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1. Introduction.

The present paper is a continuation of the work initiated in [l]-[5].
In [5] I gave an expansion of the form

for the second order C.F. associated with

F(Zl,z2)=r
Jo I

where U,, Vs, Ws satisfy a fourth-order recurrence relation, there being a
similar expansion for third order C.F.'s. I shall now give simple
expressions for Us, Vs, Ws (or related forms) in terms of X2s(2i)> X2s(22)>
f»2,(zi), ">2.(z

2)> w h e r e

=

a>2a(x) x+c1—x-+e2 — ... x+cs'
and show that there is a remarkable relation between the recurrence
formula for the first order C.F. and that satisfied by Us, Vs, Ws. The
generalised form of these results will be stated and proved.

Some remarks on other forms of generalisations of C.F's are given
in conclusion, reference being made to the correspondence between
Stieltjes and Hermite on this subject.

2. Expansions involving symmetric functions.

The basis of the discussion is the function defined by

1 By an algebraic continued fraction "we mean one whose partial denominators (and
perhaps numerators) are functions of a single variable x, contrasting with a C.F. with
numerical elements,
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in which it is assumed that the k's are positive and 2 k, diverges. This
implies the existence of a unique bounded non-decreasing function <ft(x)
in the interval (0, oo) such that

F(z) = \
Jo

thfi(x)
x-\-z ' (2)

For our present purpose a form equivalent to (1) is preferred, namely

as s ->• oo (3)

and its " contracted " form1

F{z) =
— z+c3 — ...

Let A(x), B(x) and G(x) be polynomials with real coefficients, A(x)
of degree n or less, B(x) of degree less than n, and suppose

n
G{x) = II (#+zJ > 0 for x > 0, zK distinct.

From (28) of §3 [4], we have an nth. order C.F. given by

A(x)B(x)
G(x)

• dif>{x) (5)

- lim > B)

where

(a)

(b)

(6a)

n—11
I

Q.ih)
(6b)

1 For convenience in later sections we shall assume that a0 = 1.
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with (i)

L. R. SHBNTON

(A,B) =
yn—2

A
Jo

Pi ft
A(x)-A(-z.)

(6c)
-n—2

ft,

# ( » ) , « = 1, 2, ..., TO,

and (ii) Wa(B) similar to (A, B) except that the last row of the
numerator determinant is replaced by yls, y2a, ..., yna, where
yrs=PB(zr)B(-zr).

The elements of the determinants in (6a) and (6b) may be irrational or
rational, depending upon whether the roots of the polynomial are complex
or real. We shall now show how they may be transformed into rational
forms, a step making them more amenable for computational purposes.

3. Rational Forms.

Let At/<A) be the product of A and the determinant formed from the
array

(7)

after deleting the row with index A, A = 0, 1, ..., n—1, and let

r = l
(8)

Moreover let A be an nxn matrix whose (i,j)th element is A1/1 *>;
similarly let the elements of the nxn matrices U s n and Qsn be J7i"7-i an<^
Qs+i-i{zi) respectively. Then evidently

AOs,m=AUs>n. (9)

But by postmultiplying A by the nxn alternant matrix [z^"1] it is found
that

lA^A"-1, (10)
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so that
(n-2) (11)

Similarly, by premultiplying the bordered matrix of Qs n [the determinant
of which appears in (6b)] by1

[ o ' A ] where ° = [ ° ' °> •••' °1>
it will be found that

We(B) WS+1(B) ... W^^iB)

, V ... u%n_x ^ (12)

U«>\A) s+n—1

where UW(A) is defined by the scheme in (7) except that the last row in
the array is replaced by A(—zj, A(—z2), ..., A(—zn). The expressions
(12) and (11) for the numerator and denominator of the generalised C.F.
associated with F(zx)% are now in terms of rational elements, each element
being expressible in terms of the symmetric functions of the roots of
G(x) = 0.

It is to be noted that we may write

W${B)= 2 {-\)n~r (13)

where B(x) = £ brx
n~r and2 Vf\ A = 0, 1, ..., (n~ 1), is similar to £/<."-«

r = l

except that the last row of the numerator determinant is

z l rs\zl)' Z2 r<s\z2.h • • • . zn ra\zn)-

If the degree of A(x) is less than n, the roles of A (x) and B(x) may be inter-
changed, yielding the identity

P,(A, B) = P,(B, A). (14)

Again, if A(x)B(x) = A*(z)B*(x), where A*(x) and B*(x) are poly-

1 In this matrix O' means a column matrix of n components.
2 It will be observed that F<x) is the nth divided difference of zx P,(z) with respect

to the arguments zu zv ..., zn. Similarly U'*"1' is the nth divided difference of Q,(z).
M
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nomials, the degree of B*{x) being less than n, then

F(zK)?=lhnP°{^P . (15)

- l j o "*(•"*> - " ) if A * _ D*
— U.S. Q l~\n U- JL — J3 .

The only modification required in (11) and (12) when the roots zK are not
distinct is to replace each alternant by. its confluent form; this presents no
difficulties since each element is the ratio of alternants in the roots zk.

4. Recurrence relation satisfied by V-^K
I t will be seen that V(

s
x) and £7<x) are linear functions of Ps{Zj) and

Qs(Zj), j = 1, 2, ..., n, respectively, the coefficients being independent of s.
We shall now prove that they satisfy the same recurrence relation, and that
this recurrence relation can be directly derived from that satisfied by Ps{x)
or Qs(x). We require the following theorem.

LEMMA. / / the polynomial Ts(x) is defined by

Ts+1{x) = (x+cs+1) Ts(x)-as Ts_x{x), s = 0, 1, ...,

T0{x) = 1 , as = as for s > 0, as = 0 for s < 0,

then1

n (x-zK)T.(x)= n (L-zJT.ix), « = 0, 1, ....
A = l A = l

where £sis the finite difference operator E—c3+1-f-SsE-:l and ETs(x) = Ts+1(x).

Proof. This proceeds on inductional lines. For n = 1

{x-zj) T.(x) = Tg+1(x)- (z1+cs+1) Ts(x)+as Ts_x{x),

= (l.-*i)'T.(x), 5 = 0 ,1 ,2 , . . . ,
and for n = 2

(*-Zi)(*-*2) Ts{x)
= (x-zz)Ts+1(x)-(x-z2)(z1+c!+1)Tl(x)+ae(x-zz)Ts_1(x), s = 0, 1, ...,

= (f.-2i)({.-22) TB(x) for « > 0.

1 In evaluating this expression a particular value of s can only be inserted after the
operational symbols have been absorbed.
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I t may also be shown to hold for s = 0, when the fact that a0 = a_x = 0
conserves the identity. Now assume the truth of the statement for
polynomials II (x—zK) of degree less than or equal to n—1. Then

n (x-zx) T,(x) = " n (x-zk){T,+1(x)- (zn+cs+1) T8(x)+a, T^cc)}, s > 0,
\=1 X=l

= n n (C.+ 1-ZA) Ts+1(x)-(zn+cs+1)
nn US-*K) TS{X)

\-I x=i

*n (Cx-zx) Ts_x(x) for a > 1 (16)
l

Now, if s = 0,

n « - ln /™. y \ 71 lv\ FT t-T 7 \irT (v\ (? _]_/• \ T (v\\
\ — X / 0 \ / — \ X / \ 1 \ * ^ / — \ n\^\t OV / f

— TT f r 2 \ / 7 i /™N /~ I , . \ m lrr\\'Z rp / r \ \

— J.A »̂t/ A/ i 1V /"^^ \ 71 ̂  1/ 0\ /^^ 0 —IV / / •

Thus (16) still holds for s = 0. Hence

II (x-zx) Ts(x) = ( E - (2 n+c,+ 1)+as E-i) "n (fs-zx) ^(a:), a > 0,
X = l X 7 A = l

from which the truth of the lemma follows. It is now evident that

U^as-zx)Ts(x) = 0 for J X~Zl' Zi' "" Zn (17)

n
and indeed if Cls= 2, qr Ts(zr)

r=l

then f[ ({s—zx) Qs = 0, s > 0 , (18)

which is the recurrence relation for Q.s. (It is to be understood that qr

is independent of s.)
We now apply the lemma and (18) to the polynomials appearing in

the numerators and denominators of C.P. (4); i.e. to P8(z) and Q3(z), where

P (?\ n n n n S = 1, 2, . . .

z+c1-z+c2-z+c3-... -z+cB

\with \
[P0 = 0, Pt=l.
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It is evident that we have proved that the recurrence relation followed
by U<*> denned in (8) is

[C(-t.)U?>=0 (20a)

8 = 0, 1, 2, ...; A = 0, 1, ..., n - 1 ;

where ds = as for s > 0, as = 0 for s ̂  0, the a's and c's being given in
(19). Similarly after a slight modification, the recurrence followed by

is found to be

= 0> a=l, 2, ..., (20b)

awhere as = aB for s > 1, <zs = 0 for s ̂  1.

5. 4̂ fundamental system of solutions.

The recurrence relations (20a) and (20b), each of order 2w, are exactly
the same for s ^ 1. We shall now prove that U^\ Vf\ A = 0, 1,2, ..., n— 1,
is a fundamental system of solutions with respect to this common recurrence
equation. For consider

where Vs>n is the same matrix function of the V's as U3 n is of the U's, and
J is an n x » matrix with zeros everywhere except in the secondary diagonal,
where there are units. I t will be seen that

(22)

where Psn is a matrix similar to Qs>n, with P(z) replacing Q(z), and

i - j r ^ 7 1 - 1 ' o . . . o
A*

I
: ! Zl

-,n—l ,71—1 -,n—1

0 Afr-V 0 . . 0

L 0 0

Hence, taking determinants in (22), we have

| | | | | Z l , z2, . . . , z n ) , (23)
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where

Q,(zv z2> . . . , zn) =

Qsizl) <2.+l(Zl) ••• Q,+2n-l(zl)

P (z \ P (z \ P (? \

QAzn) Q,+l(zn) ••• Q,+2n-l(zn)

(24)

the general expression of this type being ©s+r(zr+1, zr+2, ..., zn), in which
s indicates the suffix in the first column of the determinant, which is of
order 2(n—r), the arguments zr+1, zr+1, zr+2, zr+2, etc. occurring in successive
rows.

Now P,(x) and Q,(x) follow

y, = (»+c,) y . - i -o . - i y_,.

Using this on the last column of (24) and eliminating Qs+2n-i(
zi) and

P8+2?l_1(z1), and so on until all the elements in the first two rows except
the first four are removed, we find

Z2> •••, Z j = « s © 3 + (25)

where as =

Continuing the condensation process in evidence in (25), it will be
found that

©s(z1; z2> ..., zn) = a,

«+n—1 !)

= A 2 n n oA.

(zK—z2f ... aJ+n_2(zn—z^j)2.a,+n_!

(26)

But | A * | = (-l)lKi-DA"-1
 a n d f r o m (10) | A | =A"- 1 , so that from (23)

»+n—1 v

(27)
»+n—1 v

|*.,n|= n n a,.=« x=o
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We have thus proved that Uf\ V{x), A = 0, 1, 2, ..., n— 1 form a funda-
mental system of solutions of the recurrence relation (20). It is evident
that the result still holds when G(x) = 0 has multiple roots.

6. Illustration.
We consider n = 3 and C{x)= (x-\-a.)(x-\-j3)(x-{-y) > 0 for

the integral

•'m —

, and

(28)

where it is assumed ip(x) satisfies the conditions of §2. The denominators
of the associated generalised 3rd order C.F. all have the form

where
1 1

P
1

y

QS(Y)

l

y2

Q.iP) QAY)

P Y

si*) Q.(P) QS(Y)

The confluent forms are easily constructed 1; for example 2 if

(29)

Uf> =

(ii) a = i8 =

1

a

QM)

1

a

Q.W

l

P
Qs(P)

0

I

0

1

G.'()8)

0

o •

1

a

a2

1

a

a2

1

a

£ 2

0

P
2a

0

1

2)8

0

0

1

1 See for example H. W. Turnbull, Theory of Equations, p . 48 (Edinburgh, 1946).
• Primes indicate derivatives.
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For the numerators there are several possibilities, which we briefly indicate.
Let Aa = Xs, s = 0, 1, 2; then it is easily seen that U(r)(As) = 8r> 5> r = 0, 1, 2
where 8 is the Kronecker delta symbol. Moreover,

1 1 1

jB y

^Ps(a) |S*PSOS) y*P8(y)

and from (6c)

(Ar,Aa) = 0, r + s < 2 , r, 8 = 0,1, 2.

We now have

-f 0 — X.I.S.

— 1.1.S.

where Q8 = Qa(«., ft, y) and

S + l

P.(A» A*) =

"$\A2, Ao) —

u?'
up m% my,
up

vp

— * S

P up, up2

. ..!i vp,
up up, up,

— -̂  S

(30)

(31)

(32)
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Recurrence relation for F ^ and U(*\ From (20a) and (20b) this is

(E-c m +S I E- i -a ) (E-c m +a ,E- i - j8 ) (E-c , + 1 +5 f E-i-y) C7J«= 0,

with a similar expression for F<x). On expansion this becomes

Ui%-Xs C7&+M. TO-v. ^ X ) + S s ^ _ 1 Z T J ^ - S . S ^ A ^ Z7ji>2

+ a A - i « U ^ - 3 = 0, A = 0,1, 2; s > 0 , (33)

where

As = a+j8+y+cf + 1+c f + a+c f + ,

- +as cs+2ds cs+1+2ds+1 ca+1+ds+1 cs+2,

and
r 77(0) _ i jj(o) __ c jj(o) __ c c a

' = 0 [/<!> = - 1 C/o)=-C l -c2

with ds = as, s > 0; Ss = 0, s ^ 0; and as, cs are given in the C.P. in (4).
Similarly F<x) follows (33) for s ^ 1 provided ds is replaced throughout by
as where as = as, s> 1; ds = 0, s ^ 1; and the initial values are

<D = 0 F<> = 0 F W = l F"

«> = 0 F<2>=1 F<2>= a + ^ + y + C , F

+ (c2+C3)(a+i8+y)

+c2c3—a2.

The recurrence relation (33) is the same (apart from minor changes due to
the notation used) as that given for Us, Fs, Ws, Xs under expression (13)
in [5]. With the present notation and approach, however, there is no
difficulty in writing down the recurrence relation for Vf> and U(

a
x) together

with their initial values.
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7. Remarks on generalised C.F.'s.

Previous attempts at generalising C.F.'s have to a certain extent
consisted in extending the recurrence relation satisfied by the numerator
and denominator, contributions having been made by Jacobi [6], Hermite
[7], Perron [8], Bateman [9], and Paley and Ursell [10]. In addition it
seems that Stieltjes was very close to the theory developed here, for in the
correspondence between Stieltjes and Hermite [11] Stieltjes indicated
(see letter 167 written in 1889) that he had perfected a method of
approximating the integral

using least squares. In fact he minimises the expression

(34)

with respect to xv x2, ..., xn and obtains the approximation

1; C3> • • • ; C 2 m - l |

where ck = I (f>kf(x) dx.

Stieltjes goes on to show that there is an alternative form

n A 2
where

4 = s — 2 |

= = | c l ! C3> • • • ' C 2 s - l l

and then disposes of the remainder when the limits of integration are
finite1. As an application he derives the even part of the C.F. for

[bf(x)dx
z—x

1 As far as I can gather Stieltjes does not state the restrictions on <p and / , but his
method of proving that the remainder vanishes in the limit is noteworthy. Apparently,
another letter by Stieltjes on this topic has been lost according to a footnote by the editors.
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Hermite (letter 168 in the correspondence) remarks " votre nouveau point
de vue pour obtenir l'approximation de 1'integrale

f
Ja

f(z)dx
z—x •

constitue un tres heureux et tres grand progres . . .". However, as far as
I can trace the only later references to this development [see Stieltjes
(1889), " Sur un developpement en fraction continue ", Comptes Bendus
cviii, p. 1297; also Stieltjes (1918) Oeuvres Completes, " Recherches sur
les fractions conthiues ", Ch. viii, pp. 500-502. Groningen] suggest that the
broader possibilities were not envisaged. It is perhaps worth recording
here that the generalisation we have developed, springs from the minimisa-
tion of the expression

with respect to the coefficients in the polynomial irn, G(x) being in general
positive in (a, b), convergence questions being settled by invoking Parseval's
theorem. The difficulties in generalising (34) by taking <f> to be a quadratic
or polynomial of higher degree are evident.

Lastly we may remark that Hermite evidently * gave some thought to
the question of generalising C.F's, but his contribution to the subject in
1893 [7] appears to have no relation to (33) or (34).
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1 There are about a dozen references to the subject in letters written by Hermite to
Stieltjes; see [11], Tome 2 and, for example, letters 234-236, 241, 242, 245, 265, 278, 388,
389, 391 and 392.
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