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Prime rings came into prominence when Posner characterized prime rings satisfying a
polynomial identity [9]. The scarcity of invertible central elements made it difficult to
generalize results from central simple and primitive algebras to prime rings. For example,
we do not automatically have tensor products at our disposal. In [5], the first author
introduced the Martindale ring of quotients Q(R) of a prime ring R in his theorem
characterizing prime rings satisfying a generalized polynomial identity (GPI). Q(R) is a
prime ring containing R whose center C is a field called the extended centroid of R. The
central closure of R is the subring RC of Q(R) generated by R and C. RC is a closed
prime ring since its extended centroid equals its center C. Hence we have a useful
procedure for proving results about an arbitrary prime ring R. We first answer the
question for closed prime rings and then apply to R the information obtained from RC. It
should be noted that simple rings and free algebras of rank at least 2 are closed prime
rings. For these reasons, closed prime rings are natural objects to study.

The extended centroid has been computed for many classes of rings, such as some
group rings [2], skew polynomial rings of automorphism and derivation type [7], [10],
coproducts of algebras, and free algebras [6]. The ring of quotients Q(R) and its various
subrings have had numerous applications. As mentioned above, they played a key role in
the solution of the GPI problem. In [4], Kharchenko developed a Galois theory of
semiprime rings which makes extensive use of these ideas. We refer the reader to [8] for a
simplified account of this work over prime rings.

In this paper, we determine the extended centroid of the power series ring R[[x]]
over a closed prime ring R. One motivation for this problem comes from commutative
algebra. In this case, finding the extended centroid of a prime ring is equivalent to finding
its field of quotients. If F is a field, then the field of quotients of F[[x]] is F((x)), the field
of Laurent series over F. However, if D is an integral domain then the field of quotients
of D[[x]] is not known in general. In particular, it is rarely the case that the field of
quotients of D[[x]] is F((x)), where F is the field of quotients of D. We will provide an
example where D = Z (the integers) and refer the reader to [1], [3] for more general
examples. If R is a closed prime ring over C, we prove the extended centroid of /?[[*]] is
C((x)). This theorem generalizes the corresponding result for F[[JC]]. AS a corollary, we
show that if R is a closed prime ring then so is the ring of Laurent series R((x)).

1. Preliminaries. Let R[[x]] denote the power series ring over R. If / = E rtx' is a
1=0

nonzero power series in R[[x]] then the degree of/, denoted deg(/), is the nonnegative
integer n such that r, = 0 for i < n and rn #0 . Let R((x)) denote the ring of Laurent series
over R, i.e.

/?((*)) = { S r,*' | r,-6 K . n e ZJ.

If R is a prime ring then R[[x]] and R({x)) are also prime.
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We now summarize the definition of the extended centroid of a prime ring R with 1.
We refer the reader to [5] for a more detailed account. Let // = {(/} be the collection of
all nonzero two-sided ideals of R and consider the totality T of all right module
homomorphisms <j>: UR^>RR, where U e fi and U and R are regarded as right i?-modules.
Write ((f>, U) for an element of T and define an equivalence relation ~ on T as follows:
(<f>, U)~(tp,V) if <p = ip on some Wen, where WcUHV. Let {<f>, if) denote the
equivalence class of ((j>, U). The Martindale ring of quotients Q(R) is defined to be the
set of these equivalence classes. Q{R) is made into a ring as follows:

(<f>, lf)(il>, V) = {<p°\l>, VU) (composition acting on the left).

R may be considered a subring of Q(R) via the mapping a—*{ah R), where at is the left
multiplication by a acting on R. Q(R) is a prime ring whose center C is a field called the
extended centroid of R. The pair (cp, U) is permissible if (p:RUR^> RRR is a bimodule
homomorphism. C may also be characterized as the set

{{<t>, U) e Q(R) \ ($, U) is permissible}.

We may now form the central closure RC of R. RC is a prime ring with center C. A prime
algebra over a field F is said to be closed if F is already its extended centroid. Note that
RC is closed over C.

LEMMA 1.1. Let R be a prime ring with center Z(R) and extended centroid C. Let F be
the field of fractions of Z(R). Suppose for any ((f>, if) eC, there exists nonzero u e U such
that <t>{u) = cm, where a sF. Then C is isomorphic to F.

Proof. Set A = (<f>, if). Thus <p(u) = ku = au, implying (A - a)u = 0. Viewing this
equation in RC, we see that A = a.

EXAMPLE. We claim that Q((x)) is not the extended centroid of Z[[JC]], where Z and
Q denote the integers and rationals respectively.

Let f = x + ix2 + 3X3 +. . . . It suffices to show that fg is not in Z[[x]] for any nonzero
00

g e Z[[JC]]. Suppose otherwise with g = E atx'. Thus for any prime p, the coefficient
i=n

of xn+p in fg is an+p_, + lan + p_2+ . . . + — - a n + l + - a n e l . Multiplying by (p - 1)\,

we can see that p \an, a contradiction.

2. Main theorem. In the following four results, let R be a prime ring with extended
centroid C. Let D denote the extended centroid of R[[x]] and assume (<t>, U)eD,
(<p, 11)^0. We remark that <j> is one-to-one on U.

LEMMA 2.1. / / / , geU,f,g*0 then deg(/) + deg(tf>(g)) = deg(g) + deg(0(/)).

Proof. Let / = ax" + . . . and g = bxk + . . . , where a,b¥=0. Set <p(f) = cxm + . . .
and <p(g) = dx1 + . . . , where c,d¥^0. Assume k + m<n + /. Since R is prime, there
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exists r e R such that crb =£0. Since <f> is bimodule,

<t>ifrg) = ( e x ™ + ... ) r ( b x k + . . . ) = ( « " + ••• )r(dx' + . . . ) •

Equating coefficients, we obtain crb = 0, a contradiction. Similarly « + / > A: + m.

The next two corollaries are immediate consequences of Lemma 2.1.

COROLLARY 2.2. / / / e U is of minimal degree then <j>{f) is of minimal degree in <t>(U).

COROLLARY 2.3. / / there exists f e (/ such that deg(/) = deg(<K/)) = 0 then deg(g) = 0
implies deg(0(g)) = 0 for g e U.

COROLLARY 2.4. Suppose g eU such that deg(g) = deg(#(g)) = 0. / / a0, b0 are the
degree 0 coefficients of g and <p(g) respectively then there exists k e C s u c h that b 0 = k a 0 .

Proof. I = {0} U {r e R \ r is the degree 0 coefficient of some element in U} is a
nonzero ideal of R. Choose r =£ 0 in / and suppose r + rxx + . . . and r + s{x + . . . are
distinct elements of U. Let

${r + rxx + . . . ) = t0 + txx + . . . and 0(r + S\X + . . . ) = u0

By Corollary 2.3, fo^Wo^O- Applying Lemma 2.1 to g and (rl—Si)x + . . . , we get
to = uQ. Define k:I-*R by 0—*0 and r—*t, where t is the unique degree 0 coefficient of
the image under 0 of any element in U having r as its degree 0 coefficient. A is a bimodule
homomorphism. Hence keC and b0 = ka0.

The following theorem is the key result needed for determining D in the case where
R is closed prime.

THEOREM 2.5. Let R be a closed prime ring with extended centroid C. Let D denote
the extended centroid of R[[x]] and suppose (#, U)e D. Then there exists nonzero f e U
such that <p(f) = hf, where h e C{(x)).

Proof. Choose / e U of minimal degree n and let m = deg(#(/)). V=x~"U is a
nonzero ideal of R[[x]]. By Corollary 2.2, (TJ0, V) e D, where r)0(x~nk) = x~m(j)(k) for all
keU. Setting g=x~"f, we have deg(g) = deg(7jo(g)) = 0. Let

OO 00

8 = E a.*' a n d Voig) = 2 biX1.
i=0 1=0

We use induction to find A, e C such that

bt = Aoa, + A,a,_) + . . . + A,a0 for all i.

By Corollary 2.4, there exists Aoe C such that 60 = K<*a- Since /? is closed prime, Ao acts
on R and hence on R[[x]] as left multiplication. We claim that r]t =x~l(t]0- Ao) acts on
W = R[[x]]gR[[x]]. It suffices to apply rj, to pg^, where p, q € /?[[*]]. Now

-pkogq)

tx + . .. )q - p(koao + Aoa,x + . . . )<?) e /?[[*]].

Thus (rj,, W) e D. In particular, rj,(g) = (ft, - Aoa,) + (62 - A0a2)* + • • • • If &i - Aofli =
0, choose Aj = 0. Otherwise, by Corollary 2.4, there exists A, e C such that fc, - Aofli = A,a0
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or b{ = Aoat + A ^ . Assume there exist A 2 , . . . , A,_! e C and corresponding t]2, • • • , Vi-i
(acting on W) such that

6,_, = Aoa,_i + Aifl,_2 + . . . + A,_,a0

and

, - Aoa; - Aja,., - . . . - A,_2a2)x

Let r/,=;c \Vi-i ~ A,-i). Note that (r/,-, W ) e O and the degree 0 coefficient of ?/,(g) is
bj — Aoa, — A^j-i — . . . — A,_ifli. If this term is 0, choose A, = 0. Otherwise, by Corollary
2.4, there exists A, e C such that 6, = Aoa, + . . . + A,a0. Thus

(A0a2 + A,a,

Recall that g=x~"f and r]0{g) = x-m<t>{f). Therefore

*-"><£(/) = (A0 + A , * + . . . ) * - / or <p{f) = (ko + kiX + ...)xm-"f = hf,

where /i e C((JC)).

By Lemma 1.1 and Theorem 2.5, we obtain the main result of this paper.

THEOREM 2.6. Let R be a closed prime ring with extended centroid C. Then the
extended centroid of R\[x]\ is isomorphic to C((x)).

Note that the example in Section 1 shows Theorem 2.6 fails if R is not closed. We
end with two results on the extended centroid of R((x)).

THEOREM 2.7. For any prime ring R, R[[x]\ and R((x)) have isomorphic extended
centroids.

Proof. Let D and E denote the extended centroids of /?[[*]] and R((x)) respectively.
Choose (hV) 6 D and define U' = {x"m/ | / e U, m > 0}. If x^f, x~"g e U' with m > n
then x~mf + x~ng=x'm(f + xm-"g)eU'. If heR((x)) such that h=x~'k, where />0
and keR[[x]\, then X-mfh=x-(m+l)fkeU'. Hence U' is a nonzero ideal of R((x)).
Define <p':U'^R((x)) by (p'(x-mf)=x-m(p(f). If x~mf = x-ng with m >n then <£(/) =
jtm~'10(g), which shows that x~m^>(f) = x~n(p{g). Using the above computations, one can
verify that ($ ' , U')eE. The mapping ((/>, U)-*((f>', U') gives the desired isomorphism
from D to E. The fact that every nonzero ideal of R((x)) intersects R[[x]] nontrivially
implies this mapping is onto.

COROLLARY 2.8. Let R be a closed prime ring with extended centroid C. Then R((x))
is closed prime with extended centroid C((x)).
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