
Robotica (2023), 41, pp. 2298–2313
doi:10.1017/S0263574723000401

RESEARCH ARTICLE

Multistage approach for trajectory optimization for a
wheeled inverted pendulum passing under an obstacle
Christian Zauner∗ , Hubert Gattringer and Andreas Müller

Institute of Robotics, Johannes Kepler University Linz, 4040 Linz, Austria
∗Corresponding author. E-mail: christian.zauner@jku.at

Received: 16 November 2022; Revised: 6 February 2023; Accepted: 8 March 2023; First published online: 16 May 2023

Keywords: trajectory planning, optimal control, multiple shooting, mobile robots, wheeled inverted pendulum, robot dynamics

Abstract
A robotic system constructed as a wheeled inverted pendulum (WIP) serves as an impressive demonstrator, since
this kind of system is inherently nonlinear, unstable, and nonminimum phase. These properties may pose several
difficulties, when it comes to control and trajectory planning. This paper shows a method for deriving a highly
dynamic trajectory compliant with the system dynamics by means of solving an optimal control problem (OCP)
using multiple shooting. The assumed task includes that the WIP should pass a height-restricting barrier. This can
be achieved by leaning back or forth, in order to reduce the overall height of the WIP. The constraints inherent to
the definition of this trajectory are nonconvex due to the shape of the robot. The constraint functions have a local
minimum in an infeasible region. This can cause problems when the initial guess is within this infeasible region.
To overcome this, a multistage approach is proposed for this special OCP to evade the infeasible local minimum.
After solving four stages of subsequent optimization problems, the optimal trajectory is obtained and can be used
as feedforward for the real system.

1. Introduction
Mobile robotic systems with the structure of a wheeled inverted pendulum (WIP) are of ongoing interest
in research, since this type of robotic system has a wide field of application, reaching from personal trans-
port systems, e.g., the one commonly known as Segway or the TransBOT [1], over robotic wheelchairs
[2], up to wheeled humanoid robots [3], to give only a few examples. This kind of system has the ability
to turn on the spot, which results in high maneuverability and allows it to be used in confined spaces.
This advantage comes at the cost that a self-balancing control has to be implemented, which is not a
trivial task, since the underlying system is inherently nonlinear, unstable, and nonminimum phase. On
the contrary, these properties make a mobile robot constructed as a WIP an ideal demonstrator platform,
like the robotic system addressed in this paper. In order to create an impressive demonstration, an excep-
tional trajectory, as indicated in Fig. 1, should be followed. The desired task involves moving under an
obstacle which is lower than the overall height of the WIP. This special type of obstacle avoidance is
inspired by a limbo dance and pushes the system to its limits. Therefore, it can be used to test how a path
following control performs near the system limits. Furthermore, it also has some interesting mathemat-
ical properties regarding the solvability of the optimal control problem (OCP). Before the OCP can be
stated and solved, the nonlinear system dynamics has to be modeled thoroughly. To this end, different
approaches can be used, as indicated by numerous contributions, listed in the review paper [4], and also
more recent contributions like [5] and [6]. The latter also implements trajectory planning via optimal
control, but without obstacles. Opposed to [7] or [8], where obstacles on the ground are addressed, this
paper addresses obstacle avoidance as indicated in Fig. 1. A similar task has been considered in [9] by
using two different controllers, one for stabilizing and one for holding a target inclination angle, and opti-
mizing the switching point. Whereas in this paper the obstacle avoidance is incorporated directly into
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Figure 1. Examplary trajectory with obstacle.

an OCP. In order to ensure, that the wheels do not slip, the ground reaction forces between the wheels
and the ground surface are derived and used as constraints in the OCP, which is also implemented in
[10]. As already mentioned, the desired task is set up in such a way, that at a defined position the overall
height of the WIP has to be lower than the lowest point of the obstacle, while at the same time maintain
forward movement. Furthermore, the considered WIP has a flat surface on top. Special about that is that
the overall height of the point H8, depicted in Fig. 1, starts increasing if the robot is tilted backwards until
its maximum height is reached. Only then the height of H8 decreases if the robot is tilted further. This
results in nonconvex constraints for the obstacle avoidance with a possibly infeasible local minimum and
infeasible initial guess. This paper addresses this issue, by means of a multistage approach for solving
the according OCP [11]. Despite finding a feasible solution for the OCP, the proposed procedure allows
to obtain a close to minimal obstacle height, for which a feasible solution exists. Since the so gained
optimal trajectory already satsifies the system dynamics and limits, an LQR approach can be used to
stabilize the system along this trajectory, if the optimal control is used as feedforward.

2. Mathematical modeling
The derivation of the exact dynamic model of a WIP, as shown in Fig. 2, taking into account movements
on the two-dimensional ground surface and two independently driven wheels, can be found in [10].
There, no slipping is assumed between the ground and the wheels, thus the WIP can only be moved
along the instantaneous Rx-axis, rotated about the Rz-axis, and tilted about the Ry-axis. In order to model
these restrictions, non-holonomic constraints at velocity level have to be taken into account. On the
contrary, the desired trajectory, adressed in this paper, is guided by a straight line on the ground surface
along the Ix-axis. Therefore, the model can be simplified by setting the orientation angle γ = 0 and the Iy-
coordinate of the position y = 0. Considering only longitudinal movements, the generalized coordinates
z = [

x θ ξ η
]ᵀ are sufficient to describe the positions and orientations of the basis and the two wheels.

The coordinate x describes the position of the ground contact point along the Ix-axis, θ is the inclination
angle of the basis, and ξ and η denote the relative angles of the wheels. Since ideal rolling of the wheels
is assumed, the relative angular velocities of the wheels are prescribed by

ξ̇ = η̇ = ωW = 2ẋ

DW

− θ̇ (1)

with the diameter of a wheel DW . Furthermore, the wheels are rotationally symmetric. Consequently,
the relative angles of the wheels do not influence the system dynamics and are of no special interest
otherwise. Thus it is sufficient to choose the minimal coordinates as q = [

x θ
]ᵀ and accordingly define

the minimal velocities by ṡ = [
ẋ θ̇
]ᵀ. The minimal coordinates and the minimal velocities can then be

combined to the vector of states x = [
qᵀ ṡᵀ

]ᵀ. Due to the symmetric structure of the overall robot and the
mentioned simplification of the model, the driving torques have to be equal for each wheel. Therefore,
the vector of inputs can be stated by u = [

M
]

with M denoting the driving torque for each wheel.
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Figure 2. Wheeled inverted pendulum on two-dimensional ground surface.

2.1. Kinematics
Because of γ = 0, the reference frames I and R have always the identical orientation and the orientation
of the body fixed reference frame B is defined solely by the inclination angle θ . The rotation matrix

RBI =
⎡
⎢⎣

cos(θ ) 0 − sin(θ )

0 1 0

sin(θ ) 0 cos(θ )

⎤
⎥⎦ (2)

can be used to transform vectors represented in frame I, indicated by the left index I(·), to vectors rep-
resented in the frame B, indicated by the left index B(·). The inverse transformation can be aquired by
RIB = Rᵀ

BI. The angular velocity of the basis and the two wheels are given by

BωIB = IωIB =
⎡
⎢⎣

0

θ̇

0

⎤
⎥⎦ , IωIW1 =

⎡
⎢⎣

0

ξ̇ + θ̇

0

⎤
⎥⎦=

⎡
⎢⎣

0
2ẋ

DW

0

⎤
⎥⎦ , IωIW2 =

⎡
⎢⎣

0

η̇ + θ̇

0

⎤
⎥⎦=

⎡
⎢⎣

0
2ẋ

DW

0

⎤
⎥⎦ , (3)

respectively. With the position vectors

IrOG = [
x 0 0

]ᵀ
, IrGP = [

0 0 DW
2

]ᵀ
, IrOP = IrOG + IrGP, (4)

BrPCB = [
cBx 0 cBz

]ᵀ
, IrPCW1

= [
0 0 cWy

]ᵀ
, IrPCW2

= [
0 0 −cWy

]ᵀ
, (5)
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according to Fig. 2, the velocity vectors for the centers of mass (COM) of the basis and the two wheels
i ∈ {1, 2}, can be stated by

BvCB = RBI I ṙOP + BṙPCB + Bω̃IBBrPCB =
⎡
⎢⎣

ẋ cos(θ ) + θ̇cBz

0

ẋ sin(θ ) − θ̇cBx

⎤
⎥⎦ , (6)

IvCWi
= I ṙOP + I ṙPCWi

= [
ẋ 0 0

]ᵀ
, (7)

respectively. Here ω̃ denotes the skew symmetric cross-product matrix of the vector ω.

2.2. Dynamics
Based on the definitions in Section 2.1, the momentum vectors for the three bodies are derived by

BpCB = mBBvCB , IpCWi
= mW IvCWi

(8)

with the mass of the basis mB, the mass of a wheel mW and i ∈ {1, 2}. Due to the shape of the basis,
the principle axes can be approximated by the axes of the body fixed reference frame B. Therefore, the
inertia tensors for the basis and the wheels related to the respective COM can be stated by

BJCB
B =

⎡
⎢⎣

JBx 0 0

0 JBy 0

0 0 JBz

⎤
⎥⎦ , IJ

CWi
Wi

=
⎡
⎢⎣

JWr 0 0

0 JWa + iG
2JM 0

0 0 JWr

⎤
⎥⎦ , (9)

respectively. Thereby the moment of inertia of the drive rotor JM is transformed to the gear output side
with the gear ratio iG. The vectors of angular momentum can then be defined by

BLCB = BJCB
B BωIB, ILCWi

= IJ
CWi
Wi IωIWi . (10)

Using the forces due to gravity

Bfe
CB

= RBI

[
0 0 −mBg

]ᵀ
, Ife

CWi
= [

0 0 −mWg
]ᵀ

, (11)

with the gravitational acceleration g, and the torques due to the motors and viscous friction

BMe
CB

= RBI

(
IMe

CW1
+ IMe

CW2

)
, IMe

CWi
=

⎡
⎢⎢⎣

0

M − dv

(
2ẋ

DW
− θ̇

)
0

⎤
⎥⎥⎦ , (12)

with the viscous friction coefficient dv, the reaction forces and torques for the basis and the wheels can
be stated by

Bfz
CB

= BṗCB + Bω̃IBBpCB − Bfe
CB

, Ifz
CWi

= IṗCWi
− Ife

CWi
, (13)

BMz
CB

= BL̇CB + Bω̃IBBLCB − BMe
CB

, IMz
CWi

= IL̇CWi
− IMe

CWi
, (14)

respectively. According to [12], the equations of motion (EOM) are then determined as[(
∂BvCB

∂ ṡ

)ᵀ (
∂BωIB

∂ ṡ

)ᵀ] [
Bfz

CB

BMz
CB

]
+

2∑
i=1

[(
∂ IvCWi

∂ ṡ

)ᵀ (
∂ IωIWi

∂ ṡ

)ᵀ] [
Ifz

CWi

IMz
CWi

]
= 0 (15)

By evaluating and rearranging (15), the resulting EOM satisfy the form

M(θ )s̈ + g(θ , ṡ) = Bu (16)

with the symmetric positive definite mass matrix M(θ ), the vector of nonlinear terms g(θ , ṡ), and the
constant input matrix B. Since the mass matrix M(θ ) is invertible, (16) can be converted to state space
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representation with affine-input structure, resulting in

ẋ =
[

q̇

s̈

]
=
[

ṡ

−M(θ )−1g(θ , ṡ)

]
+
[

0

M(θ )−1B

]
u = f(x) + G(x)u. (17)

In order to obtain the equilibrium state of the system, defined by ṡ = s̈ = 0, the equation system
g(θ , 0) = Bu has to be solved. One solution to this equation system is the inclination angle of the upper
equilibrium, denoted θe, and the drive torque Me = 0.

2.3. Ground reaction forces
As mentioned above, the kinematic relation (1) is based on the assumption of ideal rolling of the wheels.
In order to ensure that no slipping occurs, the reaction forces between wheels and ground have to stay
within static friction bounds. The ground reaction forces/torques, assumed to act at point G for simplicity,
can be derived by summing up the reaction forces/torques (13) to (14) properly shifted into point G. This
results in [

Ifz
G

IMz
G

]
=
[

I 0

I r̃GCB I

] [
RIBBfz

CB

RIBBMz
CB

]
+

2∑
i=1

[
I 0

I r̃GCWi
I

] [
Ifz

CWi

IMz
CWi

]
(18)

with IrGCB = IrGP + RIBBrPCB , and IrGCWi
= IrGP + IrPCWi

. As long as the EOM (16) are fulfilled, the
ground reaction torques satisfy IMz

G ≡ 0, which can be easily verified by plugging (17) into (18). As
expected for the simplified model, the y-component of Ifz

G results to f z
G,y ≡ 0. In order to ensure proper

ground contact, the z-component has to satisfy the condition

f z
G,z ≥ fG,z,min > 0 (19)

and to ensure ideal rolling the x-component has to be bound by

−μ0f z
G,z ≤ f z

G,x ≤ μ0f z
G,z (20)

with the static friction coefficient μ0.

3. Obstacle avoidance
As can be seen in Fig. 1, the WIP has to get from one side of the obstacle to the other. If only the upper
part of the WIP, regarded as the “head,” is considered, three possible outcomes can be observed. First,
the head and thus the entire WIP passes under the obstacle and no collision takes place. Second, the head
collides directly with the obstacle. And finally, the head passes above the obstacle, which would mean
that a different part of the WIP collides with the obstacle. Therefore, it is sufficient to test for collisions
between the head and the obstacle, as long as it can be enssured, that the head would not pass above the
obstacle. In order to simplify the collision detection between the head and the obstacle, the cross section
of the head is approximated, as shown in Fig. 3, by five circles located at the points

BrPHi =

⎡
⎢⎢⎢⎢⎣

(
aH1 − hH

2

)
i − 1

4
− aH2

5 − i

4

0

H − hH

2

⎤
⎥⎥⎥⎥⎦ (21)

with a radius rHi =
hH

2
and i ∈ {1, . . . , 5}. To account for the sharp edge at the front of the head, the

approximation is refined by adding two additional circles at the points

BrPH6 =
[

aH1 − hH

4
0 H − hH

4

]ᵀ
, (22)
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Figure 3. Wheeled inverted pendulum with obstacle.

BrPH7 =
[

aH1 − hH

12
0 H − hH

12

]ᵀ
(23)

with the radii rH6 = hH

4
and rH7 = hH

12
, respectively, and the point

BrPH8 = [
aH1 0 H

]ᵀ (24)

with rH8 = 0 for consistency. With the absolute position vectors

IrOHi = IrOP + RIBBrPHi (25)

with i ∈ {1, . . . , 8} and the position vector to the center of the obstacle

IrOCO = [
aOx 0 aOz

]ᵀ (26)

the relative position vectors between the head and the obstacle can be stated by

IrHiCO = IrOCO − IrOHi . (27)

A noncolliding trajectory always has to satisfy∥∥
IrHiCO

∥∥
2
≥ rHi + rO (28)

with i ∈ {1, . . . , 8} and the radius of the obstacle rO. In order to ensure that the head does not pass
above the obstacle, a test point may never lie inside the triangular shaped region above the center of the
obstacle, as indicated in Fig. 3. To achieve this, the condition

In
ᵀ
OIrHiCO∥∥

IrHiCO

∥∥
2

≤ cos(αmin) = cos
(π

6

)
=

√
3

2
(29)

with InO = [
0 0 −1

]ᵀ and i ∈ {1, . . . , 8} must always be met.
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4. Optimal control problem
4.1. Continuous time domain
Combining the results of Sections 2 and 3, a weighted time and energy optimal trajectory for a fixed
obstacle height aOz can be obtained by solving an OCP with variable terminal time TE. The according
OCP can be stated as

min
u(·),x(·),TE

(
νtTE + νu

∫ TE

0

u(t) uT(t)dt

)
(30)

s.t.
dx(t)

dt
= f(x(t)) + G(x(t))u(t) t ∈ [0, TE] (31)

x(0) = x0 (32)

x(TE) = xE (33)

xmin ≤ x(t) ≤ xmax t ∈ [0, TE] (34)

umin ≤ u(t) ≤ umax t ∈ [0, TE] (35)

0 < TE (36)

|ωW(x(t))| ≤ ωW,max t ∈ [0, TE] (37)

|PM(x(t), u(t))| ≤ PM,max t ∈ [0, TE] (38)

fG,z,min ≤ f z
G,z(x(t), u(t)) t ∈ [0, TE] (39)∣∣f z

G,x(x(t), u(t))
∣∣≤ μ0f z

G,z(x(t), u(t)) t ∈ [0, TE] (40)

rHj + rO ≤ ∥∥IrHjCO (x(t))
∥∥

2
t ∈ [0, TE], j ∈ {1, . . . , 8} (41)

In
ᵀ
OIrHjCO (x(t))∥∥

IrHjCO (x(t))
∥∥

2

≤
√

3

2
t ∈ [0, TE], j ∈ {1, . . . , 8} (42)

with the time weight νt, the input weight νu, the initial state x0 = [
0 θe 0 0

]
, and the terminal state xE =[

xE θe 0 0
]
. The vectors xmin and xmax form box constraints for the states and are used to restrict especially

the inclination angle θ to reasonable values, whereas the box constraints for the input, given by umin and
umax, account for the maximal permissible driving torque. The angular velocity of the wheels ωW(x),
according to (1), is limited to the maximum value ωW,max and the drive power PM(x, u) = ωW(x)M is
constrained to the maximal drive power PM,max. The constraints regarding the ground reaction forces,
(39) and (40), are according to (19) and (20) and the constraints concerning obstacle avoidance, (41)
and (42), are according to (28) and (29).

4.2. Discrete time domain
To obtain a solution for the infinite-dimensional OCP (30), a direct multiple shooting approach [13–15]
is chosen. Therefore, the time span t ∈ [0, TE] is discretized with the sampling time TS = TE

N
, N = 1000,

resulting in the vector of time steps t̂ = [
0 TS · · · iTS · · · TE

]ᵀ∈R
N+1. Between each time step the value

of the input vector u is assumed to be constant. This results in the matrices of discrete input values
û = [

û0 û1 · · · ûN−1

] ∈R
1×N and state values x̂ = [

x̂0 x̂1 · · · x̂N

] ∈R
4×(N+1). As integration scheme the

explicit Runge–Kutta method of fourth order RK4 is used, which is implemented explicitly in order to
exploit the automatic differentiation capability of the used solver. Consequently, the state of the next
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time step can be obtained by a function fRK4(x̂i, ûi, TE). The OCP can then be approximated by the finite-
dimensional optimization problem

min
û,x̂,TE

(
νtTE + νu

TE

N

N−1∑
i=0

ûᵀ
i ûi

)
(43)

s.t. x̂i+1 = fRK4(x̂i, ûi, TE) i ∈ {0, . . . , N} (44)

x̂0 = x0 (45)

x̂N = xE (46)

xmin ≤ x̂i ≤ xmax i ∈ {0, . . . , N + 1} (47)

umin ≤ ûi ≤ umax i ∈ {0, . . . , N} (48)

0 < TE (49)∣∣ωW(x̂i)
∣∣≤ ωW,max i ∈ {0, . . . , N + 1} (50)∣∣PM(x̂i, ûi)
∣∣≤ PM,max i ∈ {0, . . . , N} (51)

fG,z,min ≤ f z
G,z(x̂i, ûi) i ∈ {0, . . . , N + 1} (52)∣∣f z

G,x(x̂i, ûi)
∣∣≤ μ0f z

G,z(x̂i, ûi) i ∈ {0, . . . , N + 1} (53)

rHj + rO ≤ ∥∥IrHjCO (x̂i)
∥∥

2
i ∈ {0, . . . , N + 1}, j ∈ {1, . . . , 8} (54)

In
ᵀ
OIrHjCO (x̂i)∥∥

IrHjCO (x̂i)
∥∥

2

≤
√

3

2
i ∈ {0, . . . , N + 1}, j ∈ {1, . . . , 8} (55)

for a fixed obstacle height aOz . Constraint (44) accounts for the shooting gap between integration of one
time step and the optimization varibale of the according next time step.

4.3. Minimal obstacle height
In order to obtain the minimal obstacle height aOz for which a feasible solution exists, the nested
optimization problem

min
û,x̂,TE ,aOz

(
aOz

)
(56)

s.t. aOz ,min ≤ aOz (57)

(û, x̂, TE) = arg min
û,x̂,TE

(
νtTE + νu

TE

N

N−1∑
i=0

ûᵀ
i ûi

)
(58)

s.t. (44) to (55)

with the discretized OCP as constraint has to be solved. The obstacle height is restricted to reasonable
values by aOz ,min > 0, which is chosen in such a way that it does not restrict the actual solution.

5. Numerical solution
For solving the nonlinear optimization problem (43), the optimization framework CasADi [16,17] is
used with the solver Ipopt, which is based on [18]. In order to solve the nested optimization problem
(56) a simple line search algorithm can be used for the top-level optimization problem. Thereby the
obstacle height aOz is initialized to some value aOz > DW

2
+ H + rO and then incremenetally reduced by
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Figure 4. Premature termination: states over time.

Figure 5. Premature termination: cross section of head during motion.

a fixed step size �aOz , which in turn is reduced once no feasible solution for the inner optimization
problem can be found. A minimum step size can be used as terminal condition.

To find an initial guess for the inner optimization problem, a straight forward approach would be to
linearly interpolate the initial and terminal state and to find a hard lower bound for the terminal time,
which is then relaxed by some factor. A reasonable lower bound for TE can be derived, for example, by
the maximum drive speed and the distance between initial and terminal position. The resulting trivial
initial guess can be stated as

x̂I0
i = N + 1 − i

N + 1
x0 + i

N + 1
xE, ûI0 = 0, T I0

E = 5
2(xE − x0)

DWωW,max

. (59)

But if this problem is tried to be solved, the optimization process tends to terminate prematurely
once the obstacle height reaches aOz < DW

2
+ H + rO. Figure 4 shows the system states of the WIP, for

an examplary trajectory, where such a premature termination occurs, and Fig. 5 indicates the resulting
trajectory by showing the cross section of the head during motion and the obstacle. Remarkably, the WIP
is not tilted at all directly underneath the obstacle, although it is known that a better feasible solution
exists.

Since the essence of the desired task is that the WIP has to pass underneath the obstacle, there exists
a point in time where the highest point of the WIP has to be below the lowest point of the obstacle.
Figure 6 shows the overall height of the WIP for varying inclination angle θ . It can be seen that there
exists a local minimum at θ = 0, which is caused by the shape of the head. If the initial guess is near
this local minimum directly underneath the obstacle, the solver may fail to escape this local infeasible
minimum.
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Figure 6. WIP overall height.

Figure 7. Stage 1: cross section of head during motion.

Of course it is possible to adapt the initial guess or the solver settings such that the optimization
process converges more robustly. But this involves tedious handcrafting of initial solutions, which can
be avoided by using a multistage approach as proposed in the following section.

6. Multistage approach
The basis for the multistage approach is that the OCP (43) can be solved very robustly, if the constraints
regarding the obstacle are neglected. The idea is then to approach the original problem via multiple stages
of optimization problems by tightening the constraints and minimizing the obstacle height. Thereby the
result of one stage is used as initial guess for the next stage. As a side effect, the minimal obstacle height
can also be derived along the way and a higher level line search is no longer necessary.

6.1. Without obstacle
As already mentioned the first stage consists of finding a valid solution for the OCP (43) without the
constraints regarding the obstacle. The optimization problem thus simplifies to

min
û,x̂,TE

(
νtTE + νu

TE

N

N−1∑
i=0

ûᵀ
i ûi

)
(60)

s.t. (44) to (53)

Using the trivial initial guess (59), the problem (60) can be solved and the results for the optimization
variables û, x̂, and TE can be used as initial guess for the next stage. The resulting trajectory is indicated
in Fig. 7, which shows the cross section of the head during motion.
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Figure 8. Stage 2: cross section of head during motion.

6.2. Head with circular shape and variable obstacle height
In the second stage, the constraints regarding the obstacle are modified in such a way that these con-
straints no longer have a local minimum at θ = 0, which has been discussed in Section 5. This can be
achieved by using a coarser approximation of the head shape with only one larger circle. To this end, the
absolute position vector to the center of the head

IrOCH = IrOP + RIBBrPCH (61)

with

BrPCH = [
0 0 H − hH

2

]ᵀ (62)

is introduced. The relative position vector between the head and the obstacle can then be stated by

IrCH CO = IrOCO − IrOCH . (63)

Satisfying the relation

∥∥
IrCH CO

∥∥
2
≥ rO +

√
a2

H1
+ h2

H

4
(64)

leads to a more restrictive constraint, which no longer has a local minimum at θ = 0.
Furthermore, the height of the obstacle is minimized starting at a height which is known to not interact

with the initial guess obtained by the previous stage. The resulting optimization problem can be stated
as

min
û,x̂,TE ,aOz

(
νtTE + νu

TE

N

N−1∑
i=0

ûᵀ
i ûi + νOaOz

)
(65)

s.t. (44) to (53)

rO +
√

a2
H1

+ h2
H

4
≤ ∥∥IrCH CO (x̂i)

∥∥
2

i ∈ {0, . . . , N + 1} (66)

In
ᵀ
OIrCH CO (x̂i)∥∥

IrCH CO (x̂i)
∥∥

2

≤
√

3

2
i ∈ {0, . . . , N + 1} (67)

aOz ,min ≤ aOz (68)

with the weight νO 	 νt and νO 	 νu. Again the resulting trajectory, which is indicated by Fig. 8 and the
detailed view in Fig. 9, can be used as initial guess for the next stage.

6.3. Head with original shape and variable obstacle height
As can be seen in Fig. 9, the previously introduced coarser approximation of the head shape still leaves
a gap between the actual head and the obstacle. In order to further reduce the height of the obstacle and
to push the system to its limits, the optimization problem (65) is solved again, but now with the original
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Figure 9. Stage 2: detailed view of obstacle avoidance.

Figure 10. Stage 3: detailed view of obstacle avoidance.

constraints regarding the obstacle. The according optimization problem is given by

min
û,x̂,TE ,aOz

(
νtTE + νu

TE

N

N−1∑
i=0

ûᵀ
i ûi + νOaOz

)
(69)

s.t. (44) to (55) and (68)

and Fig. 10 shows that the head now touches but does not intersect the obstacle.

6.4. Original problem
Due to the very high weight for the obstacle height νO the cost functions of the problems, (65) and (69)
are significantly different in contrast to the original problem. Therefore in the final stage, the obstacle
height is fixed to the result for aOz of (69) and the original problem (43) is solved using the remaining
results of (69) as initial guess.

The results of this optimization are shown in Figs. 11–14. Figure 11 depicts the states of the WIP over
time. In Fig. 12, it can be seen, that the driving torque and the angular velocity of the wheels, as well
as the drive power stay always within the according maximum values (red). The ground reaction forces
over time are shown in Fig. 13. Since the actual force I f

z
G,x between the wheels and the ground is always

within the limits given by static friction (red), it can be assumed, that no slipping occurs. In Fig. 14, the
resulting trajectory is indicated by showing the cross section of the head during motion and the obstacle.
The minimal feasible height of the center of the obstacle results in aOz ,opt = 0.685 m. Taking into account
the overall height of the WIP of 0.7 m and the radius of the obstacle rO = 0.05 m, the lowest point of the
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Figure 11. Optimization result: states over time.

Figure 12. Optimization result: driving torque and angular velocity of the wheels and drive power over
time with respect to the according limits (red).

obstacle lies �H = −0.065 m underneath the highest point of the WIP in the upper equilibrium state.
Table I shows how the terminal time and the obstacle height evolve over the four stages.

7. Experimental setup
In order to test the optimal trajectory on the real system, a linear quadratic regulator (LQR) based
approach is used as shown in Fig. 15. A more elaborated controller design would be conceivable, given
the nonlinearity of the underlying system. But the optimal trajectory already satisfies the system dynam-
cis and limits, thus the controller only has to compensate for model uncertainties and measurement
errors. The actual system is equipped with encoders and an inertial measurement unit (IMU), provid-
ing measurments for the wheel angles ξ and η and the inclination angle θ as well as the respective

https://doi.org/10.1017/S0263574723000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000401


Robotica 2311

Table I. Resulting terminal time and obstacle height.

Stage TE aOz �H
s m m

1 2.2768 − −
2 3.2699 0.692 −0.058
3 3.2435 0.685 −0.065
4 3.2365 0.685 −0.065

Figure 13. Optimization result: ground reaction forces over time with respect to the limits (red).

Figure 14. Optimization result: cross section of head during motion.

Figure 15. Experimental setup: control loop.
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angular velocities ξ̇ , η̇, and θ̇ . In order to reduce the measurement noise, especially for the angu-
lar velocities, a Kalman observer is added to the control loop. The derivation of the LQR and the
observer follows standard procedures and is based on an extended model, which also accounts for lat-
eral deviations off the trajectory. For the extended model, a state vector xE = [

ξ η θ ξ̇ η̇ θ̇
]ᵀand an input

vector uE = [
M1 M2

]ᵀ are used and the derivation of the EOM is similar to the approach in Section 2.
Converting the optimal state values to the desired states of the extended model xE,des can be performed
by ξ = η = 2x

DW
− θ and (1) and a feedforward for the control input uE,FF = [

M1,FF M2,FF

]ᵀ is implemented
by setting M1,FF = M2,FF = M. The LQR and the observer are based on the extended system dynamics
linearized at the upper equilibrium point defined by xE,equ = [

0 0 θe 0 0 0
]ᵀand uE,equ = 0. This results in

the linearized state vector �xE = xE − xE,equ and the linearized input vector �uE = uE − uE,equ. As indi-
cated in Fig. 15, the measured values are collected in xE,meas and the observed system state is denoted
xE,obs with the deviations from the equilibrium point �xE,meas and �xE,obs, respectively. The control error
is defined by eE,ctrl = xE,des − xE,obs and the actual system input results in uE = uE,ctrl + uE,FF with the opti-
mized feedforward uE,FF and the output of the controller uE,ctrl. Experiments have shown that the proposed
controller is capable of keeping the state of the actual WIP close enough to the optimal trajectory, such
that a obstacle can be passed without a collision. Thereby the obstacle is installed at the same position,
resulted by the optimization problem (69). Unfortunately the controller is implemented on an embedded
micro processor board, which does not provide the possibility to track signals. As a partial compensation,
the experiment has been put on our YouTube channel and is accessible via [19].

8. Conclusion
In this work, an OCP for a WIP has been derived for a desired trajectory with obstacle avoidance inspired
by a limbo dance. This task involves to pass an obstacle, which is placed at a lower height than the overall
WIP height in equilibrium state. The resulting optimization problem has non-convex constraints with
an infeasible local minimum. If the initial guess for the OCP is near this infeasible local minimum,
gradient-based solvers tend to terminate without providing a valid solution. In order to prevent tedious
manual tuning of the initial guess, a multistage approach has been proposed to avoid entering the region
of this local minimum. It has been shown that solving four subsequent optimization problems reliably
result in an optimal solution for the trajectory and a close to optimal value for the minimum feasible
obstacle height. The obtained optimal state and control values are then used as desired trajectory and
feedforward for the controller of the real system. Finally, experiments have shown that the WIP can
successfully pass under the obstacle.

Obviously, the proposed approach is closely related to the problem setup consisting of the type of the
robot and the definition of the obstacle. But the idea of relaxing or tightening certain constraints which
impede the solution of an OCP and advance the original problem via multiple stages of subsequent
optimization problems might as well generalize to other problem setups.
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