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MAPS WITH LOCALLY FLAT SINGULAR SETS 

J. G. TIMOURIAN 

1. Introduction. A map / : M —> N is topologically equivalent tog: X —> Y 
if there exist homeomorphisms a: M —» X and 0: iV —> F such that /3/ÛT1 = g. 
At x Ç M, f is locally topologically equivalent to g if, for every neighbourhood 
W C -M of x, there exist neighbourhoods Z7 C W of x and V of / (x ) such 
that /|Z7: U—•> V is topologically equivalent to g. 

1.1. Definition. Given a m a p / : M —* N and i f f , let F be the component 
of / _ 1 ( / (x) ) containing x. The singular set Afis defined as follows: x G M — Af 

if and only if there are neighbourhoods U of F and V of / (x) such that 
f\ U: U —» F is topologically equivalent to the product projection map of 
V X F onto F. 

Given maps ^: P -> Q and co: P -> 5, define ^ X co:P X i ^ - X ? X 5 by 
\p X u{p,r) = ("tip)y w(r)). Define the 0/>ew owe c(P) to be the identification 
space obtained from P X [0, 1) by identifying P X {0} to a point £*. The 
cone of the empty set will be a point. Let i be the identity map on [0, 1), 
and let the cone map c(\f/): c(P) —> c(Q) be the map induced by x// X t. Let 
I*: be the identity map on Ek. 

A symbol such as Np will denote a manifold of dimension p. A submanifold 
Ka of Nv is said to be locally flat if for each x £ KQ there exist a neighbourhood 
£7 of x in i\^ and a homeomorphism a: (Z7, Z7 C\ Kq) -> (£p, E«). Let G be 
the ring of integers Z or a field of characteristic p, p prime or zero. For the 
definition of a cohomology n-manifold (denoted by «-cm) over G see [3, p. 9, 
Definition 3.3]. An n-cm is sphere-like if it has the cohomology groups of an 
«-sphere. 

If A C M, then M — A is said to be locally simply connected at x £ A if 
for each open neighbourhood IF of x there exists an open neighbourhood 
U C. IF of x such that continuous images of 5 1 in U — A are null-homotopic 
in I F - A. 

A map/ : M —> N is proper if for each compact set K C N,f~l(K) is compact. 

1.2. THEOREM. Le/ ikf &e an n-cm over G and f: M —> Np a proper map such 
that 

(1 ) f\ A f is a homeomorphism, f~l(f{Af)) = A f, and 
(2) f(Af) is a locally flat q-manifold. 

Then q < p, and at x Ç Af the map f is locally topologically equivalent to 
c(\f/) X iqj where \p: K —>Sv~a~l is a bundle map, K = <t> when n < p, and K 
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is a sphere-like {n — q — l)-cm when n ^ p. In addition, if n ^ p andf~l{y) 
is a manifold for each y in a neighbourhood off{x), then 

(a) when q = p — 2, \p\ Sl —> S1 is a d-to-l covering map; 
(b) if Mn — Af is locally simply connected at x and G = Z, then K is a 

homotopy sphere; 
(c) if q g p — 3 and the hypothesis of (b) holds, then q = p — 3, p — 5, or 

p - 9, and ^: S2p~2q~3 -> S^-1 has fibre S1, Tz {homotopy 3-sphere) or S7. 

1.3. Remark. Note that / in Theorem 1.2 is actually a singular fibering 
when n ^ p [5, p. 71]. The additional hypothesis in (b) is satisfied if Mn is 
a manifold a n d / is Cn [5, p. 72, Theorem 1.3], or if f~l{y) is a manifold and 
Af is locally flat. When q = p — 3 in (c), the map x// can be taken to be the 
Hopf map [10, p. 64, Lemma 2.7]. Antonelli [1; 2] has classified singular 
fiberings of spheres when Af and/(A f) are locally flat manifolds. 

A compact set is said to be G-acyclic if it has the G-cohomology groups 
of a point. 

1.4. THEOREM. Let f: Mn —» Np, n > p, be a proper Cn map such that every 
component of f~x(y) C\ Af is Z2-acyclic for each y G Np. Then there exists a 
closed set Y Cf(Af) with dim Y < max(0, dimf(Af)) so that if y 6 Np — Y 
and F is a component of f~x{y), then there are neighbourhoods U of F and V of 
y such that f\ U: U —•> V is topologically equivalent to 6\, where 

(a) X: U —> X is a monotone map onto the w-cm {over Z2) X with A\ C Af, 
and 

(b) 6: X —> Ep satisfies the hypothesis of Theorem 1.2. 

1.5. Remark. Theorem 1.4 was proved in [6] for singular fiberings. Note 
that if F C Mn — A f, then X can be taken to be the identity homeomorphism 
and A e = 0. 

2. Proofs of Theorems 1.2 and 1.4. 

2.1. LEMMA. If 6: X —> c{K) X EQ is a proper singular fibering with K a 
compact manifold and 6{AQ) = {k*} X EQ, then there exists a bundle with total 
space L, base space K, and map \p: L —» K such that 6 is topologically 
equivalent to 

c{$) X iff: c{L) X £ff -> c{K) X £*. 

Proof. Consider the fiber bundle J with map 

i-1 o e\X - Ae: A - Ae-^K X (0, 1) X E\ 
where 

i:K X (0, 1) X E« -> c{K) X £ff - 0(4,) 

is the inclusion map. It follows from [9, p. 53, Theorem 11.4] that J is equivalent 
to a bundle of the form £' X (0, 1) X EQ, where £' is a bundle with total 
space L, base space K, and map \j/\ L —> K. Thus by definition of bundle 
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equivalence, there exists a homeomorphism h such that the following diagram 
commutes: 

X-A, -^IX(0,1)X£* 

6\X - Ae i f X i X i , 
— l 

c(K) XEQ -e(Ae)-^KX (0,1) X EQ 

The map \p X i X iq has an extension to cty) X iq: c(L) X EQ —> c{K) X £ ç . 
Extend the map h to a homeomorphism Â of X onto c(L) X Eq by defining 
Â(#) = (cO/0 X ^) - 1 (^ ( x ) ) I 0 r oc ^ Ae, h = h otherwise. Since 6(Ae) and 
c{\p) X iff|Z* X EQ are both one-to-one, Â is well-defined and one-to-one. If 
y e I* X £*, then y = (/*, /) for some t £ E*. Then x = 0-l((c($) X iff) (/*, /)) 
is mapped by Â into 3/, and so h is onto. The continuity of h and A-1 follows 
from the condition that 6 and c(\f/) X tff are proper. 

2.2. Proof of Theorem 1.2. Suppose that q = p. Then there is an open set 
V ÇZf(Af), and if U is a component o f / _ 1 (F ) , then / | U is a homeomorphism. 
Since Z7 is open in M, U C M — Af, which is a contradiction; hence q < p. 
\i n < p, then Jlf C Af, and so conclusions of the theorem are satisfied with 
K = 4>. 

Assume that n ^ p. Lemma 2.1 implies that since f{Af) is locally flat, if 
x G Af there exist a neighbourhood V of f(x), a homeomorphism a sending 
(F, Vr\f(Af)) onto (cCS*-*-1) XE\ s* X Efl), and a component £/of / " H ^ ) 
containing x such t h a t / | [7 is topologically equivalent to c(\//) X iq, where \f/: 
K —> Sv~q~l is a bundle map. Since c(K) X £ ? is an w-cm over G, c(K) is an 
(w — g)-cm over G [3, p. 15, Theorem 4.10], From the cohomology sequence 
with compact supports of the pair (c(K), k*) and the Kiinneth formula, it 
follows that K is a sphere-like (n — q — l)-cm over G. 

Assume that n ^ p and/ - 1 (30 is a manifold for each y in a neighbourhood 
of / ( x ) . If q = p — 2 and n ̂  p, then the bundle map \p: K —> S1 can be 
factored into a monotone bundle map g onto 5 1 followed by a d-to-1 covering 
map. By the homotopy sequence for a fibering [8, p. 377, Theorem 10] and 
[6, p. 45, Theorem 6.1], Hi(K\Z) has a summand Z. Thus Hl{K\ Z) has a 
summand Z, and hence K is 5 1 and \p is a d-to-1 covering map. 

Let ilf — ^4/ be locally simply connected at x. Let If C U be a neighbour
hood of x such that ^*: TTI(W — -4/) —» 7ri(C7 — -4/) induced by inclusion is 
the zero map. There exists a neighbourhood V C F so that the component 
£/' of f~x(V') containing x is contained in W and Z7' — Af is a deformation 
retract of U — Af. The inclusion map j : U' — Af—>U — Af induces an 
isomorphism on fundamental groups, but since j can be factored through 
W — Af, wi(U — Af) = 0 and K is a homotopy sphere. The conclusions 
desired in (c) follow from [4] (see [10, p. 64, Lemma 2.7]). 
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A map / is quasi-monotone if for each region V in the range and component 
Uoitl(V)J(U) = V. 

2.3. Remark. Let M be an orientable n-cm over G, n ^ p, Np connected, 
and let / : M —> Np be a proper map. If each component of f~x(y) P\ Af is 
G-acyclic, 3/ G iVp, then 

(1) if d im/04 , ) = p,n = p; 
(2) if d i m / ( 4 / ) < £ - 1, then 

(a) / is quasi-monotone, and 
(b) there exists a positive integer k such that if y £ -/Vp — f(Af), then 

f~l{y) has exactly & components, while if y £ f(Af), f~*(y) has at 
most & components. 

Proof. We may as well assume that M is connected. Let hg be the monotone 
light factorization of / [13, p. 141, Theorem 4.1]. Since M is orientable, 
Hc

n(U; G) — G for any connected open subset Uof M [3, p. 11, Theorem 4.3]. 
Thus Hc

n(g(U); G) = G [8, p. 346, Theorem 18]. Since light maps cannot 
lower dimension [7, p. 91, Theorem VI7] we have dim g(U) ^ dim f(U). If 
V is an open euclidean subset of Np contained in f(Af), then let U be a 
component of /~ 1(F) . Then dim g(U) ^ », but dim/(L7) = £, which implies 
that n = p when dim/(^4 r) = p. 

Suppose that dimf(Af) < p — 1. If F i s a region in iVp and f/a component 
o f / - 1 ( F ) , then / | U — / _ 1 ( / ( ^ / ) ) is a proper open map into the connected 
set V - f(Af). If / ( [ / ) ^ F, then /(£/) C F n / ( i , ) , since any point in 
Vr\f(Af) is a limit point of V - f(Af). Thus dimg([7) ^ p - 2, which is 
a contradiction to n ^ p. Hence /(£/) = F and / is quasi-monotone. The 
proof of (2) (b) is similar to the second paragraph of the proof for [10, p. 64, 
Lemma 2.5]. 

2.4. LEMMA. Suppose that f: M —> Np is a proper map, M an orientable 
n-cm over G, n > p,f(Af) a locally flat q-manifold, andf~1(y) is G-acyclic for 
y G f(Af). Then f = 6\, where 

(a) X: M —» X is a monotone map onto the orientable n-cm X with A\ C Af, 
and 

(b) 6: X —> Np satisfies the hypothesis of Theorem 1.2. 

Proof. Let X be the map corresponding to a decomposition of M with 
non-degenerate elements consisting of inverse images of points mf(Af). Since 
X is acyclic, \(M) = X is an orientable n-cm over G [14, p. 21, Theorem 2], 
and A\ C Af. Let 6 correspond to the decomposition of M whose non-
degenerate elements are inverse images of points in Np — f(Af). T h e n / = 0X 
and 6\Ae: Ae —*f(Af) is a homeomorphism. In addition, B~l{d(Ae)) = Ae. 

2.5. Proof of Theorem 1.4. Follows immediately from Lemma 2.4 and 
[12, Theorem 1.2]. 
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2.6. Definition. Let / : Mn -> Np. The branch set BfC Mn is defined by: 
x Ç Mn — Bf if and only if / at x is locally topologically equivalent to the 
natural product projection map of En onto Ep. 

2.7. COROLLARY. Let f: Mn+1 —> iVw satisfy the hypothesis of Lemma 2.4 w/fe 
G = Z. Then 

(a) X w #w (n + I)-manifold, and 
(b) at x (z Be, 6 is locally topologically equivalent to cty) X iq, where 

q = n — 3, 6 is open, and \f/: 5 3 —> S2 is the Hopf map, or q — n — 1 
and \p: S1 —> S° is a constant map. 

Proof. By Lemma 2.4 we know that X is an (n + l)-cm over Z and that 
0 satisfies the hypothesis of Theorem 1.2. Thus at # G ^0, 0 is locally 
topologically equivalent to c($i) X tq, where x//: K —> Sn~q~l is a bundle map 
and K is an (n — q) -manifold with the Z cohomology groups of a sphere. 
If q = n — 1, then clearly ^: 5 1 —> S° is a constant map and X is an (w + 1)-
manifold; thus suppose that q ^ n — 2. The bundle map ^ can be factored 
into a monotone bundle map followed by a finite covering map. Since the 
intermediate space is always homeomorphic to Sn~Q~1, we will consider only 
the situation in which \p is itself monotone; thus the fibre is S1, lin — q— 1 = 1, 
then K is either S1 X Sl or the Klein bottle, neither of which is a cohomology 
sphere. If n — q — 1 ^ 2 , we can reduce the structure group of the bundle 
to S1 (see third paragraph of proof for [10, p. 64, Lemma 2.7]). Now by 
[9, p. 99, Theorem 18.5], K is Sn~l X S1 for n - q - 1 > 2, while K is a lens 
space for n — q — 1 = 2 [9, p. 135, 26.2]; thus the Hopf map is the only 
possibility for \f/ and X is an (n + l)-manifold. It follows from [11, 
Proposition 2.1] that Ae = Be. 

REFERENCES 

1. P. L. Antonelli, Montgomery-Samelson singular fiberings of spheres, Proc. Amer. Math . 
Soc. 00 (1969), 247-250. 

2. Structure theory for Montgomery-Samelson fiberings between manifolds. I, Can. J. 
Math. 21 (1969), 170-179. 

3. A. Borel, Seminar on transformation groups, Annals of Math. Studies, No. 46 (Princeton 
Univ. Press, Princeton, N. J., 1960). 

4. W. Browder, Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963), 353-375. 
5. P. T. Church and J. G. Timourian, Fiber bundles with singularities, J. Math. Mech. 18 

(1968), 71-90. 
6. S. T. Hu, Homotopy theory (Academic Press, New York, 1959). 
7. W. Hurewicz and H. Wallman, Dimension theory, 2nd ed. (Princeton Univ. Press, 

Princeton, N. J., 1948). 
8. E. H. Spanier, Algebraic topology (McGraw-Hill, New York, 1966). 
9. N. Steenrod, The topology of fibre bundles, Princeton Mathematical Series, Vol. 14 

(Princeton Univ. Press, Princeton, N. J., 1951). 
10. J. G. Timourian, Fiber bundles with discrete singular set, J. Math. Mech. 18 (1968), 61-70. 
11. Maps with discrete branch sets between manifolds of codimension one, Can. J. Math. 

21 (1969), 660-668. 

https://doi.org/10.4153/CJM-1970-105-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-105-7


MAPS 921 

12. Singular maps on manifolds (to appear in Duke Math. J.). 
13. G. T. Whyburn, Analytic topology, 2nd éd., Amer. Math. Soc. Colloq. Publ., Vol. 28 

(Amer. Math. Soc, Providence, R.I., 1963). 
14. R. L. Wilder, Monotone mappings of manifolds. II , Michigan Math. J. 5 (1958), 19-23. 

The University of Tennessee, 
Knoxville, Tennessee 

https://doi.org/10.4153/CJM-1970-105-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-105-7

