MAPS WITH LOCALLY FLAT SINGULAR SETS

J. G. TIMOURIAN

1. Introduction. A map $f: M \to N$ is topologically equivalent to $g: X \to Y$ if there exist homeomorphisms $\alpha: M \to X$ and $\beta: N \to Y$ such that $\beta f \alpha^{-1} = g$. At $x \in M$, f is locally topologically equivalent to g if, for every neighbourhood $W \subset M$ of x, there exist neighbourhoods $U \subset W$ of x and V of f(x) such that $f|U: U \to V$ is topologically equivalent to g.

1.1. Definition. Given a map $f: M \to N$ and $x \in M$, let F be the component of $f^{-1}(f(x))$ containing x. The singular set A_f is defined as follows: $x \in M - A_f$ if and only if there are neighbourhoods U of F and V of f(x) such that $f| U: U \to V$ is topologically equivalent to the product projection map of $V \times F$ onto V.

Given maps $\psi: P \to Q$ and $\omega: R \to S$, define $\psi \times \omega: P \times R \to Q \times S$ by $\psi \times \omega(p, r) = (\psi(p), \omega(r))$. Define the *open cone* c(P) to be the identification space obtained from $P \times [0, 1)$ by identifying $P \times \{0\}$ to a point p^* . The cone of the empty set will be a point. Let ι be the identity map on [0, 1), and let the *cone map* $c(\psi): c(P) \to c(Q)$ be the map induced by $\psi \times \iota$. Let ι_k be the identity map on E^k .

A symbol such as N^p will denote a manifold of dimension p. A submanifold K^q of N^p is said to be *locally flat* if for each $x \in K^q$ there exist a neighbourhood U of x in N^p and a homeomorphism α : $(U, U \cap K^q) \rightarrow (E^p, E^q)$. Let G be the ring of integers Z or a field of characteristic p, p prime or zero. For the definition of a *cohomology n-manifold* (denoted by *n*-cm) over G see [3, p. 9, Definition 3.3]. An *n*-cm is *sphere-like* if it has the cohomology groups of an *n*-sphere.

If $A \subset M$, then M - A is said to be *locally simply connected* at $x \in A$ if for each open neighbourhood W of x there exists an open neighbourhood $U \subset W$ of x such that continuous images of S^1 in U - A are null-homotopic in W - A.

A map $f: M \to N$ is proper if for each compact set $K \subset N, f^{-1}(K)$ is compact.

1.2. THEOREM. Let M be an n-cm over G and f: $M \to N^p$ a proper map such that

(1) $f|A_f$ is a homeomorphism, $f^{-1}(f(A_f)) = A_f$, and

(2) $f(A_f)$ is a locally flat q-manifold.

Then q < p, and at $x \in A_f$ the map f is locally topologically equivalent to $c(\psi) \times \iota_q$, where $\psi: K \to S^{p-q-1}$ is a bundle map, $K = \phi$ when n < p, and K

Received April 1, 1969. This research was supported by NSF Grant GP-8888.

916

is a sphere-like (n - q - 1)-cm when $n \ge p$. In addition, if $n \ge p$ and $f^{-1}(y)$ is a manifold for each y in a neighbourhood of f(x), then

(a) when q = p - 2, $\psi: S^1 \to S^1$ is a d-to-1 covering map;

(b) if $M^n - A_f$ is locally simply connected at x and G = Z, then K is a homotopy sphere;

(c) if $q \leq p-3$ and the hypothesis of (b) holds, then q = p-3, p-5, or p-9, and $\psi: S^{2p-2q-3} \rightarrow S^{p-q-1}$ has fibre S^1 , T^3 (homotopy 3-sphere) or S^7 .

1.3. *Remark.* Note that f in Theorem 1.2 is actually a singular fibering when $n \ge p$ [5, p. 71]. The additional hypothesis in (b) is satisfied if M^n is a manifold and f is C^n [5, p. 72, Theorem 1.3], or if $f^{-1}(y)$ is a manifold and A_f is locally flat. When q = p - 3 in (c), the map ψ can be taken to be the Hopf map [10, p. 64, Lemma 2.7]. Antonelli [1; 2] has classified singular fiberings of spheres when A_f and $f(A_f)$ are locally flat manifolds.

A compact set is said to be *G*-acyclic if it has the *G*-cohomology groups of a point.

1.4. THEOREM. Let $f: M^n \to N^p$, n > p, be a proper C^n map such that every component of $f^{-1}(y) \cap A_f$ is Z_2 -acyclic for each $y \in N^p$. Then there exists a closed set $Y \subset f(A_f)$ with dim $Y < \max(0, \dim f(A_f))$ so that if $y \in N^p - Y$ and F is a component of $f^{-1}(y)$, then there are neighbourhoods U of F and V of y such that $f|U: U \to V$ is topologically equivalent to $\theta\lambda$, where

(a) $\lambda: U \to X$ is a monotone map onto the n-cm (over Z_2) X with $A_{\lambda} \subset A_f$, and

(b) $\theta: X \to E^p$ satisfies the hypothesis of Theorem 1.2.

1.5. Remark. Theorem 1.4 was proved in [6] for singular fiberings. Note that if $F \subset M^n - A_f$, then λ can be taken to be the identity homeomorphism and $A_{\theta} = \emptyset$.

2. Proofs of Theorems 1.2 and 1.4.

2.1. LEMMA. If $\theta: X \to c(K) \times E^q$ is a proper singular fibering with K a compact manifold and $\theta(A_{\theta}) = \{k^*\} \times E^q$, then there exists a bundle with total space L, base space K, and map $\psi: L \to K$ such that θ is topologically equivalent to

$$c(\psi) \times \iota_q: c(L) \times E^q \to c(K) \times E^q.$$

Proof. Consider the fiber bundle ξ with map

 $i^{-1} \circ \theta | X - A_{\theta} : A - A_{\theta} \to K \times (0, 1) \times E^{q},$

where

$$i: K \times (0, 1) \times E^q \to c(K) \times E^q - \theta(A_{\theta})$$

is the inclusion map. It follows from [9, p. 53, Theorem 11.4] that ξ is equivalent to a bundle of the form $\xi' \times (0, 1) \times E^q$, where ξ' is a bundle with total space L, base space K, and map $\psi: L \to K$. Thus by definition of bundle

J. G. TIMOURIAN

equivalence, there exists a homeomorphism h such that the following diagram commutes:

$$\begin{array}{ccc} X - A_{\theta} & \xrightarrow{h} L \times (0, 1) \times E^{q} \\ & & \downarrow \theta | X - A_{\theta} & & \downarrow \psi \times \iota \times \iota_{q} \\ c(K) \times E^{q} - \theta(A_{\theta}) \xrightarrow{i^{-1}} K \times (0, 1) \times E^{q} \end{array}$$

The map $\psi \times \iota \times \iota_q$ has an extension to $c(\psi) \times \iota_q: c(L) \times E^q \to c(K) \times E^q$. Extend the map h to a homeomorphism \bar{h} of X onto $c(L) \times E^q$ by defining $\bar{h}(x) = (c(\psi) \times \iota_q)^{-1}(\theta(x))$ for $x \in A_{\theta}$, $\bar{h} = h$ otherwise. Since $\theta(A_{\theta})$ and $c(\psi) \times \iota_q | l^* \times E^q$ are both one-to-one, \bar{h} is well-defined and one-to-one. If $y \in l^* \times E^q$, then $y = (l^*, t)$ for some $t \in E^q$. Then $x = \theta^{-1}((c(\psi) \times \iota_q)(l^*, t))$ is mapped by \bar{h} into y, and so \bar{h} is onto. The continuity of \bar{h} and \bar{h}^{-1} follows from the condition that θ and $c(\psi) \times \iota_q$ are proper.

2.2. Proof of Theorem 1.2. Suppose that q = p. Then there is an open set $V \subset f(A_f)$, and if U is a component of $f^{-1}(V)$, then $f \mid U$ is a homeomorphism. Since U is open in M, $U \subset M - A_f$, which is a contradiction; hence q < p. If n < p, then $M \subset A_f$, and so conclusions of the theorem are satisfied with $K = \phi$.

Assume that $n \ge p$. Lemma 2.1 implies that since $f(A_f)$ is locally flat, if $x \in A_f$ there exist a neighbourhood V of f(x), a homeomorphism α sending $(V, V \cap f(A_f))$ onto $(c(S^{p-q-1}) \times E^q, s^* \times E^q)$, and a component U of $f^{-1}(V)$ containing x such that f | U is topologically equivalent to $c(\psi) \times \iota_q$, where ψ : $K \to S^{p-q-1}$ is a bundle map. Since $c(K) \times E^q$ is an n-cm over G, c(K) is an (n-q)-cm over G [3, p. 15, Theorem 4.10]. From the cohomology sequence with compact supports of the pair $(c(K), k^*)$ and the Künneth formula, it follows that K is a sphere-like (n-q-1)-cm over G.

Assume that $n \ge p$ and $f^{-1}(y)$ is a manifold for each y in a neighbourhood of f(x). If q = p - 2 and $n \ge p$, then the bundle map $\psi: K \to S^1$ can be factored into a monotone bundle map g onto S^1 followed by a d-to-1 covering map. By the homotopy sequence for a fibering [8, p. 377, Theorem 10] and [6, p. 45, Theorem 6.1], $H_1(K; Z)$ has a summand Z. Thus $\overline{H}^1(K; Z)$ has a summand Z, and hence K is S^1 and ψ is a d-to-1 covering map.

Let $M - A_f$ be locally simply connected at x. Let $W \subset U$ be a neighbourhood of x such that $i_*: \pi_1(W - A_f) \to \pi_1(U - A_f)$ induced by inclusion is the zero map. There exists a neighbourhood $V' \subset V$ so that the component U' of $f^{-1}(V')$ containing x is contained in W and $U' - A_f$ is a deformation retract of $U - A_f$. The inclusion map $j: U' - A_f \to U - A_f$ induces an isomorphism on fundamental groups, but since j can be factored through $W - A_f, \pi_1(U - A_f) = 0$ and K is a homotopy sphere. The conclusions desired in (c) follow from [4] (see [10, p. 64, Lemma 2.7]). A map f is quasi-monotone if for each region V in the range and component U of $f^{-1}(V)$, f(U) = V.

2.3. Remark. Let M be an orientable *n*-cm over G, $n \ge p$, N^p connected, and let $f: M \to N^p$ be a proper map. If each component of $f^{-1}(y) \cap A_f$ is G-acyclic, $y \in N^p$, then

- (1) if dim $f(A_f) = p, n = p;$
- (2) if dim $f(A_f) , then$
 - (a) f is quasi-monotone, and
 - (b) there exists a positive integer k such that if $y \in N^p f(A_f)$, then $f^{-1}(y)$ has exactly k components, while if $y \in f(A_f)$, $f^{-1}(y)$ has at most k components.

Proof. We may as well assume that M is connected. Let hg be the monotone light factorization of f [13, p. 141, Theorem 4.1]. Since M is orientable, $H_c^n(U; G) = G$ for any connected open subset U of M [3, p. 11, Theorem 4.3]. Thus $H_c^n(g(U); G) = G$ [8, p. 346, Theorem 18]. Since light maps cannot lower dimension [7, p. 91, Theorem VI7] we have dim $g(U) \leq \dim f(U)$. If V is an open euclidean subset of N^p contained in $f(A_f)$, then let U be a component of $f^{-1}(V)$. Then dim $g(U) \geq n$, but dim f(U) = p, which implies that n = p when dim $f(A_f) = p$.

Suppose that dim $f(A_f) . If V is a region in <math>N^p$ and U a component of $f^{-1}(V)$, then $f|U - f^{-1}(f(A_f))$ is a proper open map into the connected set $V - f(A_f)$. If $f(U) \neq V$, then $f(U) \subset V \cap f(A_f)$, since any point in $V \cap f(A_f)$ is a limit point of $V - f(A_f)$. Thus dim $g(U) \leq p - 2$, which is a contradiction to $n \geq p$. Hence f(U) = V and f is quasi-monotone. The proof of (2) (b) is similar to the second paragraph of the proof for [10, p. 64, Lemma 2.5].

2.4. LEMMA. Suppose that $f: M \to N^p$ is a proper map, M an orientable n-cm over $G, n > p, f(A_f)$ a locally flat q-manifold, and $f^{-1}(y)$ is G-acyclic for $y \in f(A_f)$. Then $f = \theta \lambda$, where

(a) $\lambda: M \to X$ is a monotone map onto the orientable n-cm X with $A_{\lambda} \subset A_{f}$, and

(b) $\theta: X \to N^p$ satisfies the hypothesis of Theorem 1.2.

Proof. Let λ be the map corresponding to a decomposition of M with non-degenerate elements consisting of inverse images of points in $f(A_f)$. Since λ is acyclic, $\lambda(M) = X$ is an orientable *n*-cm over G [14, p. 21, Theorem 2], and $A_{\lambda} \subset A_f$. Let θ correspond to the decomposition of M whose nondegenerate elements are inverse images of points in $N^p - f(A_f)$. Then $f = \theta \lambda$ and $\theta | A_{\theta} : A_{\theta} \to f(A_f)$ is a homeomorphism. In addition, $\theta^{-1}(\theta(A_{\theta})) = A_{\theta}$.

2.5. *Proof of Theorem* 1.4. Follows immediately from Lemma 2.4 and [12, Theorem 1.2].

J. G. TIMOURIAN

2.6. Definition. Let $f: M^n \to N^p$. The branch set $B_f \subset M^n$ is defined by: $x \in M^n - B_f$ if and only if f at x is locally topologically equivalent to the natural product projection map of E^n onto E^p .

2.7. COROLLARY. Let $f: M^{n+1} \rightarrow N^n$ satisfy the hypothesis of Lemma 2.4 with G = Z. Then

- (a) X is an (n + 1)-manifold, and
- (b) at $x \in B_{\theta}$, θ is locally topologically equivalent to $c(\psi) \times \iota_q$, where q = n 3, θ is open, and $\psi: S^3 \to S^2$ is the Hopf map, or q = n 1 and $\psi: S^1 \to S^0$ is a constant map.

Proof. By Lemma 2.4 we know that X is an (n + 1)-cm over Z and that θ satisfies the hypothesis of Theorem 1.2. Thus at $x \in A_{\theta}$, θ is locally topologically equivalent to $c(\psi) \times \iota_q$, where $\psi: K \to S^{n-q-1}$ is a bundle map and K is an (n - q)-manifold with the Z cohomology groups of a sphere. If q = n - 1, then clearly $\psi: S^1 \to S^0$ is a constant map and X is an (n + 1)manifold; thus suppose that $q \leq n-2$. The bundle map ψ can be factored into a monotone bundle map followed by a finite covering map. Since the intermediate space is always homeomorphic to S^{n-q-1} , we will consider only the situation in which ψ is itself monotone; thus the fibre is S¹. If n - q - 1 = 1, then K is either $S^1 \times S^1$ or the Klein bottle, neither of which is a cohomology sphere. If $n - q - 1 \ge 2$, we can reduce the structure group of the bundle to S^1 (see third paragraph of proof for [10, p. 64, Lemma 2.7]). Now by [9, p. 99, Theorem 18.5], K is $S^{n-1} \times S^1$ for n - q - 1 > 2, while K is a lens space for n - q - 1 = 2 [9, p. 135, 26.2]; thus the Hopf map is the only possibility for ψ and X is an (n + 1)-manifold. It follows from [11, Proposition 2.1] that $A_{\theta} = B_{\theta}$.

References

- P. L. Antonelli, Montgomery-Samelson singular fiberings of spheres, Proc. Amer. Math. Soc. 22 (1969), 247-250.
- Structure theory for Montgomery-Samelson fiberings between manifolds. I, Can. J. Math. 21 (1969), 170–179.
- 3. A. Borel, Seminar on transformation groups, Annals of Math. Studies, No. 46 (Princeton Univ. Press, Princeton, N. J., 1960).
- 4. W. Browder, Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963), 353-375.
- 5. P. T. Church and J. G. Timourian, Fiber bundles with singularities, J. Math. Mech. 18 (1968), 71-90.
- 6. S. T. Hu, Homotopy theory (Academic Press, New York, 1959).
- 7. W. Hurewicz and H. Wallman, *Dimension theory*, 2nd ed. (Princeton Univ. Press, Princeton, N. J., 1948).
- 8. E. H. Spanier, Algebraic topology (McGraw-Hill, New York, 1966).
- 9. N. Steenrod, *The topology of fibre bundles*, Princeton Mathematical Series, Vol. 14 (Princeton Univ. Press, Princeton, N. J., 1951).
- 10. J. G. Timourian, Fiber bundles with discrete singular set, J. Math. Mech. 18 (1968), 61-70.
- 11. Maps with discrete branch sets between manifolds of codimension one, Can. J. Math. 21 (1969), 660–668.

- 12. —— Singular maps on manifolds (to appear in Duke Math. J.).
- G. T. Whyburn, Analytic topology, 2nd ed., Amer. Math. Soc. Colloq. Publ., Vol. 28 (Amer. Math. Soc., Providence, R.I., 1963).
- 14. R. L. Wilder, Monotone mappings of manifolds. II, Michigan Math. J. 5 (1958), 19-23.

The University of Tennessee, Knoxville, Tennessee