
J. Fluid Mech. (2023), vol. 964, A35, doi:10.1017/jfm.2023.389

Obstructed free-surface viscoplastic flow on an
inclined plane

Edward M. Hinton1,†, Duncan R. Hewitt2 and Andrew J. Hogg3

1School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
2Department of Mathematics, University College London, London WC1H 0AY, UK
3School of Mathematics, University of Bristol, Woodland Road, Bristol BS8 1UG, UK

(Received 24 January 2023; revised 30 April 2023; accepted 3 May 2023)

The interaction of steady free-surface flows of viscoplastic material with a surface-piercing
obstruction of square cross-section on an inclined plane is investigated theoretically. The
flow thickness increases upstream of the obstruction and decreases in its lee. The flow
depends on two dimensionless parameters: an aspect ratio that relates the flow thickness,
the obstruction width and the plane inclination; and a Bingham number that quantifies
the magnitude of the yield stress relative to the gravitationally induced stresses. Flows
with a non-vanishing yield stress always form a static ‘dead’ zone in a neighbourhood
of the upstream and downstream stagnation points. For relatively wide obstructions, a
deep ‘ponded’ region develops upstream with a small dead zone, while the deflected
flow reconnects over relatively long distances downstream. The depth of the upstream
pond increases with both the dimensionless yield stress and width of the obstruction,
while the unyielded dead zone varies primarily with the yield stress. Both are predicted
asymptotically by balancing the volume flux of fluid into and out of the ponded region.
When the obstruction is narrow, the perturbation to the depth of the oncoming flow is
reduced. It exhibits fore–aft antisymmetry, while the dead zone is symmetric to leading
order. Increasing the yield stress leads to larger dead zones that eventually encompass all
of the upstream- and downstream-facing boundaries of the obstruction and fully divert
the flow. Results for obstructions with circular and rhomboidal cross-sections are also
presented and illustrate the effects of boundary shape on the properties of the steady flow.
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1. Introduction

Free-surface flows of fluids that have a yield stress are common in the environment.
Examples include lava flows, fluidised mine tailings, mud slides and avalanches (Coussot
& Proust 1996; Fink & Griffiths 1998; Hu & Bürgmann 2020). Often these flows interact
with topography and obstructions such as trees and constructed barriers (Tai et al. 2001;
Barberi et al. 2003; Dietterich et al. 2015; Bernabeu, Saramito & Harris 2018; Chevrel
et al. 2019). However, the all-important role of the yield stress that influences these
interactions is not well-understood. In this paper, we analyse the steady interaction between
a free-surface viscoplastic flow (with negligible inertia) and a cylindrical obstruction on
an inclined plane (see figure 1a).

There has been substantial research on Newtonian free-surface flows around
obstructions, which provides a foundation for analysing the viscoplastic case. Investigating
these flows is challenging owing to their nonlinear governing equations, even when a
lubrication approximation is applied. This has motivated a multitude of numerical methods
to simulate the motion including boundary integral formulations and finite element
techniques (Baxter et al. 2009; Sellier et al. 2009). These works focused on very thin films,
in which the effects of interfacial surface tension play a key role. Some of the observed
features, such as a capillary ridge upstream of a step-down in the substrate, appear only
when surface tension is dominant (Kalliadasis, Bielarz & Homsy 2000). However, other
results, including the horseshoe-like flow deflection, are universal to the interaction of
slow flows with obstructions, even when gravity dominates surface tension.

Steady viscous free-surface flows around cylinders of various cross-sections have
recently been studied by Hinton, Hogg & Huppert (2020). They showed that the width
of the cylinder relative to the thickness of the oncoming flow (and the slope inclination)
was the key parameter determining the nature and magnitude of the interaction, and
they constructed asymptotic solutions in both the regimes of very narrow and very wide
obstructions. The latter can be encapsulated in a simple balance of volume fluxes that
enables the prediction of the upstream flow thickness in the relatively deep flow just
upstream of the obstruction. The key idea was that the flux in the normal direction to
the obstruction vanishes throughout the upstream deep region resulting in a ‘pond’-like
free-surface.

In this contribution, we focus on steady flows of viscoplastic materials, which are
characterised by a ‘yield stress’. For deviatoric stresses below the yield stress, the material
is rigid and when the yield stress is exceeded, the material yields and flows as a fluid albeit
with an adjusted relationship between the stress and rate of strain tensor. Free-surface
viscoplastic flows generally consist of two distinct regions. Near the substrate over which
the material flows, there is typically a sufficiently large shear stress so that the material
yields with a significant velocity gradient perpendicular to the substrate. In the upper
portion of the layer the material is rigid since the stress vanishes at the free surface. The
layer is partitioned into a yielded region below a rigid region with the boundary known as
the ‘yield surface’. This simple description can require a subtle alteration to be compatible
with lubrication theory. In cases where the thickness varies along the flow, the stress in
the upper region just exceeds the yield stress with the vertical velocity gradient being
negligible but non-zero (Balmforth & Craster 1999). In this case, the upper region behaves
kinematically as a rigid (pseudo) plug but its slight yielding allows extensional variation in
the flow. It is also worth noting that when the (pseudo) plug extends down to the substrate,
the entire layer is truly rigid.

Previously, obstructed viscoplastic flows have mostly been studied in the context of
simplified geometries. Examples include flow in the narrow gap between two plates with
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Figure 1. (a) Schematic of the steady free-surface flow. (b) Schematic of the flow along the centreline
indicating the kinematically plugged region, which comes to encompass the entire layer near the stagnation
points. (c) Steady flow thickness for B = 1 and L = 1. (d) Corresponding height of the yield surface, Y .

an obstacle present in the conduit, known as a Hele-Shaw cell (Hewitt et al. 2016; Daneshi
et al. 2020), and two-dimensional flow past a cylinder (Mitsoulis 2004; Tokpavi, Magnin
& Jay 2008). In the Hele-Shaw flow, the fluid in the far field is driven by a background
pressure gradient so that it is yielded across part of the gap thickness. However, the
material becomes rigid across the entire thickness in stagnant ‘dead’ zones upstream and
downstream of the obstruction.

For the flow set-up considered in the present paper (figure 1a), the far-field flow
must be yielded near the inclined plane whilst fully rigid, ‘dead’ zones may appear
both immediately upstream and downstream of the obstruction. The steady interaction of
such flows with an isolated topographic mound was studied by Hinton & Hogg (2022).
They showed that the yield stress of the fluid reduces the diversion of flux around
the mound and also leads to a thicker accumulation of fluid upstream of the mound.
In this study we investigate the flow around a surface-piercing cylindrical obstruction,
which is substantially different to flow over a mound with smoothly varying topography.
However, the downstream reconnection of the flow in the lee of tall and wide mounds and
obstructions is similar.

There are some analogies with obstructed free-surface granular flows despite the
importance of inertia in that context. Examples include the long dead zone downstream of
wide obstructions and that in the stagnant dead zone upstream, the material is on the verge
of flowing (Cui & Gray 2013; Tregaskis et al. 2022).

The paper is structured as follows. The model is described in § 2 with the flow governed
by two dimensionless groups. Numerical results for the flow thickness and the dead zones
are reported in § 3, with full details of the numerical implementation given in Appendix A.
In § 4, we analyse flow around relatively wide obstructions. A flux balance argument is
deployed to quantify the flow thickness and this identifies the role played by the yield
stress. Some of the peripheral asymptotic details are given in Appendix B. The case of
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relatively narrow obstructions is then investigated in § 5, where we show that there is
an equivalence with flow in a Hele-Shaw cell (Hewitt et al. 2016), a connection that
allows the shape of the dead zone to be approximated. Concluding remarks are given
in § 6. Throughout we focus on obstructions with square cross-section but give the key
differences for a rhombus-shaped cross-section in Appendix C and circular cross-section
in Appendix D.

2. Theoretical model

We analyse the steady free-surface flow of a Bingham fluid on an inclined plane at
angle β to the horizontal (figure 1a). We consider a Bingham fluid because it has the
simplest constitutive law that exhibits a yield stress enabling us to identify the influence
of this phenomenon. In Bingham’s model, the fluid is rigid for stresses below the yield
stress, τ̂Y and the fluid yields with (constant) shear viscosity μ̂ when the yield stress
is exceeded (Bingham 1916; Balmforth & Craster 1999). The fluid has constant density
ρ̂. The coordinate axes are oriented as follows: the x̂ axis is directed downslope, the ŷ
axis cross-slope and the ẑ axis is perpendicular to the plane (with ẑ = 0 on the plane
surface). The steady flow thickness is denoted by ĥ(x̂, ŷ). The flow is obstructed by a
rigid obstruction with square cross-section lying in (x̂, ŷ) ∈ [−L̂, L̂] × [−L̂, L̂], which is
assumed to be sufficiently tall that the flow never surmounts the obstruction.

The flow is supplied by a line source, with infinite extent in the ŷ direction, which is
located far upstream of the obstruction and delivers a sustained flux Q̂∞ per unit length.
We assume that the flow is relatively thin, inertia-less and that surface tension is negligible.
A lubrication approximation is applied and so no-slip is not imposed on the obstruction
boundary; the effects of friction on the obstruction walls is confined to a small unimportant
boundary layer that we neglect (see Balsa 1998). The boundary conditions are therefore
no flux on the obstruction boundaries and that the flow thickness returns to its unperturbed
constant value far from the obstruction, which we denote Ĥ∞.

We non-dimensionalise in plane lengths with the obstruction half-width, L̂, and flow
thicknesses with the thickness of Newtonian flow with viscosity μ̂ (Nusselt 1916)

ĤN =
(

3μ̂Q̂∞
ρ̂ĝ sin β

)1/3

. (2.1)

This choice of thickness scale ensures that the dimensionless upstream flux is unity for any
value of the yield stress. It is equivalent to scaling the flux with Q̂∞. The dimensionless
variables are

(x, y) = (x̂, ŷ)/L̂, (z, h) = (ẑ, ĥ)/ĤN . (2.2a,b)

The governing equation for the flow is derived by balancing in-plane hydrostatic pressure
gradients with the divergence of shear stress. The stress vanishes at the free surface
and so the material is always unyielded to leading order in a neighbourhood of the free
surface (Balmforth & Craster 1999). If the stress at the substrate (z = 0) exceeds the yield
stress then the layer is partitioned into a yielded region below a pseudo-plugged region;
otherwise the entire layer is rigid and stationary (see figure 1b). Then using the Bingham
constitutive law, the velocity field is obtained. Integrating over the flow thickness enables
the dimensionless volume flux parallel to the plane, q, to be calculated in terms of the flow
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thickness and its gradient (see Balmforth, Craster & Sassi 2002)

q = 1
2

Y2(3h − Y)

(
1 − L−1 ∂h

∂x
, −L−1 ∂h

∂y

)
, (2.3)

where the height of the yield surface is

Y(x, y) = max

⎛
⎜⎜⎜⎜⎝0, h − B√(

1 − L−1 ∂h
∂x

)2

+
(
L−1 ∂h

∂y

)2

⎞
⎟⎟⎟⎟⎠ , (2.4)

and the flow is governed by two dimensionless parameters

B = τ̂Y

ρ̂ĝĤN sin β
, L = L̂ tan β

ĤN
. (2.5a,b)

The former is the Bingham number, which is the ratio of the yield stress to a characteristic
gravitationally induced stress, whilst the latter is an aspect ratio, which is associated with
the relative width of the obstruction. The terms in the large brackets in (2.3) can be written
as (1, 0) − L−1∇h, which reveals the effect of hydrostatic pressure gradients associated
with the inclined plane and the free-surface shape, respectively. The latter acts to smooth
free-surface gradients. The flow is yielded in 0 < z < Y and pseudo-plugged in Y < z < h.
In regions where Y = 0, the entire thickness of the layer is truly plugged (e.g. figure 1b).
The steady flow satisfies

∇ · q = 0, (2.6)

with q · n = 0 on the obstruction boundaries.
Under this formulation, the dimensionless flux per unit width is unity far upstream;

q → (1, 0) as x → −∞. The dimensionless flow thickness satisfies h → h∞ = Ĥ∞/ĤN
far from the obstruction with h∞ given by the solution to the following (far-field) flux
balance

1 = (h∞ − B)2(h∞ + B/2). (2.7)

The relationship between h∞ and B is shown in figure 2 as a black line. For all B, we have
h∞ > max(1, B), and for small B,

h∞ = 1 + B/2 + . . . , (2.8)

whilst for large B,

h∞ = B +
(

2
3B

)1/2

+ . . . . (2.9)

These predictions are included in figure 2 as red and blue dashed lines.

3. Numerical results and general observations

The system consisting of (2.3), (2.4) and (2.6), with boundary conditions of no-flux on
the obstruction boundaries and h → h∞ as x2 + y2 → ∞ is integrated numerically to
find the steady flow thickness h(x, y). Full details of the numerical method are given
in Appendix A. The flow thickness calculated from the numerical method for B = 1
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Figure 2. The dimensionless far-field flow thickness h∞ as a function of the Bingham number B (black line).
The predictions with B � 1 (red dashed line) and B � 1 (blue dashed line) are also plotted (from (2.8) and
(2.9)).
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represents the steady flow thickness, h(x, y). The wide regimes are shaded grey.

and L = 1 is shown in figure 1(c). The domain of the numerical computation extends
far beyond the region plotted in the figures. The steady flow deepens upstream of the
obstruction and thins downstream of the obstruction. Our numerical results confirmed that
the streamwise extent of the obstruction has a negligible influence on the upstream and
downstream flow. We focus on square obstructions noting that almost identical results
apply to rectangular cross-sections with the same width.

Throughout this paper, we analyse how the flow direction and thickness is influenced
by the obstruction, with particular focus on the dependencies on the relative obstruction
width (via L) and the relative magnitude of the yield stress (via B). We find that the flow
behaviour is delineated into four asymptotic regimes, shown in parameter space in figure 3.
These regimes are partitioned into the case that the obstruction is wide relative to the flow
thickness (L � h∞ ≈ max(1, B)) and the case that the obstruction is relatively narrow,
on the right-hand and left-hand side of parameter space, respectively. The ‘wide’ regime
is analysed first in § 4 and the ‘narrow’ regime in § 5.

However, before launching into the analysis for each of these regimes, we comment
on two general features of the flow; ‘dead’ zones at the stagnation points (§ 3.1), and the
potential for non-unique solutions (§ 3.2).

3.1. Dead zones at the stagnation points
The height of the yield surface in figure 1(d) illustrates that ‘dead’ zones, in which the
material is entirely rigid and static, develop upstream and downstream of the obstruction.
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Figure 4. (a) Steady flow thickness, h(x, y), and (b) yield surface height, Y(x, y), for B = 1 and L = 4
(calculated numerically); (c) h(x, y) and (d) Y(x, y) for B = 1 and L = 16.

Although the yield stress is regularised somewhat in our numerical scheme (see
Appendix A), the log scale enables the distinction of the dead zone to be clearly seen
as black regions in figure 1(d) (here we have chosen the dead zone to correspond to
Y � 2 × 10−4 though this arbitrary threshold has little influence on the interpretation of
the flow structure).

For B > 0, there is always a dead zone in a neighbourhood of the two stagnation points
at (±1, 0); see, e.g., figure 4. This is easily argued by contradiction. Suppose that the
material is yielded at z = 0 at (±1, 0) with Y > 0. Then, by symmetry, the transverse flux
q · ey vanishes, and by the boundary condition on the wall, q · ex vanishes (where ex and
ey are unit vectors in the x and y directions, respectively). With Y > 0, (2.3) furnishes
∂h/∂y = 0 and ∂h/∂x = L. The yield stress term in (2.4) is then singular implying that
Y = 0, a contradiction. The material is always rigid at these locations because the flow
stagnates there and there is no hydrostatic pressure gradient to induce any shear stress in
the layer.

The size of the two dead zones increases with the dimensionless yield stress B.
The upstream dead zone becomes smaller for wider obstructions (greater L) whilst the
downstream dead zone becomes larger (e.g. figure 4). This is because for greater L,
the magnitude of the ‘smoothing’ term, −L−1∇h in (2.3) is diminished. Hence, the
cross-slope gradient of the free surface at the upstream boundary is larger in order to
divert the flow (see § 4), and the flow reconnects downstream over a greater distance (see
Hinton & Hogg 2022).

A simple corollary is that there can be a ‘cusp’ at the upstream stagnation point,
i.e. ∂h/∂y is discontinuous. This is a common feature of plugged viscoplastic material
(Balmforth et al. 2002). The cusp is borne out by our asymptotic analysis for relatively
wide obstructions. It is slightly smoothed in the numerical results owing to the
regularisation of the yield stress.
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3.2. Non-uniqueness of the steady flow
Throughout this paper, we primarily focus on the upstream flow, noting that for L � 1
there is a long dead zone downstream of the obstruction and the flow will reconnect over
a length scale proportional to L (Hinton & Hogg 2022). Details of the flow structure at
the edge of the downstream dead zone and the possibility of a non-unique steady state
were investigated in Hinton & Hogg (2022) for flow around large mounds corresponding
to L � 1. The steady state downstream will depend on the initial condition prior to the
supply of constant flux from upstream. For example, the plane may have been entirely
dry with h = 0 everywhere in which case the downstream dead zone mostly corresponds
to a dry zone with h = 0 (provided that L � 1). If instead, the plane was coated with a
uniform, rigid and stationary layer of fluid with thickness h = B prior to the line source
initiation, then the downstream dead zone would mostly be a region in which h = B. In the
numerical results presented in this paper, we have assumed that this is the case; see, for
example, figure 4. It should also be noted that any 0 � h � B is allowed in the downstream
dead zone provided that the layer is entirely rigid. Importantly, the downstream behaviour
has negligible effect on the upstream thickness.

4. Flow past a relatively wide obstruction (L � h∞)

For a relatively wide obstruction (L � h∞ ≈ max(1, B)), there is significant flow
deepening at the upstream boundary; see figures 3 and 4. In addition, there is a long dead
zone downstream. This regime is consistent with lubrication theory provided that

L � max(h∞, h∞ tan β). (4.1)

Upstream of a wide obstruction, the fluid forms a deep pond. The extent of the pond in
the x direction is much smaller than the width of the obstruction; e.g. figure 4(c). Hence,
∂/∂x � ∂/∂y and since there is no flux into the obstruction, we have q · ex ≈ 0 over the
extent of the pond, where ex is the unit vector in the x direction. This corresponds to a free
surface that is horizontal in the streamwise direction (i.e. perpendicular to the direction
of gravity), as has been observed previously for Newtonian flow past obstructions (Hinton
et al. 2020). These observations motivate writing the flow thickness in the deep region as

h = (1 + x)L + G( y), (4.2)

where G( y) � 1 is the flow thickness on the upstream boundary, x = −1, which is to
be determined by equating the flux arriving into the deep pond from upstream with the
transverse flux along the pond. In the pond, the yield surface is located at

Y = max
(

0, (1 + x)L + G( y) − B
L−1|G′( y)|

)
. (4.3)

The volume flux arriving into the pond from upstream in [0, y] is y since the dimensionless
flux far upstream is unity per unit length. The transverse flux at y is calculated from (2.3)
over the region in which Y > 0. The steady flux balance takes the form (cf. Lister & Hinton
2022)

y =
∫

pond
q · ey dx =

∫
Y>0

−1
2L−1Y2(3h − Y)G′( y) dx. (4.4)

We recast this as an integral over Y using (4.2) and (4.3)

y = −L−2G′( y)
∫ Y0

0
Y2
(

Y + 3B
2L−1|G′( y)|

)
dY. (4.5)
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Note that Y is a linearly increasing function of x, and

Y0 = Y(x = −1) = max
(

0, G( y) − B
L−1|G′( y)|

)
(4.6)

is its maximum value at the wall x = −1. Carrying out the integration furnishes

y = −L−2G′( y)
4

(
G( y) − B

L−1|G′( y)|
)3 (

G( y) + B
L−1|G′( y)|

)
. (4.7)

The left-hand side represents the flux from upstream and the right-hand side represents
the transverse flux. Equation (4.7) is a nonlinear first-order ordinary differential equation
(ODE) with boundary condition G(1) = 0 corresponding to the flow thickness returning
to lower order at the sides of the obstruction (e.g. figure 4c). The dominant balance in this
equation differs depending on the relative magnitude of L and B.

For a Newtonian fluid (B = 0), (4.7) gives the pond depth as G ∼ L2/5 (Hinton et al.
2020). This suggests that the relative importance of the yield stress terms in (4.7) is given
by the quantity BL1/5. These observations motivate defining

λ = BL1/5 and G( y) = L2/5Ḡ( y). (4.8a,b)

Equation (4.7) becomes

y = −Ḡ′

4

(
Ḡ − λ

|Ḡ′|

)3 (
Ḡ + λ

|Ḡ′|

)
. (4.9)

The rescaled flow thickness at the wall, Ḡ( y), depends only on the single parameter, λ,
which represents the relative importance of the yield stress. Equation (4.9) is integrated
numerically using the boundary condition Ḡ(1 − δ) = (20δ)1/5, where δ = 10−8. At each
step in the negative y direction, Ḡ′ is obtained by applying Newton’s method to (4.9), with
the restriction that the terms in brackets are positive.

The solution for Ḡ( y) = h(x = −1, y)/L2/5 is shown as black lines in figure 5(a) for
λ = 0.1, 1 and 10. The magenta stars in figure 5(a) represent the thickness at the wall (x =
−1) from the full numerical integration of the governing partial differential equation, with
L = 20 and B chosen to give the required value of λ. The red dashed and blue dot-dashed
lines are the small and large yield stress asymptotic results obtained in §§ 4.1 and 4.2.
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Figure 6. Results for a wide obstruction and relatively low yield stress; L = 40 and B = 0.1. (a) Steady flow
thickness and (b) yield surface from the full numerical method. The boundary of the flowing region predicted
by (4.15) is shown as blue dashed lines. (c) Flow thickness along y = 0 (blue) and y = 0.6 (black). The red
dashed lines show the asymptotic prediction (4.2) with Ḡ( y) given by (4.11). (d) Corresponding height of the
yield surface; red dashed line is (4.14).

Figure 5(b) shows the rescaled maximum thickness (i.e. h(−1, 0)) as a function of λ with
the lines calculated as in figure 5(a).

The flow thickness increases for larger λ. A steeper free surface is required to divert the
upstream flux at higher yield stresses because a greater proportion of the layer is rigid.
The relative importance of the plugged material in the overall flow depends primarily on B
but also weakly on L; wider square obstructions exacerbate the plug size because the term
in the stress associated with the transverse free-surface gradient, −L−1∂h/∂y is smaller.
Note that this does not occur for obstructions with walls that are angled to the downslope
direction because the free-surface gradient is not the dominant contribution in the yield
stress term; see Appendix C. We analyse the low and large yield stress regimes in §§ 4.1
and 4.2, respectively.

4.1. Relatively low yield stress (λ� 1)
In terms of the two original dimensionless groups, B and L, the present λ� 1 regime is
(see figure 3)

B � L−1/5, L � 1. (4.10a,b)

This regime corresponds to quasi-Newtonian flow; see figure 6. We seek a regular
asymptotic expansion for the flow thickness at the wall of the form

Ḡ( y) = Ḡ0( y) + λḠ1( y) + . . . . (4.11)

The terms are obtained from the ODE (4.9). The first term is given by the Newtonian
solution (corresponding to B = 0, see Hinton et al. 2020)

Ḡ0( y) = 101/5(1 − y2)1/5. (4.12)
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Obstructed viscoplastic flow on an inclined plane

The next term accounts for the yield stress (for details, see Appendix B.1)

Ḡ1( y) = 0.9549 − p( y)
(1 − y2)4/5 , where p( y) = 104/5

5

∫ |y|

0
(1 − s2)3/5 ds. (4.13)

The asymptotic prediction for λ� 1 is compared with the numerical results in figures 5(a)
and 6(c), where good agreement is observed. The height of the yield surface in the deep
region (4.3) is given by

Y = max

(
0,L(x + 1) + L2/5Ḡ0( y) + BL3/5

(
Ḡ1( y) − 1

|Ḡ′
0( y)|

)
+ . . .

)
, (4.14)

which is compared with the numerical result along y = 0.6 in figure 6(d). In this regime,
the flow thickness, h, and the height of the yield surface, Y , are of the same order of
magnitude in the deep ponded region, and the lateral extent of the deep region is similar
to the lateral extent of the flowing region (where Y > 0); see figure 6. Equation (4.14)
can be used to obtain the boundary of the region in which Y = 0, up to and including
second-order terms,

xB( y) = −1 + min

(
0,L−3/5Ḡ0( y) + BL−2/5

(
Ḡ1( y) − 1

|Ḡ′
0( y)|

))
, (4.15)

which is shown as a blue dashed line in figure 6(b). This boundary intersects the
obstruction wall near the centreline where Ḡ′

0( y) becomes small, and a different
asymptotic expansion is needed in |y| ∼ λ. This inner region arises because the yield
stress plays a more significant role near the centreline owing to the relatively smaller
gradients of flow thickness there. Indeed, as argued above, there is always a dead zone
at the stagnation point. Details of this region and the matching with the outer expansion
are given in Appendix B.1. Importantly, the flow thickness at y = 0 is unchanged at first
and second order from the outer expansion (4.11). Hence the maximum flow thickness,
which occurs at x = −1, y = 0, is given by

hmax = 101/5L2/5 + 0.9549BL3/5 + . . . , (4.16)

which is shown as a red dashed line in figure 5(b). The present analysis is based upon λ�
1 and h � h∞ so that the expansion (4.11) remains asymptotic. In the next subsection, we
analyse the other regime, of large λ.

4.2. Relatively large yield stress (λ� 1)
In terms of the two original dimensionless groups, B and L, the present λ� 1 regime is
(see figure 3)

L−1/5 � B � L. (4.17)

In this regime, the role of the yield stress is non-negligible and appears in the leading order
of the expansion for Ḡ. The fluid is plugged to leading order in the deep region upstream of
the obstruction; see figure 7 and note the qualitatively different contour structure to the low
yield stress case in figure 6(a). Hence, the first term in brackets in (4.7) becomes small.
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Figure 7. Results for a wide obstruction and relatively high yield stress; L = 40 and B = 2. (a) Steady flow
thickness and (b) yield surface from the full numerical method. (c) Flow thickness along y = 0 and y = 0.6.
The red dashed lines show the asymptotic prediction (4.2) with Ḡ( y) given by (4.18). (d) Flow thickness at
the wall comparing the large yield stress prediction (red dashed line) with the result from the ODE (4.7) (blue
dot-dashed line) and the full numerical result (black line).

This leading-order behaviour provides no transverse flux. This motivates the following
expansion

Ḡ = λ1/2
(

G̃0( y) + λ−5/6G̃1( y) + . . .
)

, (4.18)

where the second term provides the transverse flux to balance the incoming flow from
upstream. The leading-order plugged shape is then calculated from (4.9)

G̃0( y) = [
2(1 − |y|)]1/2

. (4.19)

The next term, which accounts for the flux balance (and hence the left-hand side of (4.7)),
is (for details, see Appendix B.2)

G̃1( y) = 1.0600 − r( y)
(1 − |y|)1/2 where r( y) =

∫ |y|

0

s1/3

22/3(1 − s)1/2 ds. (4.20)

This prediction is shown as red dashed lines in figures 7(c) and 7(d) with B = 2 and
L = 40; the numerical results are shown as continuous lines and the blue dot-dashed line
is from integrating (4.7). The height of the yield surface in the deep region is found to be
(from (4.3))

Y = L(1 + x) + L1/3B−1/321/3|y|1/3 + . . . . (4.21)

As expected, the height of the yield surface (∼ L1/3B−1/3) is asymptotically smaller
than the height of the free surface (∼ B1/2L1/2) in this regime; see the colourscales
in figures 7(a) and 7(b). The extent of the deep region is x ∼ L−1/2B1/2, owing to the
quasi-plugged term, G̃0. The extent of the region over which there is appreciable transverse
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Obstructed viscoplastic flow on an inclined plane

flux is asymptotically smaller (in contrast to the case of relatively small yield stress) and
is given by

xB( y) = −1 − L−2/3B−1/321/3|y|1/3. (4.22)

The maximum flow thickness is

hmax = 21/2B1/2L1/2 + 1.0600B−1/3L1/3 + . . . , (4.23)

which is shown as a blue dot-dashed line in figure 5(b). The second term in (4.23) is
smaller than the first provided that λ� 1, as expected.

For large fixed L, the present analysis will, in fact, break down for very large B. This
is because the far-field flow thickness is h∞ ≈ B for large B, and this exceeds the pond
flow thickness, (∼ B1/2L1/2) for B � L, which invalidates the assumption of a deep
pond. Hence the expansion (4.18) is valid when (4.17) applies. The case B � L � 1
instead corresponds to a ‘deep’ oncoming flow relative to the obstruction width, which
is analysed in § 5 (see also the parameter space in figure 3). For example, in figure 7(d),
there is excellent agreement as B = 2, L = 40 and λ = 4.183, whereas the agreement in
figure 5(a) for λ = 10 is not so good, especially near the edges of the upstream wall,
because L = 20 and B = 5.493 with a far-field flow thickness of h∞ = 5.834.

5. Flow past a relatively narrow obstruction (L � h∞)

In this section, we analyse the regime in which

L � h∞ ≈ max(1, B) (5.1)

corresponding to flow past a relatively narrow square obstruction. This regime is consistent
with lubrication theory provided that

h∞ tan β � L � h∞. (5.2)

This requires a shallow inclination angle; β � 1. Numerical results for the flow thickness
and yield surface height are shown in figure 8 for L = 0.1 and three values of B. The
perturbation to the flow thickness is approximately antisymmetric about x = 0 whilst the
yield surface and dead zones are symmetric about this line. For a low yield stress, the
dead zone is localised to the stagnation points. At larger yield stresses, the dead zone
encompasses the entire upstream and downstream boundaries and becomes progressively
longer up and down slope. The perturbation to the flow thickness reduces at larger yield
stresses. In what follows, we analyse the flow in the narrow obstruction regime and draw
analogy with flows of viscoplastic fluids in a Hele-Shaw cell in order to understand these
observations (see § 1 and Hewitt et al. 2016).

5.1. Analogy with flow in a Hele-Shaw cell (L � h∞)
To dissect the flow physics in the narrow obstruction regime, we seek an asymptotic
expansion of the form

h = h∞ + L [1 + x + p(x, y)
]+ O

(
L2
)

, (5.3)

where p(x, y) is associated with the hydrostatic pressure that drives the flow. To leading
order in L, the flux (2.3) is

q = −1
2

Y2 (3h∞ − Y)∇p, where Y = max
(

0, h∞ − B
|∇p|

)
. (5.4)

964 A35-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.389


E.M. Hinton, D.R. Hewitt and A.J. Hogg

2 1.40

1.35

1.30

1.25

2.58

2.56

2.54

2.52

2.50

2.48

8.30

2

0

–2

2

0

–2

8.29

8.28

8.27

8.26

100

10–2

10–4

100

10–2

10–4

100

10–2

10–4

1

h
B = 0.5

B = 2

B = 8

Y

h Y

h Y

0

–1

–2

2

1

0

–1

–2

–5 0 5

–2 0 2

–2 0 2

2

1

0

–1

–2

2

1

0

–1

–2

–5 0
x

y

y

y

x
5

–2 0 2

–2 0 2

(a) (b)

(c) (d )

(e) ( f )

Figure 8. (a) Steady flow thickness and (b) the associated height of the yield surface with the analytic dead
zone prediction (5.9), shown as blue lines, for flow around a square obstruction with L = 0.1 and B = 0.5.
(c) Flow thickness and (d) yield surface height for L = 0.1 and B = 2. (e) Flow thickness and ( f ) yield surface
height for L = 0.1 and B = 8 (a larger domain is shown to capture the extent of the dead zones).

This form of the flux is identical to that for viscoplastic flow in a Hele-Shaw cell of
fixed gap width, h∞, with p(x, y) representing the pressure that drives the flow with
constant flux (which is supplied far upstream) (Hewitt et al. 2016). Hence, to leading
order, the streamlines and the pressure gradient in free-surface flow around a relatively
narrow obstruction are given by those in a Hele-Shaw cell with a blockage of the
same cross-section. The similarity arises because in this narrow obstruction regime, the
thickness of the free-surface flow is very minorly perturbed and the flux is approximately
independent of this thickness. The leading-order flux depends only on the gradients of the
free surface (see (5.4)) and so the system behaves in an analogous fashion to flow in a
Hele-Shaw cell of fixed gap width. This equivalence was previously observed for viscous
Newtonian flows (Hinton et al. 2020).

These observations conveniently allow us to exploit previous research on obstructed
viscoplastic flow in a Hele-Shaw cell (Hewitt et al. 2016; Daneshi et al. 2020). For
example, the symmetry of the two dead zones (figure 8) is rationalised by the reversibility
of steady flow in a Hele-Shaw cell. There is a slight difference in that here the far-field
flow thickness (corresponding to the gap width) varies with B but this merely leads to
some extra factors of h∞ in the results (this alters some of the scalings, particularly for
large B).
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Obstructed viscoplastic flow on an inclined plane
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Figure 9. Direction and magnitude of the flux q obtained from the numerical method with L = 0.1 and
(a) B = 0.5 and (b) B = 8.

To analyse the flow, we use a hodograph transformation. The important results are
quoted in the following, with full details given by Neuber (1961), Entov (1970) and Hewitt
et al. (2016). We transform (x, y) space to the hodograph plane of (Q, θ), where Q = |q| is
the magnitude of the flux and θ is the angle that the streamlines make with the downslope
direction. In this way using the results from Hewitt et al. (2016) and correcting a sign error,
we find

dx + i dy = −eiθ
(

dp
S

+ iS−2 ∂S
∂Q

∂p
∂θ

dQ − i
Q
S

∂p
∂Q

dθ

)
where S = |∇p|. (5.5)

The magnitude of (5.4)a relates Q and S via

Q =
(

h∞ − B
S

)2 (
h∞ + B

2S

)
S. (5.6)

Local mass conservation, ∇ · q = 0, is recast as a linear elliptic partial differential
equation for p,

S2

Q(∂S/∂Q)

∂

∂Q

(
Q2

S
∂p
∂Q

)
+ ∂2p

∂θ2 = 0, (5.7)

where S = S(Q) (see (5.6)). Some separable solutions to (5.7) exist, which enables
analytical progress in § 5.2. The flow behaviour is qualitatively different in the regimes
of a relatively low and relatively high yield stress, which are analysed in §§ 5.2–5.3,
respectively.

5.2. Relatively low yield stress (B � 1,L � 1)
For 0 < B � 1, h∞ ≈ 1 and so (5.1) becomes L � 1; the present regime occupies the
bottom-left of parameter space in figure 3. In this regime, viscoplastic stagnation point
flow arises; see figure 9(a). A key feature is the appearance of a dead zone in the vicinity
of the stagnation point; see figures 8(a) and 8(b).

The shape of the dead zone can be determined analytically by noting that Q = 0 on the
boundary of the dead zone and there is stagnation point flow further away (with larger
values of Q) with

p ∼ (1 + x)2 − y2 = Q2

4
cos 2θ. (5.8)

Note that this stagnation flow solution for p is defined up to an arbitrary multiplicative
and additive constant (and, hence, the same applies to (5.10)). Equation (5.8) provides the
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boundary condition for the partial differential equation in the hodograph plane (5.7). A
separable solution is sought for (5.7) and the behaviour for Q � 1 is obtained by shooting
numerically. The leading-order shape of the dead zone boundary and the pressure at the
boundary are then parameterised by (see Hewitt et al. 2016)

(x + 1, y) = 0.242Bh2
∞(− cos3 θ, ± sin3 θ), (5.9)

p ∼ 0.181B2h∞ cos 2θ, (5.10)

where θ ∈ [0, π/2]. The dead zone boundary (5.9) is compared with the numerical result
for B = 0.5 in figure 8(b). It extends a distance 0.242Bh2∞ away from the origin along both
the x and y axes. An identical dead zone occurs at the downstream boundary.

The dead-zone shape (5.9) is valid provided that there is stagnation point flow at the
upstream wall. This requires that the dead zone occupies only a small fraction of the wall.
That is, Bh2∞ � 1 or, equivalently, B � 1 since h∞ ∼ 1 for small B. For larger values
of B, the dead zone encompasses the corners of the square obstruction invalidating the
assumption of stagnation point flow; see figures 8 and 9. Different analysis is needed in
this case; see § 5.3.

For 0 < B � 1, the presence of the dead zone only alters the flow thickness at order B2

(see (5.10)). Away from the dead zone, there is an outer flow that is quasi-Newtonian for
which the yield stress influences the flow thickness at order B. In this outer flow, we seek
the following expansion for the hydrostatic pressure

p(x, y) = pN(x, y) + Bp1(x, y) + O(B2), (5.11)

where pN(x, y) is Newtonian solution. Using (5.3) and (5.4), we find that the pressure
terms satisfy

∇2pN = 0, ∇2p1 = 3
2
∇ ·

( ∇pN

|∇pN |
)

, (5.12a,b)

with boundary conditions,

∂pN

∂n
= 0,

∂p1

∂n
= 0, for (x, y) ∈ ∂Ω, (5.13)

pN → −x − 1, p1 → 0, as x2 + y2 → ∞, (5.14)

where ∂Ω is the boundary of the square and ∂/∂n denotes the normal derivative. The linear
system for pN(x, y) and p1(x, y) is integrated numerically using the same finite-difference
method as described in Appendix A. The solutions are shown in figures 10(a) and 10(b).

The prediction for the flow thickness from (5.11) is compared with the full numerical
results along the centreline (y = 0) upstream of the obstruction, and at the wall (x = −1) in
figures 10(c) and 10(d), respectively. The form of p1(x, y) predicted by the full numerical
result for L = 0.025 and B = 0.5 is shown in figure 11(a), whilst the difference between
the numerical and asymptotic thickness is shown in figure 11(b); the error is at most 3.5 ×
10−3.

As the stagnation point, (−1, 0), is approached the functions take the following limits

pN → 1.353, p1 → −0.679. (5.15a,b)

Although both pN(x, y) and p1(x, y) are finite everywhere, the present asymptotic analysis
breaks down near the stagnation point because |∇pN | vanishes there. The rigid region
encompasses the entire thickness of the layer (see (5.4)) leading to the dead zone
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Figure 10. Steady flow around a relatively narrow obstruction with B � 1. (a) Leading-order pressure,
pN(x, y) for Newtonian flow (see (5.12a,b)). (b) The pressure perturbation p1(x, y) associated with B � 1.
Flow thickness for L = 0.05 (c) along the centreline, y = 0, upstream of the obstruction, and (d) at the wall,
x = −1 showing numerical results (black lines) and prediction (5.11) (dot-dashed lines).
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Figure 11. Comparison between the full numerical results and the asymptotic expansion given by (5.3) and
(5.11) with L = 0.025 and B = 0.5. (a) Pressure perturbation p1(x, y) inferred from the full numerical results
(cf. figure 10b). (b) Difference in predicted flow thickness; error = hnumerical − hasymptotic.

analysed previously. However, the pressure (and, hence, the flow thickness) is accurately
approximated by p = pN(x, y) + Bp1(x, y) everywhere because the effect of the dead zone
only appears at O(B2) in the pressure.

The maximum flow thickness is

hmax = h∞(B) + L[1.353 − 0.679B] + O(L2,LB2). (5.16)

This is compared favourably to the numerical results in figure 12. The perturbation to the
flow thickness reduces with increasing yield stress (this also occurs for the large B regime;
see § 5.3 and figure 13a). This contrasts with relatively wide obstructions for which the
flow thickness perturbation increased with greater yield stress. For wide obstructions, the
flow is primarily diverted around the obstruction by gradients in the free surface inducing
transverse flux and for a fixed flux, greater gradients are needed at higher yield stresses.
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Figure 12. The maximum flow thickness, hmax, as a function of L for B = 0, B = 0.25 and B = 0.5. The lines
show the small-B prediction (5.16), and the plus signs are from the full numerical method; see Appendix A.
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∼B–3/4
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x
–2 –1

10–1
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B
100

(b)(a)

Figure 13. Maximum perturbation to the flow thickness, hmax − h∞ for L = 0.1. Analytic scaling (black line,
hmax − h∞ ∼ B−3/4 (5.25)) is compared with numerical results (blue crosses). (b) Flow thickness along the
centreline for L = 0.1 and B = 8. Numerical result (black line; see also figure 8e) is compared with the analytic
prediction for the gradient (red dashed line; (5.24)).

The decrease in the flow thickness perturbation with B for narrow obstructions can be
interpreted through the relationship (5.6) between the volume flux, Q and the pressure
gradient S = |∇p|. For B � 1, (5.6) becomes

Q = S + 3
2 B(S − 1) + O(B2). (5.17)

Hence, the volume flux (relative to the far-field volume flux) of a Bingham fluid varies
more rapidly with the pressure gradient, S, than a Newtonian fluid (this is because the
pressure gradient alters the proportion of the layer that is yielded). Smaller variations in
pressure are required to divert the volume flux around the obstruction for a Bingham fluid
and so there is a smaller variation in the flow thickness.

5.3. Relatively high yield stress (B � 1, L � B)
For large yield stresses, h∞ ≈ B and (5.1) becomes L � B; this case is depicted in the
top-left of parameter space in figure 3. In this regime, the dead zone encompasses the entire
upstream and downstream boundaries of the obstruction (see figure 8 f ). The streamwise
extent of the dead zone increases with yield stress. Although it is not possible to use
the stagnation point flow to obtain an analytic solution for the shape of the dead zone (see
figure 9b), we can find scalings for the extent of the dead zone and the flow thickness. Fluid
from upstream in −1 < y < 1 must be diverted around the obstruction via boundary layers
at the edge of the dead zone in which Q ∼ 1 (Hewitt et al. 2016). Since h∞ ∼ B � 1, (5.6)
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Obstructed viscoplastic flow on an inclined plane

may be written as

S(Q) = B
h∞

+ 1
h2∞

(
2BQ

3

)1/2

+ . . . . (5.18)

Equation (5.7) then becomes, to leading order,

61/2B1/2h∞Q−1/2 ∂

∂Q

(
Q2 ∂p

∂Q

)
+ ∂2p

∂θ2 = 0. (5.19)

Since the flux from upstream is diverted by the flow in a neighbourhood of the dead zone,
we have Q = O(1) and balancing the two terms in (5.19) furnishes a scaling for the angle
of the dead zone boundary (cf. Hewitt et al. 2016),

θ ∼ B−1/4h−1/2
∞ . (5.20)

Since the edge of the dead zone meets the obstruction at y = 1 and θ ∼ y/x, the dead zone
extent is given by

x ∼ B1/4h1/2
∞ ∼ B3/4. (5.21)

These scalings are different to those in a Hele-Shaw cell (Hewitt et al. 2016) because the
effective gap width, h∞ varies with B. Within the dead zone, Y = 0 and using both (2.4)
and (5.21) furnishes the scalings x = B3/4χ and h = h∞ + LB−3/4h1. Upon substituting
these into Y = 0, we find that

h∞ − B√
1 − 2B−3/2 ∂h1

∂χ
+ B−3/2

(
∂h1

∂y

)2
+ O

(
LB−3/4, B−2

)
= 0. (5.22)

Recalling that h∞ = B + [2/(3B)]1/2 + . . . , the thickness in the dead zone satisfies

∂h1

∂χ
− 1

2

(
∂h1

∂y

)2

=
(

2
3

)1/2

, (5.23)

to leading order. With analytical boundary data at the edge of the dead zone, this equation
could be solved via Charpit’s method. Unfortunately, such data are not available (see
Hewitt et al. 2016). However, we can make some progress by noting that along the
centreline ∂h1/∂y = 0 (there is no cusp to leading order in the L � 1 regime) and, hence,

∂h
∂x

= B−3/2L
√

2/3, (5.24)

which shows good agreement with the full numerical result (see figure 13b). The
perturbation to the maximum flow thickness has the scaling

hmax − h∞ ∼ LB−3/4, (5.25)

which is compared favourably to the numerical results in figure 13(a).
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τ̂Y = 104 Pa τ̂Y = 105 Pa

Tree; L̂ = 50 cm B = 0.27, L = 0.022 B = 2.7, L = 0.022
Constructed barrier; L̂ = 200 m B = 0.27, L = 8.9 B = 2.7, L = 8.9

Table 1. Dimensionless groups corresponding to lava flow past a tree or a constructed barrier for two values of
the yield stress, τ̂Y . We use ρ̂ = 2700 kg m−3, ĤN = 6 m and β = 15◦. Parameter values from Fink & Griffiths
(1998), Barberi et al. (2003) and Chevrel et al. (2019).

6. Conclusion

We have analysed steady free-surface viscoplastic flow around an obstruction of square
cross-section on an inclined plane. The flow is characterised by two dimensionless
parameters that measure the relative width of the obstruction, L, and the relative
magnitude of the yield stress, B. We have focused on the flow upstream of the obstruction
and the dependence of the flow thickness upon the dimensionless parameters. Example
parameter values for lava flow past a tree and a constructed barrier for two possible values
of the yield stress are listed in table 1. The four possibilities span the four asymptotic
regimes obtained; see figure 3 (although the tree, in particular, might be better modelled
as a circular obstruction, as outlined in Appendix D).

If the obstruction is relatively wide, then the fluid forms a deep pond upstream, which
provides sufficient transverse flux to divert the oncoming flow. This deep region may
be mostly plugged or mostly yielded depending on the magnitude of the yield stress
relative to the viscous stresses and the obstruction width relative to the flow thickness
and the inclination angle. These dependencies are altered for obstructions with different
cross-section (see Appendix C and D). Free-surface flow around a relatively narrow
obstruction is controlled by the same physics as pressure-driven flow in a Hele-Shaw cell,
and so the viscoplastic free-surface flow is analogous to that in a Hele-Shaw cell with the
same obstruction cross-section. The streamlines and pressure perturbation are identical
in the two settings, to leading order, with fore–aft symmetry in the stagnant dead zones.
Moreover, this equivalence holds for any obstruction cross-section and any generalised
Newtonian fluid.

Our general results could be extended to more complicated rheologies such as
Herschel–Bulkley fluids, noting that the qualitative flow structure and dependencies will
be predominantly controlled by the yield stress and, hence, will be similar to the present
analysis. Finally, it would be interesting to study the environmentally important case of a
time-varying source of fluid and in particular the evolution when the source flux vanishes.
A key question in this scenario is what stagnant fluid is left behind by the unsteady flow
down the plane.
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Obstructed viscoplastic flow on an inclined plane

Appendix A. Numerical method

The governing equation (2.6) with appropriate boundary conditions was solved
numerically using a finite-difference method. Whilst the solution is, in general, non-unique
when there are plugged regions, we solve for the steady state that corresponds to the second
term in the maximum function in Y (2.4) being non-negative throughout the domain. The
spatial grid is denoted by (xi, yj) with spacing 
x in both directions, and the thickness
is approximated by h(xi, yj) = hi,j. The solution is obtained via an iterative linearisation
method. We take an initial guess of constant thickness: h(0)

i,j = h∞ and solve the following

linear problem for h(n+1)
i,j given h(n)

i,j ,

∂Q(n)

∂x
= L−1∇ ·

(
Q(n)∇h(n+1)

)
, (A1)

where

Q(n) = 1
2

[
Y(n)

]2
(3h(n) − Y(n)), Y(n) = 0.5

[
Ỹ(n) +

√
ε2 +

[
Ỹ(n)

]2
]

, (A2a,b)

Ỹ(n) = h(n) − B√√√√ε2 +
(

1 − L−1 ∂h(n)

∂x

)2

+
(
L−1 ∂h(n)

∂y

)2
. (A3)

Central differences are used to approximate ∂h/∂x and ∂h/∂y. We have regularised the
yield stress and typically use ε = 10−4. The linear problem (A1) is solved using the
Gauss–Seidel method. The boundary conditions are h = h∞ on the upstream boundary
of the domain and ∂h/∂n = 0 on the other three outer boundaries. On the upstream
and downstream square boundaries, we impose ∂h/∂x = L, whilst on the cross-stream
boundaries, ∂h/∂y = 0. When updating h(n) to h(n+1), we under-relax with

h(n) → φh(n+1) + (1 − φ)h(n). (A4)

The iterations are run until the relative error is at most 10−8 and we typically use
φ = 0.005. The process took 1–2 hours to run on a laptop. The method is able to accurately
capture dead zones (where Y ∼ ε) and deep regions. The results show good agreement
with our asymptotic predictions. The simulations were run with smaller ε and larger
domain size until further changes resulted in negligible change to the calculated solution.

Appendix B. Asymptotic analysis for large L
In this appendix, we provide the detailed asymptotic analysis for the case of a wide square
obstruction.

B.1. Small yield stress (λ� 1)
For small λ, the leading-order term in the expansion for Ḡ arises from the Newtonian
solution (4.12). At next order, (4.9) takes the form

Ḡ1( y) = Ḡ−4
0

(
−2

∫ y

0
Ḡ0(s)3 ds + k

)
, (B1)
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where k is a constant of integration. For Ḡ1 finite as y → 1, we impose

k = 2
∫ 1

0
G0(s)3 ds =

6 × 108/5Γ
(

3
5

)
Γ
(

9
10

)
sin π

10

11π1/2 = 6.0248. (B2)

This completes the derivation of (4.13) since k/104/5 = 0.9548 (to four significant figures).
In the region |y| � λ, the analysis breaks down since G′

0( y) becomes small and so the
yield stress term becomes singular in (4.14). In this region, we write

y = λη, Ḡ = G(η) = G0(η) + λG1(η) + λ2G2(η) + . . . . (B3a,b)

The ODE (4.9) becomes

λ2η = −G′

4

[
G − λ2

|G′|
]3 [

G + λ2

|G′|
]

. (B4)

We find that G0(η) and G1(η) are constants. The third term, G2(η), satisfies

η = −G′
2

4

[
G0 − 1

|G′
2|
]3 [

G0 + 1
|G′

2|
]

. (B5)

Hence, the behaviour for small and large η is

G2(η) → A2 − |η|
G0

as η → 0, (B6)

G2(η) → C2 − 2η2

G4
0

as η → ±∞, (B7)

where A2 and C2 are constants that can be related by shooting numerically in (B5). The
behaviour for small η corresponds to the yield surface approaching Y = 0. We now match
to the expansion in y ∼ 1 with the variable

s = λγ−1y = λγ η, where 0 < γ < 1. (B8)

The expansion in y ∼ 1 becomes (first three terms)

Ḡ = 101/5 + 0.9549λ− λ2−2γ 101/5 s2

5
+ . . . . (B9)

The inner expansion is

G = G0 + λG1 − λ2−2γ 2s2

G4
0

+ . . . , (B10)

and matching furnishes

G0 = 101/5, G1 = 0.9549. (B11a,b)

Hence, the flow thickness up to second order is unchanged from the outer solution.
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Figure 14. Steady free-surface flow past an obstruction with rhombus cross-section and smaller interior angle
α = π/4. (a) Numerical result for L = 20 and B = 0.25 (λw = 0.118). (b) Corresponding thickness along
the wall; red dashed line shows (C6). (c) Numerical result for B = 0.5 and L = 0.1 and (d) for B = 2.5 and
L = 0.1.

B.2. Large yield stress (λ� 1)
For large λ, the leading-order term in the expansion for Ḡ corresponds to a fully plugged
layer. The flux balance at next order takes the form (see (4.9))

G̃1( y) − 2(1 − y)G̃′
1( y) = 21/3y1/3. (B12)

We apply the boundary condition that G̃1 is finite at y = 1 to obtain the following solution

G̃1( y) = 21/3
[
Γ (4/3)

√
π

2Γ (11/6)
−
∫ y

0

s1/3

2(1 − s)1/2 ds
]

(1 − y)−1/2. (B13)

Appendix C. Obstruction with an angled wall

We analyse free-surface flow past an obstruction with rhombus cross-section (each side has
dimensionless length 1). The upstream apex is at the origin, two of the sides are parallel to
the downslope direction and the smaller interior angle is α (see figure 14). There is always
a stagnation point at some location on the upstream and downstream rhombus boundaries
and, hence, there are always two dead zones. For very wide obstructions (L � h∞), the
upstream stagnation point moves towards the apex at the origin.

C.1. Relatively wide obstruction (L � h∞)
We denote by x̃ the coordinate axis perpendicular to the wall, with x̃ < 0 upstream of
the wall, and we denote by ỹ the coordinate axis along the wall with ỹ = 0 at the apex
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at the origin. For relatively wide obstructions (L � 1), the ponded flow thickness, which
corresponds to no flux into the wall, takes the form

h = Lx̃ sin α + Gw(ỹ). (C1)

The yield surface is at

Y = max
(

0,Lx̃ sin α + Gw(ỹ) − B
| cos α − L−1G′

w(ỹ)|
)

. (C2)

We assume that L−1G′
w(ỹ) � cos α, which we confirm a posteriori. Under this

assumption, balancing the flow from upstream with the flux tangential to the wall furnishes

ỹ sin α = L−1 cos α

4 sin α

(
Gw(ỹ) − B

cos α

)3 (
Gw(ỹ) + B

cos α

)
. (C3)

We recall that Gw ∼ L1/4 for a Newtonian fluid (Hinton et al. 2020), and we define

λw = BL−1/4, Gw(ỹ) = L1/4Ḡw(ỹ). (C4a,b)

The flux balance equation is recast as

ỹ sin α = cos α

4 sin α

(
Ḡw(ỹ) − λw

cos α

)3 (
Ḡw(ỹ) + λw

cos α

)
. (C5)

This is an algebraic equation for Ḡw(ỹ). For small λw, the flow is quasi-Newtonian and the
flow thickness at the wall has the following asymptotic expansion

Ḡw(ỹ) =
(

4ỹ sin2 α

cos α

)1/4

+ λw

2 cos α
+ . . . . (C6)

The second term accounts for the yield stress. The prediction (C6) is compared with
the numerical result along the upstream boundary in figure 14(b) and is shown to
represent the more complete dynamics quite accurately. The qualitative behaviour for
wide rhombus-shaped obstructions is similar to that for square obstructions in this
quasi-Newtonian regime as the effects of the yield stress arise at second order. An
interesting difference is the form of λw (C4a,b), which identifies that the yield stress
terms play a lesser role for wider rhombus-shaped obstructions, in contrast to wider square
obstructions.

The present analysis requires that L−1G′
w(ỹ) � cos α, which does not hold in a

relatively unimportant region near the apex, or if the upstream boundary is close to
perpendicular to the oncoming flow (α ≈ π/2), in which case the results for a square
obstruction apply.

For large λw, the flow is plugged to leading order with

Ḡw(ỹ) = λw

cos α
+ . . . . (C7)

This implies that h ∼ B in the deep pond, which is not asymptotically larger than the
far-field flow thickness, h∞, invalidating the analysis developed previously. When the
rhombus is relatively wide, there is no large yield stress regime because the upstream
boundary does not sufficiently hold up the flow. For B � 1, the asymptotic structure
always corresponds to a relatively narrow obstruction; see Appendix C.2. The regimes
are summarised in figure 15.
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(b)

BB

Hele-Shaw analogy

Hele-Shaw

analogy

(a)

Deep pond I

Deep pond

quasi-Newtonian
B ∼ L–1/8

B ∼ L1/4B ∼ L1/4

B ∼ L

L

Deep pond II

Deep pond III

L ∼ 1 L ∼ 1

Figure 15. Parameter space for (a) an angled obstruction (Appendix C) and (b) a circular obstruction
(Appendix D).

C.2. Relatively narrow obstruction (L � h∞)
For relatively narrow rhombus-shaped obstructions, we draw analogy with a Hele-Shaw
cell; see § 5.1 and Hewitt et al. (2016). Numerical results for the flow thickness are shown
in figures 14(c) and 14(d). With a low yield stress, there is a small dead zone in the
vicinity of the stagnation point on the upstream and downstream boundaries. For larger
yield stresses, the dead zone comes to encompass the entire upstream boundary. This
dead zone then has large streamwise extent and diverts the flow around the obstruction.
It becomes predominantly aligned with the downslope direction (14d). The detailed shape
of the upstream boundary becomes unimportant at large yield stresses and the scaling
for the flow thickness perturbation and dead zone extent is identical to that for a square
obstruction.

Appendix D. Circular cylinder

D.1. Relatively wide circular cylinder
Flow past a wide circular cylinder (L � 1) is significantly more complicated than for an
obstruction with square or rhombus cross-section because the obstruction angle relative
to the oncoming flow varies along the boundary. This means that the relative magnitudes
of the dimensionless yield stress and the hydrostatic pressure gradient along the boundary
varies with location along the boundary. Consequently features such as the maximum flow
thickness and extent of the unyielded region depends on the governing parameters in a
more complicated way than for obstructions with planar boundaries (see § 4). Furthermore
the regime diagram features more distinct regions (see figure 15). However, the physical
mechanism that controls the flow thickness, namely whether the flow is quasi-rigid or
quasi-Newtonian, is as for other cross-sections. The ponded solution takes the form

h = (r − 1) cos θ + Gc(θ), (D1)

in a neighbourhood of the upstream boundary, where r2 = x2 + y2 is the radial coordinate
and θ is the polar angle with θ = 0 corresponding to the positive x axis. Balancing the
flow from upstream with the flux tangential to the wall furnishes

sin θ = L−1(sin θ + L−1G′
c(θ))

−4 cos θ

(
Gc(θ) − B

| sin θ + L−1G′
c(θ)|

)3

×
(

Gc(θ) + B
| sin θ + L−1G′

c(θ)|
)

. (D2)
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Figure 16. (a) Steady flow thickness (upper half) and the yield surface (lower half) for flow around a circular
obstruction with B = 1.5 and L = 10. (b) Flow thickness on the upstream boundary, h(r = 1, θ), as a function
of angular position for B = 1.5 and L = 100, showing the numerical result (black line), the asymptotic
prediction away from the stagnation point (red dashed line, (D5)) and the asymptotic prediction close to the
stagnation point (blue dot-dashed line, (D10)).

The analogous equation for a square cross-section is (4.7) and for a rhombus is (C3). The
flow thickness returns to order unity at θ = π/2, which furnishes the boundary condition
Gc(π/2) = 0; this also ensures that the right-hand side of (D2) is not singular as θ → π/2.
Equation (D2) encapsulates the complexity associated with the circular boundary: the
stress term (associated with hydrostatic pressure gradients) includes contributions from
gradients in the flow thickness, L−1G′

c(θ), and from the plane inclination, sin θ ; the
relative importance of these terms varies along the boundary. In addition, one must assess
the importance of the magnitude of the yield stress term relative to the Newtonian term
(which is encompassed by the relative magnitude of the terms in each of the final two
brackets of (D2)). Naturally, this gives rise to various boundary layers in the asymptotic
behaviour.

First, recall that Gc ∼ L1/4 for a Newtonian fluid (Hinton et al. 2020). We define

λc = BL−1/4, Gc(θ) = L1/4Ḡc(θ). (D3a,b)

We first consider the case L−1G′
c(θ) � | sin θ |. Equation (D2) simplifies to

1 = 1
−4 cos θ

(
Ḡc(θ) − λc

| sin θ |
)3 (

Ḡc(θ) + λc

| sin θ |
)

. (D4)

For small λ, we obtain

Ḡc(θ) = (−4 cos θ)1/4 + λc

2| sin θ | + . . . . (D5)

This expansion breaks down as the upstream stagnation point (θ = π) is approached for
any B > 0 because the second term becomes singular. Before proceeding further, it is
helpful to break the analysis into three regimes depending on the relative magnitude of the
yield stress. These are described in the following (see also figure 15).

D.1.1. Quasi-Newtonian (B � L−1/8)
In this regime, (D5) is valid except in a neighbourhood of the stagnation point given by

(π − θ) = BL−1/4η, Gc(θ) = L1/4Ḡc(η). (D6a,b)
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Obstructed viscoplastic flow on an inclined plane

In this region (D2) becomes

B2L1/4η = 1
4

(
B2L1/4η − dḠc

dη

)(
Ḡc − B2L1/4

|B2L1/4η − Ḡ′
c(η)|

)3

×
(

Ḡc + B2L1/4

|B2L1/4η − Ḡ′
c(η)|

)
. (D7)

In the present regime, B2L1/4 � 1, and we seek an expansion Ḡc(η) = Ḡ0(η)+
B2L1/4Ḡ1(η) + . . . . We find that the first term, Ḡ0, is a constant, and the second term
satisfies

η = 1
4

(
η − dḠ1

dη

)(
Ḡ0 − 1

|η − Ḡ′
1(η)|

)3 (
Ḡ0 + 1

|η − Ḡ′
1(η)|

)
. (D8)

Matching with the outer expansion (D5) furnishes Ḡ0 = 21/2 and, hence, the leading-order
flow thickness is as in the Newtonian case at the stagnation point (although the
second-order term is adjusted due to the yield stress). Matching at next order is analogous
to that in Appendix B.1.

D.1.2. Intermediate yield stress (L−1/8 � B � L1/4)
In the case of larger yield stresses (for example, corresponding to a Bingham number
of order unity), the flow thickness at the stagnation point is of a different order to the
Newtonian flow. Provided that B � L1/4, the expansion (D5) remains valid away from the
centreline. The inner region is now chosen so that the flow is almost entirely plugged, i.e.
the cubed term in (D2) is set to zero with both terms in the denominator retained furnishing

(π − θ) = B1/3L−1/3φ, Gc(θ) = B2/3L1/3G(φ), (D9a,b)

and
G(φ) = G0(φ) + L−1/9B−8/9G1(φ) + . . . . (D10)

In the present regime L−1/9B−8/9 � 1. The leading-order term is associated with a plug:

G0 − 1
|φ − G′

0|
= 0. (D11)

In φ > 0, this has an implicit solution (cf.the matching argument in Appendix A of Hinton
& Hogg 2022)

φ = −22/3 Ai′[(φ2/2 − G0)/21/3]
Ai[(φ2/2 − G0)/21/3]

, (D12)

where we have used the condition that G0 is bounded as φ → ∞. The maximum flow
thickness occurs at φ = 0, which corresponds to the first zero of Ai′ furnishing

G0(0) = 1.01879 × 21/3 = 1.2836. (D13)

The next term provides the correct flux (as for flow past an obstacle of square cross-section
at high yield stress, see Appendix B.2):

G1 − G2
0G′

1 = 21/3φ1/3. (D14)

We shoot numerically in this equation using the far-field condition that G1 ∼
21/3φ1/3, which is required for matching. This furnishes the value of G1

964 A35-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.389
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at the origin,
G1(0) = 1.090. (D15)

The two terms in the inner expansion (D10) are of the same order when B ∼ L−1/8.
The asymptotic analysis is completed by matching the two expansions. The large φ

behaviour of the inner expansion is

G0 ∼ 1/|φ|, G1 ∼ 21/3φ1/3. (D16a,b)

The matching region is given by (π − θ) ∼ L−1/4, i.e. φ ∼ L1/12B2/3 and Gc ∼ L1/4. We
write

(π − θ) = BL−1/4η, φ = L1/12B2/3η, G ∼ L1/4g(η) (D17a–c)

and we have the ODE

1 = 1
4

[
g − 1

|η|
]3 [

g + 1
|η|
]

, (D18)

with limiting behaviour

g ∼ 1
|η| + 21/3η1/3, as η → 0, (D19)

g ∼
√

2 + 1
2|η| , as η → ∞, (D20)

which matches with the outer expansion (D5) as required.

D.1.3. Larger yield stress (L1/4 � B � L)
For relatively larger yield stresses corresponding to L1/4 � B � L, there is a third
regime whereby the outer expansion’s (D5) leading-order term is no longer given by the
Newtonian solution. Instead, the outer expansion is given by setting the cubed term in (D2)
to vanish, corresponding to a plug, and then the second-order term provides the transverse
flux. The outer expansion is

Gc = B
| sin θ | + L1/3B−1/3| sin 2θ |1/3. (D21)

This expression becomes singular at the stagnation point. Hence, an inner region is
needed to complete the asymptotic description. The inner region is identical to that for
an intermediate yield stress (D9a,b)–(D14). The large φ behaviour (D16a,b) ensures the
two expansions match. Hence, the maximum flow thickness in this regime is

hmax = 1.2836B2/3L1/3 + 1.090B−2/9L2/9 + . . . , (D22)

which is identical to the intermediate yield stress case, but the flow thickness away from
the stagnation point takes a different form.

D.2. Relatively narrow circular cylinder (L � h∞ ≈ max(1, B))
For relatively narrow circular cylinders, the Hele-Shaw analogy arises; see § 5.1 and Hewitt
et al. (2016). Results for L = 0.1 and two values of B are shown in figure 17. As for square
and angled obstructions, viscoplastic stagnation point flow occurs with a small dead zone
at low values of B (e.g. figure 17a) whilst at relatively high yield stresses, the dead zone is
longer and encompasses the entire upstream boundary of the obstruction (e.g. figure 17b).

964 A35-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.389


Obstructed viscoplastic flow on an inclined plane

–2
–2 –2

1.26

1.28

1.30

1.32

1.34
3.02

3.00

2.98

2.96

2 2

0 0

20
x

–2 20
x

y

h h(b)(a)

Figure 17. Free-surface flow past a narrow circular cylinder (L = 0.1) with (a) B = 0.5 and (b) B = 2.5.

REFERENCES

BALMFORTH, N.J. & CRASTER, R.V. 1999 A consistent thin-layer theory for Bingham plastics.
J. Non-Newtonian Fluid Mech. 84 (1), 65–81.

BALMFORTH, N.J., CRASTER, R.V. & SASSI, R. 2002 Shallow viscoplastic flow on an inclined plane.
J. Fluid Mech. 470, 1–29.

BALSA, T.F. 1998 Secondary flow in a Hele-Shaw cell. J. Fluid Mech. 372, 25–44.
BARBERI, F., BRONDI, F., CARAPEZZA, M.L., CAVARRA, L. & MURGIA, C. 2003 Earthen barriers to

control lava flows in the 2001 eruption of Mt Etna. J. Volcanol. Geotherm. Res. 123 (1–2), 231–243.
BAXTER, S.J., POWER, H., CLIFFE, K.A. & HIBBERD, S. 2009 Three-dimensional thin film flow over and

around an obstacle on an inclined plane. Phys. Fluids 21 (3), 032102.
BERNABEU, N., SARAMITO, P. & HARRIS, A. 2018 Laminar shallow viscoplastic fluid flowing through an

array of vertical obstacles. J. Non-Newtonian Fluid Mech. 257, 59–70.
BINGHAM, E.C. 1916 An investigation of the laws of plastic flow. Bull. Bur. Stand. 13 (2), 309.
CHEVREL, M.O., HARRIS, A., AJAS, A., BIREN, J., GURIOLI, L. & CALABRÒ, L. 2019 Investigating

physical and thermal interactions between lava and trees: the case of Kılauea’s July 1974 flow. Bull.
Volcanol. 81 (2), 1–19.

COUSSOT, P. & PROUST, S. 1996 Slow, unconfined spreading of a mudflow. J. Geophys. Res. 101 (B11),
25217–25229.

CUI, X. & GRAY, J.M.N.T. 2013 Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid
Mech. 720, 314–337.

DANESHI, M., MACKENZIE, J., BALMFORTH, N.J., MARTINEZ, D.M. & HEWITT, D.R. 2020 Obstructed
viscoplastic flow in a Hele-Shaw cell. Phys. Rev. Fluids 5 (1), 013301.

DIETTERICH, H.R., CASHMAN, K.V., RUST, A.C. & LEV, E. 2015 Diverting lava flows in the lab. Nat.
Geosci. 8 (7), 494–496.

ENTOV, V.M. 1970 Analogy between equations of plane filtration and equations of longitudinal shear of
nonlinearly elastic and plastic solids. Z. Angew. Math. Mech. 34 (1), 162–171.

FINK, J.H. & GRIFFITHS, R.W. 1998 Morphology, eruption rates, and rheology of lava domes: insights from
laboratory models. J. Geophys. Res. 103 (B1), 527–545.

HEWITT, D.R., DANESHI, M., BALMFORTH, N.J. & MARTINEZ, D.M. 2016 Obstructed and channelized
viscoplastic flow in a Hele-Shaw cell. J. Fluid Mech. 790, 173–204.

HINTON, E.M. & HOGG, A.J. 2022 Flow of a yield-stress fluid past a topographical feature. J. Non-Newtonian
Fluid Mech. 299, 104696.

HINTON, E.M., HOGG, A.J. & HUPPERT, H.E. 2020 Viscous free-surface flows past cylinders. Phys. Rev.
Fluids 5 (8), 084101.

HU, X. & BÜRGMANN, R. 2020 Rheology of a debris slide from the joint analysis of UAVSAR and LiDAR
data. Geophys. Res. Lett. 47 (8), e2020GL087452.

KALLIADASIS, S., BIELARZ, C. & HOMSY, G.M. 2000 Steady free-surface thin film flows over topography.
Phys. Fluids 12 (8), 1889–1898.

LISTER, J.R. & HINTON, E.M. 2022 Using a squeegee on a layer of viscous or viscoplastic fluid. Phys. Rev.
Fluids 7 (10), 104101.

MITSOULIS, E. 2004 On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects. Chem.
Engng Sci. 59 (4), 789–800.

NEUBER, H. 1961 Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear
stress-strain law. Trans. ASME J. Appl. Mech. 28, 544–550.

NUSSELT, W. 1916 Die Oberflachenkondensation des Wasserdamphes. Z. Verein. Deutsch. Ing. 60, 541.

964 A35-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.389


E.M. Hinton, D.R. Hewitt and A.J. Hogg

SELLIER, M., LEE, Y.C., THOMPSON, H.M. & GASKELL, P.H. 2009 Thin film flow on surfaces containing
arbitrary occlusions. Comput. Fluids 38 (1), 171–182.

TAI, Y.C., GRAY, J.M.N.T., HUTTER, K. & NOELLE, S. 2001 Flow of dense avalanches past obstructions.
Ann. Glaciol. 32, 281–284.

TOKPAVI, D.L., MAGNIN, A. & JAY, P. 2008 Very slow flow of Bingham viscoplastic fluid around a circular
cylinder. J. Non-Newtonian Fluid Mech. 154 (1), 65–76.

TREGASKIS, C., JOHNSON, C.G., CUI, X. & GRAY, J.M.N.T. 2022 Subcritical and supercritical granular
flow around an obstacle on a rough inclined plane. J. Fluid Mech. 933, A25.

964 A35-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.389

	1 Introduction
	2 Theoretical model
	3 Numerical results and general observations
	3.1 Dead zones at the stagnation points
	3.2 Non-uniqueness of the steady flow

	4 Flow past a relatively wide obstruction (L h)
	4.1 Relatively low yield stress (1)
	4.2 Relatively large yield stress (1)

	5 Flow past a relatively narrow obstruction (L h)
	5.1 Analogy with flow in a Hele-Shaw cell (L h)
	5.2 Relatively low yield stress (B 1, L 1)
	5.3 Relatively high yield stress (B 1, L B)

	6 Conclusion
	Appendix A. Numerical method
	Appendix B. Asymptotic analysis for large L
	B.1 Small yield stress (1)
	B.2 Large yield stress (1)

	Appendix C. Obstruction with an angled wall
	C.1 Relatively wide obstruction (L h)
	C.2 Relatively narrow obstruction (L h)

	Appendix D. Circular cylinder
	D.1 Relatively wide circular cylinder
	D.1.1 Quasi-Newtonian (B L-1/8)
	D.1.2 Intermediate yield stress (L-1/8BL1/4)
	D.1.3 Larger yield stress (L1/4 B L)

	D.2 Relatively narrow circular cylinder (L hmax(1,B))

	References

