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THE UPCROSSINGS INDEX
AND THE EXTREMAL INDEX

H. FERREIRA,∗ University of Beira Interior

Abstract

For stationary sequences X = {Xn}n≥1 we relate τ , the limiting mean number of
exceedances of high levels un by X1, . . . , Xn, and ν, the limiting mean number of
upcrossings of the same level, through the expression θ = (ν/τ)η, where θ is the extremal
index of X and η is a new parameter here called the upcrossings index. The upcrossings
index is a measure of the clustering of upcrossings of u by variables in X, and the above
relation extends the known relation θ = ν/τ , which holds under the mild-oscillation local
restriction D′′(u) on X. We present a new family of local mixing conditions D̃(k)(u)

under which we prove that (a) the intensity of the limiting point process of upcrossings
and η can both be computed from the k-variate distributions of X; and (b) the cluster size
distributions for the exceedances are asymptotically equivalent to those for the lengths
of one run of exceedances or the lengths of several consecutive runs which are separated
by at most k − 2 nonexceedances and, except for the last one, each contain at most k − 2
exceedances.

Keywords: Point process of exceedances; point process of upcrossings; extremal index;
upcrossings index; mixing condition
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1. Introduction

Clustering of exceedances of high levels u = {un}n≥1 by the random variables of a stationary
sequence X = {Xn}n≥1 may occur, and under wide dependence conditions on X any limiting
point process for exceedances is necessarily a compound Poisson point process. Hsing et al.
(1988) provided a detailed study of limiting point processes of exceedances under the long-range
dependence condition �(u). We recall this condition here.

Definition 1.1. The sequence X is said to satisfy the condition �(u) if αn,ln → 0 as n → ∞
for some sequence {ln = o(n)}, where

αn,l = sup{|P(A ∩ B) − P(A) P(B)| : A ∈ Bk
1 (un), B ∈ Bn

k+l (un), 1 ≤ k ≤ n − l}

and B
j
i (un) denotes the σ -field generated by the events {Xs ≤ un}, i ≤ s ≤ j .

Let 1A denote the indicator of the event A and δa the unit mass at a. For applications in
extreme value theory, the main result of Hsing et al. (1988) on the sequence of point processes
of exceedances Nn(B) = ∑n

i=1 1{Xi>un} δi/n(B), B ⊂ [0, 1], can be stated as follows.
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928 H. FERREIRA

Proposition 1.1. Suppose that condition �(u) holds for X and that {Nn}n≥1 converges in
distribution to some point process N . Then N is necessarily a compound Poisson process with
Laplace transform

LN(f ) = exp

(
−β

∫ 1

0

(
1 −

∞∑
j=1

π(j)e−f (x)j

)
dx

)
(1.1)

for each nonnegative, measurable function f on [0, 1], where

β = − log lim
n→∞ P(Nn([0, 1]) = 0) (1.2)

and

π(j) = lim
n→∞ P

( rn∑
i=1

1{Xi>un} = j

∣∣∣∣
rn∑

i=1

1{Xi>un} > 0

)
, j = 1, 2, . . . , (1.3)

for some sequence {rn = [n/kn]} with {kn} satisfying

kn → ∞,
knln

n
→ 0, knαn,ln → 0, as n → ∞. (1.4)

Moreover, under condition �(u), if (1.2) and (1.3) hold for some β > 0, a probability
distribution π , and a sequence {kn} satisfying (1.4), then {Nn}n≥1 converges in distribution
to the above compound Poisson process.

For some j = 1, . . . , kn, the exceedances of un by Xi , i ∈ Jn,j = {(j −1)rn +1, . . . , jrn},
are regarded as forming a cluster, and

πn(j) = P

( rn∑
i=1

1{Xi>un} = j

∣∣∣∣
rn∑

i=1

1{Xi>un} > 0

)
, j = 1, 2, . . . ,

is called the distribution of cluster sizes.
Let F denote the underlying distribution function of each of the Xn. In terms of the

Poisson rate β and the limiting multiplicity distribution π , levels u(τ ) = {u(τ)
n }n≥1 satisfying

n(1 − F(u
(τ)
n )) → τ > 0 as n → ∞ exhibit additional interesting properties. We recall these

in the following proposition of Hsing et al. (1988). Let N
(τ)
n denote the point process of

exceedances of u
(τ)
n .

Proposition 1.2. Suppose that, for each τ > 0, condition �(u(τ )) holds for X. If, for some
τ0 > 0, {N(τ0)

n }n≥1 converges in distribution to some point process N(τ0), then, for all τ > 0,
{N(τ)

n }n≥1 converges in distribution to a compound Poisson process with Laplace transform
given by (1.1)–(1.3), with Poisson rate β = θτ and

θ = − log lim
n→∞ P(N(1)

n ([0, 1]) = 0), 0 ≤ θ ≤
∑
j≥1

jπ(j) ≤ 1,

the probability measure π on {1, 2, . . . } and θ both being independent of τ .

The parameter θ is called the extremal index of the sequence X and was introduced by
Leadbetter (1983). Specifically, X has extremal index θ if, for each τ > 0, there exists a
sequence {u(τ)

n }n≥1 such that

lim
n→∞ P(Mn ≤ u(τ)

n ) = lim
n→∞ P(N(τ)

n ([0, 1]) = 0) = e−θτ ,

where Mn = max{X1, . . . , Xn}.
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The upcrossings index and the extremal index 929

Several local dependence conditions provide formulae for the computation of θ from the dis-
tribution of a finite number of consecutive variables of X. The family of conditions D(k)(u(τ )),
k ≥ 1, considered in Chernick et al. (1991) is sufficient for

θ = lim
n→∞ P(M2,k ≤ u(τ)

n | X1 > u(τ)
n )

to hold, when the limit exists, where Mi,j = max{Xi, . . . , Xj } for i ≤ j and Mi,j = −∞ for
i > j . The condition D(k)(u) holds for X when, for some kn as in (1.4),

n P(X1 > un ≥ M2,k, Mk+1,rn > un) → 0 as n → ∞.

In particular, D(1)(u(τ )) and D′(u(τ )) are equivalent conditions which lead to θ = 1 (Leadbetter
(1974)). Furthermore, condition D(2)(u(τ )) is implied by condition D′′(u(τ )) (Leadbetter and
Nandagopalan (1989)) and leads to

θ = ν

τ
, (1.5)

where
ν = lim

n→∞ n P(X1 ≤ un < X2). (1.6)

In other words, the limiting mean number of upcrossings of un by the first n variables of X is
equal to θ times the limiting mean number of exceedances of un by the first n variables of X.
Under condition D′′(u(τ )), for each j = 1, 2, . . . we also have

πn(j) − P(X2 > un, . . . , Xj+1 > un, Xj+2 ≤ un) → 0 as n → ∞, (1.7)

that is, a cluster of exceedances is asymptotically a run of exceedances.
Despite the important contributions in the papers cited above, two questions remain without

answer when condition D′′(u(τ )) does not hold.

1. How is the limiting mean number of upcrossings of un related to the limiting mean
number of exceedances of un?

2. What is the structure of a cluster of exceedances?

The condition D(k)(u) of Chernick et al. (1991) extends condition D′′(u) in a direction
which does not give sufficient insight into the relation between θ and ν, and those authors chose
not to pursue the study of the structure of clusters of exceedances (see Chernick et al. (1991,
p. 839)). If we replace exceedances with upcrossings in condition D(k)(u) then we find a new
direction in which to generalize condition D′′(u). Under this new family of local conditions,
which are slightly stronger than the D(k)(u), we generalize (1.5) and (1.7). We shall prove
that the limiting mean number of upcrossings of un is related to the limiting mean number of
exceedances of un via

θ = ν

τ
η,

that is, through the extremal index and a new parameter, η, that indicates the presence of
clustering of upcrossings, and show how the runs of exceedances are placed in a cluster. Under
condition D′′(u), η = 1 and we find (1.5) and (1.7) as particular results.

We organize the presentation as follows. Section 2 presents results on the convergence of
the point process, Ñn, of upcrossings {Xi ≤ un < Xi+1} analogous to those above for Nn.
Section 3 begins with an example showing that (1.5) does not hold in general and that more local
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930 H. FERREIRA

information than is given by condition D(k)(u) is needed to obtain a complete description of the
clusters. In Section 3 we also introduce the upcrossings index η, show that our local dependence
condition D̃(k)(u) is necessary and sufficient to calculate limn→∞ P(Ñn([0, 1]) = 0) from a
finite number k of consecutive variables of X, and present a formula for the computation of η. In
Section 4 we prove that, under condition D̃(k)(u), in a cluster with several runs of exceedances
all the runs are separated by at most k − 2 nonexceedances and, except for the last one, contain
asymptotically at most k − 2 exceedances.

2. Point processes of upcrossings

Let the sequence of point processes of upcrossings of un by X1, . . . , Xn be defined by
Ñn(B) = ∑n

i=1 1{Xi≤un<Xi+1} δi/n(B), B ⊂ [0, 1]. We first state a lemma on the asymptotic
independence of upcrossings over disjoint blocks Jn,i = {(i−1)rn+1, . . . , irn}, i = 1, . . . , kn,
for each kn satisfying (1.4).

Lemma 2.1. Suppose that X satisfies condition �(u) and let the sequence {kn} satisfy (1.4).
Then

P(Ñn([0, 1]) = 0) − Pkn(Ñn([0, rn/n]) = 0) → 0 as n → ∞. (2.1)

Proof. We can apply Lemma 2.2 of Hsing et al. (1988) with χn,i the indicator of the event
{Xi ≤ un < Xi+1}, f = 1, and an → ∞ as n → ∞ such that kne−an → 0 as n → ∞, to find
that

E(e−anÑn([0,1])) −
kn∏

i=1

E(e−anÑn(Jn,i/n)) → 0 as n → ∞.

Equation (2.1) then follows, since

E(e−anÑn([0,1])) − P(Ñn([0, 1]) = 0) =
∞∑

s=1

e−ans P(Ñn([0, 1]) = s) ≤ e−an

1 − e−an
= o(1)

and ∣∣∣∣
kn∏

i=1

E(e−anÑn(Jn,i/n)) −
kn∏

i=1

P

(
Ñn

(
Jn,i

n

)
= 0

)∣∣∣∣ ≤ kn

e−an

1 − e−an
= o(1).

The results of Sections 3 and 4 of Hsing et al. (1988) can be applied to the point processes
of upcrossings and yield the following analogue of Proposition 1.1 for Ñn.

Proposition 2.1. Suppose that condition �(u) holds for X and that {Ñn}n≥1 converges in
distribution to some point process Ñ . Then Ñ is necessarily a compound Poisson process with
Laplace transform

L
Ñ

(f ) = exp

(
−β̃((0, ∞))

∫ 1

0

(
1 −

∞∑
j=1

π̃(j)e−f (x)j

)
dx

)
(2.2)

for each nonnegative, measurable function f on [0, 1], where

β̃ ≡ β̃((0, ∞)) = − log lim
n→∞ P(Ñn([0, 1]) = 0) (2.3)

is a finite measure concentrated on the positive integers N and

π̃(·) = β̃(·)/β̃(N) = lim
n→∞ π̃n(·), (2.4)
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where

π̃n(j) = P

( rn∑
i=1

1{Xi≤un<Xi+1} = j

∣∣∣∣
rn∑

i=1

1{Xi≤un<Xi+1} > 0

)
, j = 1, 2, . . . ,

for some sequence {rn = [n/kn]} with {kn} satisfying (1.4). Moreover, under condition �(u),
if the limits in (2.3) and (2.4) hold for some β̃ > 0, a probability distribution π̃ , and a sequence
{kn} satisfying (1.4), then {Ñn}n≥1 converges in distribution to the above compound Poisson
process.

Let ũ(ν) = {ũ(ν)
n }n≥1 denote a sequence satisfying (1.6) and let Ñn(ũ

(ν)
n ) denote the corre-

sponding point process of upcrossings of ũ
(ν)
n . In general, for two normalized levels with the

same limiting number of upcrossings, un,1 ≡ ũ
(ν)
n,1 and un,2 ≡ ũ

(ν)
n,2, we cannot guarantee that

P(Ñn(ũ
(ν)
n,1) �= Ñn(ũ

(ν)
n,2)) → 0 as n → ∞. This convergence holds if

n P(min{un,1, un,2} < X1 ≤ max{un,1, un,2}) → 0 as n → ∞, (2.5)

which occurs, for instance, when the two levels are also normalized for the same limiting
number of exceedances, that is, ũ(ν)

n,1 = u
(τ)
n,1 and ũ

(ν)
n,2 = u

(τ)
n,2 for some τ > 0. However, for ũ

(1)
n

and ṽ
(ν)
n := ũ

(1)
[n/ν] we can apply the arguments used in the proof of Proposition 2.1, to obtain

the following result.

Proposition 2.2. Suppose that, for each ν > 0, condition �(ũ(ν)) holds for X. If {Ñn(ũ
(1)
n )}n≥1

converges in distribution to some point process Ñ (1), then, for all ν > 0, {Ñn(ũ
(1)
[n/ν])}n≥1

converges in distribution to a compound Poisson process with Laplace transform given by
(2.2)–(2.4), with Poisson rate β̃ = ην and

η = − log lim
n→∞ P(Ñn(ũ

(1)
n )([0, 1]) = 0), 0 ≤ η ≤

∑
j≥1

j π̃(j) ≤ 1, (2.6)

the probability distribution π̃ on {1, 2, . . . } and η both being independent of ν. If ṽ(ν)
n and ũ

(1)
[n/ν]

satisfy (2.5) then the same compound Poisson process arises in the limit of {Ñn(ṽ
(ν)
n )}n≥1.

The parameter η, when it exists for each ũ(ν), will be referred to as the upcrossings index of
X. We formalize this definition in the next section.

3. The condition D̃(k)(u) and the upcrossings index

Identifying clusters of high-level exceedances is a key issue for estimators of θ based on
Proposition 1.2 and the equality θ = ∑

j≥1 jπ(j) (see Ancona-Navarrete and Tawn (2000) and
references therein). Should two runs of exceedances separated by one single nonexceedance
be considered parts of the same cluster? Suppose that the sequence X satisfies the condition
D(k)(u) for some k ≥ 3. We then say that runs in the same cluster must be separated by at most
k − 2 nonexceedances. However, if the sequence satisfies additional local restrictions on the
distances between upcrossings, such maxima for the distances between runs can be misleading.

We first consider an example of a max-autoregressive sequence in which condition D(3)(u)

holds but some runs separated by a single exceedance must be considered in different clus-
ters, (1.5) does not hold, and, beyond the extremal index, a measure of clustering of upcrossings
can be computed.
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932 H. FERREIRA

Example 3.1. Let Y = {Yn}n≥−2 be a sequence of independent variables uniformly distributed
on [0, 1]. Let un = 1 − τ ′/n for τ ′ > 0, and let F denote the common distribution function of
the Yn.

We shall consider a max-autoregressive sequence of the form max{Yn−t1 , Yn−t2 , . . . , Yn−tk },
for nonconsecutive fixed integers t1, . . . , tk . Define X = {Xn}n≥1 by

Xn = max{Yn, Yn−2, Yn−3}.
The sequence X satisfies condition �(u) since it is four-dependent, and satisfies condition
D(3)(u) since, for all kn as in (1.4),

n P(X1 > un ≥ M2,3, M4,rn > un) ≤ nrn P(Y1 > un, Y4 > un) = nrnF
2
(un) → 0

as n → ∞,

where F = 1 − F . However, it does not satisfy condition D′′(u) since, for all kn as in (1.4),

n P(X1 > un ≥ M2,2, M3,rn > un) ≥ nF(un)F
3(un) → τ > 0 as n → ∞.

We have un ≡ u
(τ)
n for τ = 3τ ′ and un ≡ ũ

(ν)
n for ν = 2τ ′. The sequence X has extremal index

θ = limn→∞ n P(X1 > un ≥ M2,3)

limn→∞ n P(X1 > un)
= τ ′

τ
= 1

3
,

and ν �= θτ. Moreover, some runs separated by one nonexceedance must be considered in
different clusters since, denoting Ñn([i/n, j/n]) simply by Ñi,j , we have

n P(X1 ≤ un < X2, Ñ3,3 = 0, Ñ4,rn > 0) = n P(X1 ≤ un < X2, X3 > un, Ñ4,rn > 0)

+ n P(X1 ≤ un < X2, X4 ≤ un, Ñ4,rn > 0)

≤ BnrnF
2
(un)

= o(1),

where B > 0 is a constant. Therefore, asymptotically, the probability of one run with more than
one exceedance being followed by another run in the same cluster is negligible, even if they are
separated by a single nonexceedance. This means that the example satisfies condition D̃(3)(u),
which is formalized in Definition 3.1.

In this example, for each ν > 0 we find that

lim
n→∞ P(Ñn(ũ

(ν)
n )([0, 1]) = 0) = e−ην,

with η = 1
2 .

We now introduce a local dependence condition which is necessary and sufficient to compute
limn→∞ P(Ñn([0, 1]) = 0) using the joint distribution of k consecutive variables of X. For
this purpose we replace exceedances with upcrossings in condition D(k)(u). We shall assume
that Ñi,j = 0 for j < i.

Definition 3.1. Let X be a sequence satisfying condition �(u). For any k ≥ 2, X satisfies
condition D̃(k)(u) if

lim
n→∞ n P(X1 ≤ un < X2, Ñ3,k = 0, Ñk+1,rn > 0) = 0 (3.1)

for some sequence {rn = [n/kn]} with {kn} satisfying (1.4).
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Let

R
p,q
i = {Xi+1 > un, . . . , Xi+p > un, Xi+p+1 ≤ un, . . . , Xi+p+q ≤ un}

and
R

p,0
i = {Xi+1 > un, . . . , Xi+p > un}

for p ≥ 1 and q ≥ 1. Then (3.1) is equivalent to

lim
n→∞ n

∑
p+q=k−1
p≥1, q≥0

P(X1 ≤ un, R
p,q
1 , Ñk+1,rn > 0) = 0.

For k = 2 we find that X satisfies the slightly weakened condition D′′(u) (see Leadbetter
and Nandagopalan (1989, pp. 72–73)).

Proposition 3.1. Suppose that condition �(u) holds for X and that

lim inf
n→∞ P(Ñn([0, 1]) = 0) > 0.

Then, for each positive integer k,

P(Ñn([0, 1]) = 0) − exp(−n P(X1 ≤ un < X2, Ñ3,k = 0)) → 0 as n → ∞ (3.2)

if and only if X satisfies condition D̃(k)(u).

Proof. If, in the arguments used by O’Brien (1987) to obtain his Equation (2.6), we re-
place exceedances with upcrossings, then we obtain the analogous convergence result for the
probability of no upcrossings:

P(Ñn([0, 1]) = 0) − exp(−n P(X1 ≤ un < X2, Ñ3,rn = 0)) → 0 as n → ∞.

Since

n P(X1 ≤ un < X2, Ñ3,rn = 0) = n P(X1 ≤ un < X2, Ñ3,k = 0)

− n P(X1 ≤ un < X2, Ñ3,k = 0, Ñk+1,rn > 0),

the convergence in (3.2) holds if and only if condition D̃(k)(u) holds.

We now define the upcrossings index η, which by (2.6) can be viewed as a measure of the
clustering of upcrossings of u by variables of X.

Definition 3.2. If, for each ν > 0, there exists a sequence {ũ(ν)
n }n≥1 such that

lim
n→∞ P(Ñn(ũ

(ν)
n )([0, 1]) = 0) = e−ην

for some constant η, 0 ≤ η ≤ 1, then we say that the sequence X has upcrossings index η.

If, for each ν > 0, there exists a ũ
(ν)
n such that ũ

(ν)
n = u

(τ)
n for some τ > 0, then

P(Ñn(ũ
(ν)
n ) = 0) − P(Nn(u

(τ)
n ) = 0) → 0 as n → ∞
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and the upcrossings index η exists if and only if the extremal index θ exists. In that case,

θ = ν

τ
η.

For η = 1, which holds in particular under condition D′′(u), we find the formula for θ of
Leadbetter and Nandagopalan (1989). We generalize this result under condition D̃(k)(ũ(ν)) by
computing the upcrossings index and the extremal index as follows.

Corollary 3.1. If X satisfies condition �(u) and, for some k ≥ 2, condition D̃(k)(ũ(ν)) for
each ν > 0, then the upcrossings index of X exists and is equal to η if and only if

P(Ñ3,k(ũ
(ν)
n ) = 0 | X1 ≤ ũ(ν)

n < X2) → η as n → ∞
for each ν > 0.

Proof. If η exists then, by (3.2),

P(Ñ3,k(ũ
(ν)
n ) = 0 | X1 ≤ ũ(ν)

n < X2) → η as n → ∞.

If this convergence holds then lim infn→∞ P(Ñn(ũ
(ν)
n ) = 0) > 0, since otherwise we would

have P(Ñn(ũ
(ν)
n ) = 0) → 0 along some subsequence of N and, thus,

n P(X1 ≤ ũ(ν)
n < X2, Ñ3,k(ũ

(ν)
n ) = 0) → ∞ �= ην

along that subsequence. In fact, under condition �(ũ(ν)), the facts that P(X1 ≤ ũ
(ν)
n < X2)→0

and P(Ñn(ũ
(ν)
n ) = 0) → 0 as n → ∞ imply that

n P(X1 ≤ ũ(ν)
n < X2, Ñ3,k(ũ

(ν)
n ) = 0) → ∞ as n → ∞ (3.3)

for each k ≥ 2. To prove this, we can choose a sequence {kn} satisfying (1.4) such that
kn P(X1 ≤ ũ

(ν)
n < X2) → 0 as n → ∞, and, from Lemma 2.1, find that

kn P(Ñrn(ũ
(ν)
n ) > 0) → ∞ as n → ∞. (3.4)

Since, for each k ≥ 2,

kn P(Ñrn(ũ
(ν)
n ) > 0) ≤ n P(X1 ≤ ũ(ν)

n < X2, Ñ3,k(ũ
(ν)
n ) = 0)

+ kn(k − 2) P(X1 ≤ ũ(ν)
n < X2),

we obtain (3.3) from (3.4). Therefore, under the conditions of the corollary, and because
P(Ñ3,k(ũ

(ν)
n ) = 0 | X1 ≤ ũ

(ν)
n < X2) → η as n → ∞, for each ν > 0, we can apply Proposi-

tion 3.1 to conclude that limn→∞ P(Ñn(ũ
(ν)
n ) = 0) = e−ην .

Corollary 3.2. Suppose that X satisfies condition �(u) and, for some k ≥ 2, condition
D̃(k)(ũ(ν)) for each ν > 0, and that, for some τ > 0, ũ

(ν)
n = u

(τ)
n for each ν > 0. Then

the extremal index of X exists and is equal to θ = (ν/τ)η if and only if

P(Ñ3,k(ũ
(ν)
n ) = 0 | X1 ≤ ũ(ν)

n < X2) → η as n → ∞
for each ν > 0.
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Now define the point process of cluster positions of upcrossings of ũ
(ν)
n as

Ñ∗
n (ũ(ν)

n )(B) =
kn∑

i=1

1{Ñn(ũ
(ν)
n )(Jn,i )>0} δi/n(B), B ⊂ [0, 1],

for some kn as in (1.4). If X satisfies condition �(ũ(ν)) for each ν and has upcrossings index η,
then {Ñ∗

n (ũ
(ν)
n )}n≥1 converges in distribution to a Poisson process Ñ∗(ν) with intensity parameter

ην. In fact, for each a and b, 0 ≤ a < b ≤ 1, we have

lim
n→∞ E(Ñ∗

n (ũ(ν)
n )((a, b])) = lim

n→∞ kn(b − a) P(Ñ∗
n (ũ(ν)

n )(Jn,1) > 0)

= (b − a)ην

= E(Ñ∗(ν)((a, b])) (3.5)

and, by condition �(ũ(ν)), for each ai and bi , 0 ≤ a1 < b1 ≤ · · · ≤ ak < bk ≤ 1, we have

lim
n→∞ P

(
Ñ∗

n (ũ(ν)
n )

( k⋃
i=1

(ai, bi]
)

= 0

)
= lim

n→∞

k∏
i=1

P(Ñ∗
n (ũ(ν)

n )((ai, bi]) = 0)

=
k∏

i=1

e−ην(bi−ai )

=
k∏

i=1

P(Ñ∗(ν)((ai, bi]) = 0)

= P

(
Ñ∗(ν)

( k⋃
i=1

(ai, bi]
)

= 0

)
. (3.6)

The limits in (3.5) and (3.6) are sufficient to conclude that Ñ∗
n (ũ

(ν)
n ) converges to the simple

point process Ñ∗(ν) (Kallenberg (1976)).

4. Cluster size distributions for exceedances

We now investigate the cluster size distributions for the class of sequences that satisfy
condition D̃(k)(u). Under condition D̃(2)(u), (1.7) holds, as proved in Proposition 3.5 of
Leadbetter and Nandagopalan (1989). For k > 2, we will use the notation R

p,q
i introduced in

the previous section to describe how the runs of exceedances are placed in a cluster.
The cluster size distributions for the exceedances are asymptotically equivalent to those for

the lengths of one run of exceedances or the lengths of several consecutive runs which are
separated by at most k − 2 nonexceedances and, except for the last one, each contain k − 2
exceedances.

Proposition 4.1. Suppose that X satisfies condition �(u) and condition D̃(k)(u) for some
k > 2, and that u ≡ ũ(ν) for some ν > 0. Then, for each j = 1, 2, . . . , πn(j) − π∗

n (j) → 0
as n → ∞, where

π∗
n (j) =

j∑
s=1

∑
p1,q1,...,ps ,qs∈S(j)

P(R
p1,q1,p2,q2,...,ps ,1∨(k−ps)
1 | X1 ≤ un < X2)
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with
R

p1,q1,p2,q2,...,ps ,1∨(k−ps)
1 = R

p1,q1
1 ∩ R

p2,q2
1+p1+q1

∩ · · · ∩ R
ps,1∨(k−ps)

1+∑
i≤s−1 pi+qi

and

S(j) =
{
p1, q1, . . . , ps, qs :

s∑
i=1

pi = j, pi > 0, qi > 0, max
i≤s−1

(pi + qi) < k

}
.

Proof. For each j = 1, 2, . . . ,

πn(j) = kn

ν
(P(X1 ≤ un, Nrn = j, Ñrn = 1) + P(X1 ≤ un, Nrn = j, Ñrn > 1))(1 + o(1)).

The first term in the sum can be handled as in the proof of Proposition 3.5 of Leadbetter and
Nandagopalan (1989), and we obtain

kn

ν
P(X1 ≤ un, Nrn = j, Ñrn = 1)

= kn

n
(rn − j + 1) P(X2 > un, . . . , Xj+1 > un, Xj+2 ≤ un, . . . ,

Xj+1+(1∨(k−j)) ≤ un | X1 ≤ un < X2)(1 + o(1))

= P(R
j,1∨(k−j)
1 | X1 ≤ un < X2)(1 + o(1)), (4.1)

since P(X1 ≤ un < X2, R
j,1∨(k−j)
1 , Nj+2+(1∨(k−j)),rn > 0) = o(1/n) by condition D̃(k)(u).

For the second term in the initial sum, we have

kn

ν
P(X1 ≤ un, Nrn = j, Ñrn > 1)

= kn

ν

rn−j+1∑
i=1

P(Xi ≤ un < Xi+1, Ni+1,rn = j, Ñi,rn > 1)

= kn

ν

rn−j+1∑
i=1

j∑
s=2

P(Xi ≤ un < Xi+1, Ni+1,rn = j, Ñi,rn = s)

= an

+ kn

ν

rn−j+1∑
i=1

j∑
s=2

∑
p1,q1,...,ps ,qs∈S(j)

P
(
Xi ≤ un < Xi+1, R

p1,q1
i , R

p2,q2
i+p1+q1

, . . . ,

R
ps,1∨(k−ps)

i+∑
j≤s−1 pj +qj

)
.

(4.2)

Here an is the sum of the terms for which maxi=1,...,s−1(pi + qi) ≥ k; therefore,

an ≤ kn

ν
(rn − j + 1)(j − 1) card S(j)c P(X1 ≤ un < X2, Ñ3,k = 0, Ñk+1,rn > 0) = o

(
1

n

)
,

where S(j)c denotes the complement of S(j). Using stationarity and assuming that
∑

i≤0 pi +
qi = 0 = maxi≤0(pi +qi), we can now rewrite (4.2) and (4.1) in a single expression and obtain
the result.
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We conclude by remarking that, beyond the examples of max-autoregressive sequences like
those considered at the beginning of this section, it would be interesting to know if the results
valid under condition D̃(k)(u) can be applied to generalized moving averages

∑∞
s=−∞ cts Yj−ts

where {ts} is a sequence of integers.
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