solutions of a uniquely determined Beltrami 
system. One is led to suspect that if these conditions are relaxed somewhat, 
further results might be obtained. In Theorem 4.3, it is shown that if SB is the 
set of solutions of an elliptic system 8 of type (2.1) defined in 3), one can find 
a homeomorphic Beltrami function h defined in 3) and a Bers system 8i 
defined in h(3)) such that if/ is an element of SB, there exists a Bers function g 
which is a solution of 8i such t h a t / = g o h. Conversely, Theorem 4.4 shows 
that if h is a homeomorphic Bers function defined in 3), there exists a uniquely 
determined Beltrami system 8i defined in h (3)) such that if/ is analytic in 
35, there exists a Beltrami function g, a solution of 8i, such that / = g o h. 
Furthermore, every such composition mapping is analytic in SD. This latter 
theorem yields an easy method of extending many theorems about analytic 
functions to theorems about Beltrami functions. That this is possible is, of 
course, no surprise, since it is well known that solutions of a Beltrami system 8 
are analytic with respect to a Riemannian metric determined by the coefficients 
of 8. 

In an earlier paper (3), it was shown that if 8 is a Bers system with C1 

coefficients which has a harmonic mapping as a solution, then all solutions 
of 8 are harmonic mappings and the coefficients of 8 are harmonic conjugates. 
In Theorem 4.5, it is shown that if 8 is an elliptic system of type (2.1) with 
Cl coefficients which has only harmonic mappings as solutions, then 8 is a 
Bers system. 

The author would like to express his gratitude to C. J. Titus, to whom he is 
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BERS AND BELTRAMI SYSTEMS 629 

indebted for the original idea of the matrix representation and for the state
ment and method of proof of Theorem 4.2. 

2. Preliminary definitions. All matrices considered will be 2 X 2 matrices 
whose entries are Holder-continuous real-valued functions defined in a domain 
3) in the plane. If J is a matrix, we shall denote the determinant of / by | / | . 
If / is a C1 function defined in 3), we shall denote the Jacobian matrix of/ by 

DEFINITION 2.1. A matrix J will be said to have the rank property if \J\ = 0 
implies that the rank of J is zero. 

DEFINITION 2.2. A function f will be said to be pseudo-regular in 35 if (i) / £ C1, 
(ii) \J(f)\ > 0, (iii) J(f) has the rank property, and (iv) the set of critical points 
in 35 has no interior limit point. 

Now let 21 be the set of all matrices with non-negative determinants, 33~ the 
set of all elements of 21 that have the rank property, 93 the set of all Jacobian 
matrices in 33~, Ê the set of all elements of 21 of the form 

and © the set of all elements of 21 of the form 

" ^_i , where a > 0 in 3). 

Let a(x, y), b(x, y), c(x, y)y and d(x,y) be Holder-continuous real-valued 
functions defined in 3). A system 2 of first-order partial differential equations 

(2.1) Ux =aVx + bVy, -Uy = cVx + dVy 

is said to be elliptic if 4fc — {a + d)2 > 0, and uniformly elliptic if a, b, c, and 
d Sire uniformly bounded and there exists a positive number e such that 
4:bc — (a + d)2 > e. We shall always assume that ? is normalized so that 
b > 0. Two special cases of elliptic systems which are of particular interest are 
Bers systems 

(2.2) Ux = aVx + bVyi -Uy = bVx - aVy 

and Beltrami systems 

(2.3) Ux =aVx + bVy, -Uy = cVx + aVy, 

where be — a2 = 1. 
A function f = u + iv will be said to be a solution of (2.1) if / G C1 and 

if the pair (u, v) satisfies (2.1). Solutions of (2.2) will be called Bers functions 
(Bers calls them "pseudo-analytic functions of the second kind") and solutions 
of (2.3) will be called Beltrami functions. If 93 is the set of Jacobian matrices 
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of solutions to an elliptic system ? of type (2.1), it is clear that 35 forms a real 
linear vector space. Using Golomb's results (6), it is easy to show that 35 is a 
maximal real linear vector space in 35. 

3. Matrix representation. In this section, we establish the matrix repre
sentation of the set 35 of Jacobian matrices of solutions to an elliptic system 8 
of type (2.1). This is accomplished by showing that one can find matrices 5 
and T in © depending only on the coefficients of 8, such that 33~ = 5 ST is 
a maximal linear vector space in 33~ and 35 C 35~. Further, if 35~ is a real linear 
vector space in 33~ (containing two linearly independent elements), then 
33 = 35~ C\ 3} consists of solutions to a uniquely determined elliptic system 
8. We shall need several lemmas. Lemma 3.1 is classical but the details of 
factorization are needed here. 

LEMMA 3.1. Let P be a matrix with \P\ > 0. Then there exist unique matrices 
S and T in © and C\ and C2 in S such that P = SCi = C{T. 

Proof. It will suffice to prove the existence and uniqueness of 5 and C\. 
It will be evident that the same kind of argument would prove the existence 
and uniqueness of T and C2. Let 

P = [ f H , S=\l " J , andCl=rX "J 
Lp2i P22J LO a J L/x A 

where 5 and C\ are to be determined. Set t ing S~lP — Ci, we obtain 

(3.1) pu or1 — P21 (3 = \ = P22CX 

and 

(3.2) p12 or1 — P22P = — M = —p2\CL, 

or, multiplying by a and rearranging terms, 

(3.3) P22 a2 + P21 a(3 : = Pu, 

and 

(3.4) p21 a
2 - P22 a/3 = — Pl2. 

Solving for a2, we obtain 

/ Q rN 2 £11^22 — £12^21 
yo.o) a — 2 , , 2 — 

p22 "h p21 

\p\ / Q rN 2 £11^22 — £12^21 
yo.o) a — 2 , , 2 — 

p22 "h p21 ^22 + p21 

Since \P\ > 0, at least one of the terms in the denominator is not zero. We 
assume that P22 5* 0. Then, 

l A / \P\ a P2l0i + P12(X A A A 
« = + 4 / . 2 , , 2 , P = 7 , X = £22 a, and /* = £21 a. 

r p22 + p21 p22 
To show uniqueness, suppose that for some Si in © and D in 6, 
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Sa-f""1 ft_tl and Z) = \Xl " J 1 ] ; 
LU « i J L M I A I J 

then we have P = SCi = SiD so that Si-1SCi = D. Proceeding as in the proof 
of the existence of 5 and Ci, we obtain the equations 

(3.6) [« _-a] x + [ ! _ &"L _ o 
Lai a J Lofi a J 

and 

(3.7) _ r i_^ i x + U-^] M =o. 
L«i a J Lai « J 

A necessary condition for the existence of non-trivial solutions for X and JJL is 

(3.8) [̂  - ^ j + U - &T = 0. 
L a i a: J L<*i ce J 

But (3.8) holds if and only if a = a± and (3 = /3i. 
The following lemmas are due to J. E. McLaughlin and C. J. Titus. Since 

Lemma 3.3 has not been published previously, its proof is included here. 

LEMMA 3.2. Let 33~ be a vector space in 33~ which contains two linearly indepen
dent elements. Then there exists a pair of matrices, P and Q, such that \PQ\ > 0 
and%r =P£<2;c f (9). 

LEMMA 3.3. Let 33~ be as in Lemma 2.2. Then there exists a unique pair, 
S and P, of elements of © such that 

SB~ = S&T. 

Proof. Consider the matrices P and Q in Lemma 3.2. We define 

( P if \P\ > 0, _ / Q if \P\ > 0, 
' " I — P i f | P | < 0 , ^ ~ \ - Q i f | P | < 0 . 

Then, by Lemma 3.1, there exist for Pi and Qi unique factorizations P± = SCi, 
Qi = C2 T where d and C2 are in S, and 5 and 7" are in ©. Since S is a ring, 
we have 25~ = P(5<2 = SCi SC2 P = S&T. To show uniqueness, we suppose 
there exist matrices Si, S2, Pi, and P2 in © such that Si ©Pi = S2 SP2 . 
Then, letting S0 = Si_1S2 and P0 = P2 P i - 1 , S = S0 SPo. Therefore, for 
Ci in Ê, there exists C2 in E such that Ci = S0 C2 Po- But d(i = 1,2) may 
be expressed in the form Ct = Xt I + HiK, where I is the identity matrix 
and 

K - [ ? - £ ] • 
Since we may pick C\ so that either Xi = 0 or /xx = 0, it follows that S0 Po 
and So KT0 are in S; hence 

(S0 To) (So i^Po)"1 = S0 KSo-'e g and (S0 Po)"1 (S0 i£P0) = TçTlKT»e (S. 
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I t will be sufficient to show t h a t 5 0 mus t be the ident i ty matr ix . T h e same 
a rgument can then be applied to show t h a t T0 mus t also be the ident i ty 
matr ix . Let S0 KSo"1 = D, where 

Then 

&-[j f-,] and ! , - £ "J]. 

From fior1 = — /for1 and a - 2 = a2 + jo2, it follows t h a t 0 = 0 and a = 1 so 

t h a t So = / . 

T H E O R E M 3.1. Let %$ be a vector space of elements of 23 such that 23 contains 
two everywhere linearly independent elements. Then 23 consists of the Jacobian 
matrices of solutions to an elliptic system 8 of type (2.1). 

Proof. T h e proof will consist of the construction of the desired elliptic 
system. By Lemma 3.3, there exist matrices 5 and T in © such t h a t 23 C S (ET. 
Let 

Then there exists C in S, 

such t h a t 

ux uy~\ = f a jS 1 f X - M ! f 7 5 "I 
.»* wj Lo a_1J U XJ LO T""^ 

ya\ + Tftu (aô + ^ ) x + (fit - - j , 

2ë 
ay a 

so t h a t 

(3.9) 

(3.10) 

(3.11) 

and 

(3.12) 

Ux = yak + 7/3yu, 

î>z = 
7M 

»y = — + 
«7 

5/x 
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Solving (3.11) and (3.12) for X and /*, we obtain 

(3.13) X = — 8avx + yavy 

and 

(3.14) M = (a/y)vx. 

Substituting into (3.9) and (3.10), we have 

(3.15) ux = a(/3 — ayb)vx + a2y\, 

(3.16) -uv = a2(<52 + 1 / V K ~ <*(fi + ayô)vy. 

If we set 

a = a(j$ — ayô), b = a2y2, c = a2(b2 + 7~2), and d = —a(P + ayô), 

then Uc - (a + d)2 = 4a4 > 0. 
Note that a, b, c, and d depend only on the elements of S and T. Further, 

if T = I, then 7 = 1 and ô = 0, so that in this case, b = c and a = —d, 
and the system of partial differential equations thus determined is a Bers 
system. On the other hand, if S = / , then a = 1 and ft = 0, and in this case, 
a = d and be — a2 = 1 so that the system of equations becomes a Beltrami 
system. Conversely, if 33 is the set of Jacobian matrices of solutions of (2.1), 
a simple computation yields the elements of 5 and T as functions of the coeffi
cients of the system of partial differential equations. If a, b, c, and d are the 
coefficients of an elliptic system 2 of type (2.1) and a, #, 7, and ô are the 
corresponding elements of S and T, it is obvious that the continuity and 
differentiability properties possessed by all the functions a, b, c, and d are also 
possessed by a, /?, 7, and ô. It is easy to show that the converse also holds. 
Finally, any element of © determines two distinct elliptic systems, one 
Beltrami and one Bers. 

Titus and McLaughlin (9) have shown that 6 is a maximal real linear 
vector space in 33~ and that if SB is any real linear vector space in 33~, then SB 
is either one-dimensional and equivalent to the field of real numbers or two-
dimensional and isomorphic to 6. It follows that if 33~ = S (HT, for 5 and T 
in ©, then S3~ is maximal in S3~ and S3 = 33~ Pi 33 is maximal in 33. 

For 5 and T determined by an elliptic system 2 of type (2.1), it is clear that 
there exist elements C in 6 such that SCT is not a Jacobian matrix and there
fore does not correspond to a solution of S. If 

' - [ : : ] - [ ; f-JD " Ï ] [ Î ^J - ^ . 
a sufficient condition for J to be a Jacobian matrix is that 

dui/dy = du2/dx and dvi/dy = dv2/dx. 

We use this to impose conditions on C. An easy computation shows that if 
the pair (X, /z) satisfy the system 
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6(yaX + yfo)/dy = d[{ad + /Sy"1)A + (j8« - ay^^/dx, 

^ ' d (ya-1 fi)/dy = dla^y-'X + ba~ly]/dx, 

then J = SCT is a Jacobian matrix. For the sake of simplicity, we shall assume 
that the elements of 5* and 7", hence the coefficients of the corresponding 
elliptic system 8, have partial derivatives (at least in the L2 sense). We are 
led to the following theorem. 

THEOREM 3.2. Let S and T be elements of ©, 

*-[;;4 -4 :4 
and let 2 be the corresponding elliptic system of type (2.1). Then there exists a 
corresponding elliptic system 2* of the form 

X* = -y^x + y2fiy + A\ + Bp, 
( } - X , = (ô2 + y~2)»x ~ yô»« + CX + Dfji, 

where A, B, C, and D are rational functions of a, /3, y, 3, and their partial deriva
tives, such that if f is a solution of 2, there exists a unique solution f* of 2* such 
that the zeros off* are precisely the critical points off. Conversely, iff* is a solution 
°f 2*,f* determines a solution f of 2 uniquely (up to an additive constant). 

Proof. 8* is obtained by simply carrying out the indicated differentiations 
in eq. (3.17) and solving for Xx and Xy. The computations are straightforward 
but very tedious and will be omitted. One obtains 

A = orlax + y^yx, 

B = y y y — a~ly2ay — yôx + y8a~lax, 

C = a~l0Ly + y~^y — 28y~1a~1ax — y~18x — a~~1y~2/3x — 8y~2yx — (3y~2a~2ax, 

D = crl$y — oTly~18f3x + y-2orlax — y-3ya; — 8yy + 8yorlay 

+ 88 x — 82a~lax + /3a~1ay — /38y~la~2ax. 

If / = u + iv and /* = X + ifi are corresponding solutions of 2 and 2* 
respectively, it is obvious that the zeros of /* are precisely the critical points 
of/. 

Elliptic systems of type (3.18) have been studied by Bers and Nirenberg (2). 
In particular, they have shown that if /* is a solution of a uniformly elliptic 
system 2* of type (3.18), f* not identically zero, then the zeros of /* are 
isolated and the index of/* at each zero is positive. Furthermore,/* is completely 
determined by its values on any infinite set of points having a limit point in ST. 

Note that if 2 is a Beltrami system with constant coefficients, 2 = 8*. 
If 2 is a Bers system, 8* is of the form 

(3.19) X, = ny + AX + Bn, -Xy = px+ CX + Du, 
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and if the coefficients of the Bers system are constants , 8* is jus t the C a u c h y -
Riemann equations. Systems of the form (3.19) were studied by Carleman (4). 

4. S o m e c o n s e q u e n c e s . From the remarks of the preceding section, it 
follows easily t h a t if 8 is an elliptic system of type (2.1) such t h a t the correspond
ing system 8* has uniformly bounded coefficients on every compact subset of 3), 
solutions of 8 are pseudo-regular. In an earlier paper (3), i t was shown t h a t 
if SB is a collection of pseudo-regular functions containing two linearly inde
pendent functions such t h a t for / and g in SB, £/ + rjg is in SB for arb i t rary 
complex numbers £ and 77, then SB consists of solutions to some Beltrami 
system. One cannot expect so strong a result in the more general systems of 
type (3.18). T h e condition t h a t the set SB* of solutions to an elliptic system 8* 
of type (3.18) form a vector space over the complex numbers m a y be shown 
to be equivalent to requiring t ha t a and ft satisfy a system of two non-linear 
first-order equations. We can, however, prove a weaker theorem. 

T H E O R E M 4 .1 . Let S and T be elements of © and let 8* be the corresponding 

elliptic system of type (3.18). If S is a constant matrix, the solutions of 8* form a 
vector space over the complex numbers. 

Proof. We need only show t h a t if 5 is a constant matr ix and A + i\x is a 
solution of 8*, then — /JL + i\ = i(X + in) is also a solution. Let S be a constant 
matr ix . Then 8* is of the form 

X* = —yàVx + TV» + 7~17z X + 7(7» - àx)n, 

— \y = (<52 + 7~2)MX — yBfiy + 7 ~ 2 ( 7 7 Î / — jSx — àyx)\ 

- (7~37* + àyy - ôôx)fjL. 

Solving for fxx and \xy in (4.1), we obtain 

—/** = ~y^x + y2\v - 7 - 17x M + 7(7* - àx)\, 

Vv = 0$2 + 7" 2 ) \ r - yà\„ — 7~2(772/ - y8x - hx)» 

- ( 7 ~ 3 7 x + ôyy - ôôx)\. 

Therefore, — M + i\ is a solution of 8*. 

Iff = u + ivis3i solution of an elliptic system of type (2.1), it is well known 
t h a t / is quasi-conformal a.e. and the dilatat ion D of / is given by 

F(f\ =
 M* + uv + v*2 + vv = 11 ̂ 0011 _ n . 1 

*U) uxvv-uyvx \J{f)\ V^D' 

In general, E(f) depends on / and cannot be expressed solely as a function of 
the coefficients of 8. A simple computat ion, however, shows t h a t if 8 is either 
a Bers system or a Beltrami system, E(f) depends only on the coefficients of 
8. T h e following theorem shows t h a t these systems are the only ones with this 
proper ty . 

T H E O R E M 4.2. Let SB be the set of solutions of an elliptic system 8 of type (2.1). 
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23 the set of Jacobian matrices of elements of SB, and let S and T be the elements 
of © such that 93 C S&T. For f £ SB, E(f) depends only on the coefficients of 8 
if and only if at least one of the matrices S and T is the identity matrix. 

Proof. Let / ( / ) = SCT, wl iere 

5 = Lo * 1 
- 1 l 

a J 

C = x J ' and T = 

Then 

7771 n = \\SCT\\ pern 

"1 

.0 T""1-

7 ' J . 

\SCT\ X2 + M 

and 

\\SCT\\ = ( 7 V + a2b2 + 2a0ôy~l + /32
7"2 + oT2y-2)\2 

+ 2 (a/372 + a/M2 - a2b2y~l + /32ÔT-1 ~ a/?7"2 + ôa 'V 1 )^ /* 
+ ( 0 V + 02<$2 - 2a/3Ô7-1 + « V 2 + 72oT2 + ô2or2)/x2. 

In order for £ ( / ) to depend only on 5 and T, the coefficient of the X/x term 
must vanish and the coefficient of the X2 term must equal that of the y2 term. 
These conditions are equivalent to the equations 

(4.3) a2j3(yA + 72<52 - 1) = 7à (a4 - a2/32 - 1), 

(4.4) (a4 - a2$2 - 1) (7
4 + 7252 - 1) + ±azPyb = 0. 

Suppose 0 5* 0. Then from (4.3) and (4.4) 

(4.5) yôa-zp-l[(a* - a2/S2 - l ) 2 + 4a6/32] = 0, 

so that we must have 5 = 0. If 8 = 0, it follows from (4.3) that y = 1 so 
T = I, and S is a Bers system. Conversely, if /3 = 0, a = 1 and 5 = / so that 
8 is a Beltrami system. 

If 35 and 3)i are topologically equivalent domains and h is a homeomorphism 
of © onto ©i, then for/ defined in 35, A induces a function/ in 35i,/ = / o h~1. 
It follows that if h is C1 and 8 is an elliptic system defined in 35, & induces an 
elliptic system 8~ in 35i. Furthermore, if SB is the set of solutions of 8, A maps 
SB into a collection SBi of light interior functions defined in 35i. (It is not true, 
in general, that SBi will consist of solutions to 8~. In an earlier paper (3), it 
was shown that if h is conformai, a necessary and sufficient condition for SBi 
to be the set of solutions to 8~ is that 8~ (hence 8) be a Bers system.) These 
considerations, together with the matrix representation concept, suggest the 
following factorization theorems. 

THEOREM 4.3. Let 8 be an elliptic system of type (2.1), SB the set of solutions of 
8, and S and T the corresponding elements of ©. Let 8i and 82 be the Bers and 
Beltrami systems corresponding to S and T respectively, and let h be a univalent 
solution of 82. If 81 is the Bers system induced in 35i = A(35) by the Beltrami 
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function h, then for f 6 SB there exists a Bers function g satisfying 8~i such that 
f = g oh. 

Proof. In view of the matrix representation, we can find functions a, j3, 7, 
and ô such that 8 is of the form 

Ux =a(p-ayô)Vx + a*y*Vy} 
( } -Uy= a2(d2 + 7~2) Vx-a(/3 + ayô) Vy. 

Then 81 is of the form 

(4.7) Ux = at3Vx + a2Vy, -Uy =aWx- af3Vy, 

and 22 is of the form 

(4.8) Ux = -yôVx + y2Vy, - Uy = (Ô2 + y~2) Vx - yôVy. 

Let / = u + w be a solution of S and let h = £ + ĝ be a solution of 82. 
Then 8~i is of the form 

(4.9) <f>p = *UV + 5V„ - ^ = «¥* - <W„ 

where â = a o h~~l and 0 = 0 o /r-1. The proof of the theorem will be accomp
lished by showing that if g(p, q) = r + is is defined by g = f o h~x, then g 
is a solution of 8~i. For g so defined, 

'(£(*> 30> Z(x, y)) = u(x, y) and s(p(x, y), q(x, y)) = v(x, y). 

Using the chain rule, 

fp px 1 Yq qx ux, rP py ~f- rQ qy
 = uyi sp px ~r~ Sq qx

 == vXf 

and 
Sp Py \~ Sq ([y Vy. 

Since h = p + iq is a. univalent solution of £2, Px Çy — Py Çx ^ 0 and we can 
solve for rv and rQ. We have 

(4.10) rp = (px qy - py qx)~
l(ux qy - uy qx) ; 

and since u + iv is a solution of 8, 

(4.11) rv = (px qv - py qx)~
l{ [a(/3 - ay8)vx + a2y\]qy - [a2(62 + y~2)vx 

— a(p + ayb)Vy]qx} 

= (Px Qy - Py £r)~MK0 - yad)qy - a2(b2 + y~2)qx]vx 

+ [a*y*qv + a(0 + ayô)qx]vy}. 

Substituting for vx and vy, the term in brackets becomes 

(4.12) [a(p - ayb)qy + a2(ô2 + y~2)qx](sp px + sq qx) 

+ [<*2y2qv - a(P + ayô)qx](sp py + sq qy). 

Since p + iq is a solution of 82, 

Px Çy - PyÇx = (<52 + y~2)qx
2 - 2yÔqx qv + y2qy

2, 
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and (4.12) reduces to 

(4.13) (px qv - py qx) (a/3sp + a2sq). 

Noting that â(p, q) = a(x, y) and $(p, q) = (3(x, y), we obtain 

(4.14) rp = à$sp + â2sq. 

Using the same procedure, we also obtain 

(4.15) — rq = à2sp — âJ3sq. 

Therefore r + is is a solution of S~i, and this completes the proof. 

If S in the theorem above consists of the Cauchy-Riemann equations, then 
Si and S 2 will also consist of the Cauchy-Riemann equations and in this case 
the theorem is trivial. One can, however, relate analytic functions with Bers 
and Beltrami functions. 

THEOREM 4.4. Let 2 be a Bers system defined in 35 and let h be a univalent 
solution of S. Then there exists a uniquely determined Beltrami system Si defined 
in 251 = h (25) such that if f is analytic in 2), there exists a Beltrami function g 
satisfying Si, and such that f = g o h. Conversely, if g is any solution of £1, g o h 
is analytic in 25. 

Proof. Let 2 be the Bers system 

Ux = afiVx + a2Vy, -Uv= OL2VX - aPVy, a > 0, 

and let h = p + iq be a homeomorphic solution of 2. Define the functions 
7 and ô in 25i = h(T)) by 

y(P, ff) = !/[«(*(£, ff), y(P, ff))]i *(P, ?) = -P(x(p, g), y(p, q)) 

and let Si be the Beltrami system 

Up = yôVp + yWq, -Ug= (52 + I/72) Vp - yôVq. 

If g is a solution of Si, it is easy to verify that the composite function/ = g o h 
is analytic in 3). Conversely, if/ is analytic in 2) and we define g = / o A-1, a 
simple computation similar to that in the proof of the preceding theorem shows 
that g is a solution of Si. 

The following corollary is known but is included for the sake of completeness. 

COROLLARY 4.1. If h is a univalent Bers function, h~l is a Beltrami function. 

Proof. In the preceding theorem, choose/ to be the identity mapping. 
Note that Theorem 4.3 may be applied to the problem of mapping a second-

order elliptic equation into canonical form. Let A, B, and C be real-valued 
C1 functions in 2) such that AC — B2 > 0, A > 0. If we define functions 
a, 7, and 5 by a4 = AC - B2, a2y2 = A, -2a2y8 = B, and a2(b2 + y~2) = C, 
it is easy to verify that these functions are well defined, provided we pick 7 to 
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be positive. A simple computation shows that if h = p + iq is a homeomorphic 
solution of the Beltrami system 

Ux = -ydVx + yWy, -Uy = (52 + I/72) Vx - ydVyy 

h maps the elliptic equation 

(4.16) C<pxx + 2B<t>xy + A<t>vy + D4>x + Ecj>y + F<j> = 0 

into the form 

(4.17) f„ + * M + mp + i ^ , + Lyp = 0, 

and if D, E, and i7 are bounded and continuous, and a2 and the Jacobian 
determinant of h are bounded away from zero, then H, K, and L are bounded 
and continuous in /Ê(3)). 

In an earlier paper (3), it was shown that if 2 is a Bers system with C1 

coefficients a and r which has a harmonic mapping as a solution, then all 
solutions of 2 are harmonic and r + ia is analytic. We want to show that if 2 is 
an elliptic system of type (2.1) such that all solutions are harmonic, then 2 is 
a Bers system. Before proceeding, however, a few preliminary remarks are 
necessary. If 2 is an elliptic system of type (2.1), it follows from the extended 
Riemann mapping theorem (2) that 2 has as many linearly independent 
solutions as we want. Linear independence of two solutions / = u + iv and 
g — P + iq does not, however, preclude the possibility that at some point 
z0 in 3), vx çy — vy qx = 0. One can show that a necessary and sufficient condition 
for the Jacobian of some real linear combination af + @q to vanish at z0 is 
that vx qv — vy qx = 0 at that point. If SB is the set of all functions analytic in 
3) 1, it is easy to show that for z0 G 35 one can find/ = u + iv and g = p + iq 
in SB such that vx qy — vy qx ^ 0 at z = z0. (It follows easily that the same 
statement is true for Beltrami functions.) I have been unable to prove the 
theorem for the general case where SB consists of the solutions to an elliptic 
system 2 of type (2.1). The following lemma, however, is an immediate 
consequence of the remarks on analytic functions. 

LEMMA 4.1. Let 3) be a simply connected domain and let 2 be an elliptic system 
of type (2.1) defined in 35 and such that all solutions of 2 are harmonic. Then for 
JS0 in 3) there exist solutions f — u + iv and g — p + iq such that vx qy — vy qx 5

e 0 
at z = Zo. 

The proof is trivial and will be omitted. 

LEMMA 4.2. Let T) be a simply connected domain and let 2 be an elliptic system 
of type (2.1) with C1 coefficients and such that all solutions of 2 are harmonic 
mappings. Let 2* be the corresponding system of type (3.18). Then for z0 G S) 
and e > 0 there exists a solution X + i\x of 2* and a point Z\ in N(z0, e) (the 
^-neighbourhood of ZQ) such that Z\is a zero of' X + i\i but is not a critical point. 
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Proof. L e t / = u + iv, g = u + iv, and h = p + iq be linearly independent 
solutions of 8 such that ẑ  qy — vy qx T* 0 at z = s0, and choose 8 < e such 
that vx qy — vy qx ^ 0 in iV(s0, ô). At z = z0, the equations vx = fo^ + wgz, 
vy = foy + mgy uniquely determine I and m so that the function F = f — Ig — mh 
has a critical point at Zo> and the corresponding solution of 8*, X + i/z, has a 
zero at Zo. We may, however, have the unhappy situation that at z0 we also 
have vxx = lvxx + mqxx and #yi, = lvyy + mgyy. In this case, X + i\i will also 
have a critical point at z0. Define functions / and m in N(z0l 8) by the equations 
Vx = fox + wgx, fy = hy + mg^. Since solutions of 8 are at least C2, J and w 
are at least C1. I t is trivial to verify that I and m also satisfy the equations 
ux = lux + mpx and #y = Jwy + mpy. If at some point in N(z0j 8) the equations 

VxX == "VXX ~J~ WiqxXy Vyy uVyy ~\ ntqyy, ^XX ^XX I ^PxXf 

and 

yy "™yy ~r" 

also hold, then at this point 

4 z>x + w, qx = 0, 4 ^x + mx px = 0, /„ u„ + m„ ^ = 0, 
and 

ly uy + mv pv = 0, 

and it follows that at this point lx = ly = mx = my = 0. But if this happens 
at every point in N(z0l ô), we must have I and m constant, and this contradicts 
the assumption that / , g, and h are linearly independent. Let Z\ be a point in 
N(z0, 8) such that the above equations do not hold at z = z\. Then for / = l(zi) 
and m = m(zi), the solution of 8* corresponding to F = f — Ig — mh has a 
zero at z± but does not have a critical point at that point. 

THEOREM 4.5. Let 35 and 8 be as in Lemma 4.2. Then 8 is a Bers system. 

Proof. Let S and T be the elements of © determined by the coefficients of 
8. F o r / a solution of 8, let \ + i^be the function determined by / ( / ) = SCT. 
As we have already seen, X + in must satisfy the system 

\r = — Y<5Mz + TV*/ + 4̂X + ZJ/x, 
( } - X , = (52 + 7 - 2 ) M , ~ 7«M„ + CX + A*. 

It is easy to verify that since/ is harmonic, X + i[i must also satisfy the system 

X, = 70/x* + (Ô2 + T - 2 K + i A + BJL, 

— \y= y2fxx + y8fj,y + C\ + A", 

where A, B, C, and D are continuous rational functions of a, /3, 7, 5, and their 
partial derivatives. If z\ is a zero but not a critical point of X + i/i, (4.18) and 
(4.19) require that 6 = 0 and 7 = 1 at Zi. The continuity of 7 and 8 and 
Lemma 4.2 then ensure that 8 = 0 and 7 = 1 so T is the identity and 8 is a 
Bers system. 
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Note that if 8 is a Bers system whose solutions are harmonic mappings, the 
associated system 8* is of the form 

(4.20) \x = fiy + -~ X - -£ /*, -\y = iix - ^ X - ^ p. 

Bers and Nirenberg (2) have shown that if g = X + iy is a solution of a system 
8* of type (3.18), there exist a complex-valued function s(z) and an analytic 
function h(z) such that g(2) = es{z)h{z). In general, 5(2) depends on g(z). 
It is easy to verify that s(z) must satisfy the equation gSj = g-. If, however, 
8* is of the form (4.20), we are more fortunate. 

THEOREM 4.6. Let 8* be a system of type (4.20) where a is a positive harmonic 
function, and let s = p + ia be a solution of the system 

(4.21) & = <fc + g , - * V = 2 . - £ . 

If g = \ + ifi is a solution of 8*, A(2) = e~5(2)g(z) is analytic. Conversely, if 
h is analytic in 2), es(z)h(z) is a solution 0/8*. 

Proof. For g and 5 as above and h(z) = e~s{z)g(z), it is trivial to verify that 
h- = 0 and A is analytic. Conversely, if A is analytic, let 

X + ifi = g (2) = e°Wh(z). 

Then 

gî = e*wA(*)* = (X + ^)s; = (X + t/i)(f; + * g ) 

and g is a solution of 8*. 

Note that if p + ig is a solution of (4.21), a is harmonic, and if © is simply 
connected, every harmonic function a determines a solution of (4.21). In 
particular, if we pick a = 0, p = \ In a and ep = yja, it follows that if h is any 
analytic function, \Za h is a. solution of 8*. It is easy to see that all such solutions 
can be represented in this form. Furthermore, if 8 is the Bers system associated 
with 8* and h = <j> + i\f/ is analytic, the solution (unique up to an additive 
constant) of 8 determined by \Za h can easily be represented as a line integral. 
For example, if 4> = 1 and \f/ = 0, the solution of 8 determined will be 
jx(T dx + iy. 
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