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ABSTRACT This review focusses on the most recent work which has 
been achieved concerning turbulence in stellar interiors. Among all possible 
causes for such turbulence, the most powerful is certainly the convective 
instability in unstably stratified regions, but little was known until now 
beyond the fact that thermal convection is capable of establishing an 
almost adiabatic stratification. The latest numerical simulations (Stein 
& Nordlund 1989; Cataneo etal. 1991) show that turbulent convection is 
highly intermittent, with strong downdrafts carrying most of the energy 
flux. 

These plumes penetrate in the stable region below, which they render 
nearly adiabatic over some distance (Zahn 1991); the penetration depth 
should be measured soon through acoustic sounding of the Sun (Berthomieu 
etal. 1992). Such plumes are likely to exist also in a convective core, and 
to penetrate into the radiative region above (Roxburgh 1989). 

Another type of turbulence apparently occurs in the radiation zones, 
due to differential rotation. It is much weaker, and strongly anisotropic, 
with more vigorous motions in the horizontal directions than in the vertical. 
Its role is negligible in the heat transport, but it acts to suppress the 
latitudinal variation of the angular velocity. This anisotropic turbulence 
also interfers with the meridian circulation, and it partly inhibits the 
advection of chemical elements (Chaboyer & Zahn 1992). The strongest 
indication so far for such turbulence is the thinness of the solar tachocline 
(Spiegel & Zahn 1992): this boundary layer, in which the rotation changes 
from differential in the convection zone to uniform below, has been detected 
through helioseismology, but it is still unresolved (Goode etal. 1991). 

Assuming that such anisotropic turbulence enforces throughout the 
radiation zone a rotation state in which the angular velocity depends mainly 
on depth, it is possible to derive an explicit expression for the meridian 
flow, and thus to describe the evolution in time of the interior rotation 
(Zahn 1992). The main result is that both the meridian circulation and 
the turbulence are determined by the rate at which the star loses angular 
momentum. When there is no such loss, the meridian flow is very weak, 
and it can even vanish in slow rotators. 

Keywords: Convection, convective penetration; meridian circulation; 
turbulence. 
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TURBULENT CONVECTION 

Until recently, turbulence in stellar interiors has been synonymous with thermal 
convection, which indeed is the strongest of all dynamical instabilities, once 
the star has settled in hydrostatic equilibrium. Its contribution to the heat 
transport enforces a nearly adiabatic temperature profile, which is implemented 
in our models of stellar structure. We do this in general by resorting to the 
mixing-length treatment, for lack of a better prescription. And some of us still 
try to improve on that approach, with more or less sophistication. 

But another, more promising road has been opened thanks to numerical 
simulation. The computers have progressed to a point which allows three-
dimensional calculations, with a resolution of about 1003. This is still insufficent 
to encompass a whole convection zone, and to correctly represent the kinetic 
energy cascade, but it permits to explore the organization of the motions on the 
largest scales. These resemble very much the granular pattern on the surface of 
the Sun, and their spectroscopic signature also agrees well with the observations 
(Nordlund & Dravins 1990). 

Another striking result of these computer experiments is the presence 
of strong, long-lived downdrafts (Chan & Sofia 1986; Stein & Norlund 1989; 
Cattaneo etal. 1991). These behave like the thermal plumes which are well 
known in atmospheric sciences: they entrain some of the surrounding matter, 
and their life-time is much longer than the time the flow takes to travel 
through them. Such downdrafts were detected already in earlier two-dimensional 
calculations (Hulburt etal. 1984). They originate below the upper boundary 
layer, which is turbulent in the classical sense (the life-time of the eddies is of 
the order of their turn-over time). The plumes cross the whole computational 
domain, which is still limited by the possibilities of the present computers, but 
one can anticipate that some of them would traverse the whole convection zone. 
The picture which emerges today is sketched in fig. 1. 

Fig. 1. A plausible picture of the convective envelope in solar-like stars, with 
downwards directed plumes traversing the whole convection zone. The dash-dotted 
line delineates the nearly adiabatic domain, including the region of convective 
penetration (see below). 
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Those plumes carry kinetic energy downwards and thermal energy (en­
thalpy) upwards, and surprisingly the two seem to cancel each other (Cattaneo 
etal. 1991). Therefore, it is the much quieter intersticial medium which is re­
sponsible for conveying the net energy flux to the surface. It remains to examine 
the full implications of this highly intermittent picture of the turbulent convec­
tion zone, both on the transport of heat and on that of angular momentum (cf. 
Rieutord & Zahn 1991; Simon & Weiss 1991). 

Let us mention that such plumes are also observed in laboratory exper­
iments, where the stratification is very weak: there they are directed either 
upwards or downwards, with a prefernce for the direction which allows for pen­
etrative convection (cf. Whitehead & Chen 1970). 

CONVECTIVE PENETRATION 

Penetrative convection, or overshooting as it is sometimes called by astrophysi­
cists, has been the subject of a long lasting debate (see Renzini 1987). However, 
there is overwhelming evidence for such penetration, in geophysical fluids, in the 
laboratory, and now also in the numerical simulations: the convective motions 
do not stop abruptly at the edge of the unstable region, but they travel beyond 
over some distance, and continue to enforce a nearly adiabatic stratification. 
The question is thus not whether penetration does occur in stellar interiors, but 
how important it is. 

Stellar models that include this effect most often postulate a penetration 
depth of a fraction of the pressure scale height, or else of the radius of the 
convective core. And this fraction is calibrated by comparing the theoretical 
predictions with the observations. But everyone agrees that there is a need for 
a better prescription, on a sound physical basis. 

It is appropriate to seek an answer in numerical simulations, like those 
which have been mentioned above, but with boundary conditions that allow for 
penetration. Those which have been performend in two dimensions show indeed 
that the conspicuous downdrafts penetrate rather deep into the stable region 
(Hurlburt etal. 1986). But the computer power which is presently available does 
not permit yet to explore the relevant parameter range. The goal is even more 
remote in three dimensions, although some attempts have been made already at 
low resolution (Brandenburg etal. 1991; Cattaneo, private communication). 

In the meanwhile, one must make up with some reasonable prediction, 
based on minimal and plausible assumptions. One has been proposed by 
Roxburgh (1978, 1989), but its validity has been questioned because it rests on 
the assumption that the convective motions are confined in a nearly adiabatic 
domain (Baker & Kuhfufi 1987). This assumption therefore implies that the 
penetrative motions are efficient enough to establish such a temperature profile 
in the stable adjacent region. It can be shown that this requirement is met in 
a convective core, provided that rising, plume-like motions occur there, as it is 
suggested indeed by laboratory experiments (Zahn 1991). 

Roxburgh's criterion states that the following integral vanishes at the edge 
of the penetration region: 

J(Lnuc-Lr**)d(Jf)=0, ( l ) 
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where T is the temperature, Lnuc the total energy flux produced by the nuclear 
reactions, and Lrai the total flux carried by radiation in the nearly adiabatic 
tempera-ture stratification. This predicts a penetration depth which is a fraction 
of about 20% of the core radius, and which increases with its mass (Roxburgh 
1992; see also Zahn 1991). The effect of neglecting the viscous dissipation is now 
being investigated (see the poster by Roxburgh & Simmons, this meeting). 

Unfortunately, this integral constraint cannot be employed for a convective 
envelope, because the departures from adiabaticity are too large at the surface 
boundary. One then needs to postulate the form of the convective motions, and 
the most natural assumption is that they are organized in plumes, as described 
above. This was first done by Schmitt etal. (1984), with application to the base 
of the solar convection zone. They found empirically that the penetration depth 
scales as / 1 / 2 W , 3 , with Wi being the velocity at the top of the subadiabatic 
region and / a measure of the area occupied by the plumes. 

The same scaling can be derived theoretically, as was shown by Zahn (1991). 
Furthermore, with a plausible estimate of the initial velocity Wi, one finds 
that the penetration depth is of the order of the scale height of the radiative 
conductivity: \dr/dlnx\ (x = 16<rT3/3p<c with the usual notations). Thus the 
penetration depth Lp is given by 

it = i-
HP XP 

(2) 

where Hp is the pressure scale-height and XP — {dlogx/dlog P)ad- The unknown 
parameter < is related to the third moment of the convective velocity: it should 
be of order unity, but is presumably a little less. Once it has been calibrated 
with the Sun, it can be used in other stellar models with a deep convective 
envelope, much as one does with the familiar mixing-length parameter a. 

d\nT 
dlnP 

Fig. 2. The logarithmic temperature gradient in a standard solar model 
(continuous line), compared with a model allowing for a convective penetration of 
30,000 km (dash-dotted line). Note the discontinuity at the edge of the penetration 
region (Berthomieu etal. , this meeting). 
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This calibration has been undertaken by Berthomieu etal. (1992). A 
series of solar models have been computed with the code CESAM built at the 
Nice Observatoire (see Morel etal. 1990); they include an increasing amount 
of penetration at- the base of the convection zone, the parameter < varying 
from 0 to 1. These models were evolved from a ZAMS homogeneous model 
to the present age of the Sun, where they were fitted to the observed radius 
and luminosity. One of such models is depicted in fig. 2. The comparison of 
the eigenfrequencies between these models and the Sun (Libbrecht etal. 1990) 
is used to determine the value of the penetration parameter C- Work is still 
in progress, in order to include all relevant physical processes; presently, the 
best estimate is around 0.70, which corresponds to a penetration depth of about 
20,000 km below the solar convection zone. 

THE SOLAR TACHOCLINE 

Thanks to helioseismology, it is now possible to probe the distribution of the 
angular velocity as a function of radius and latitude. The surface rotation, with 
its equatorial acceleration, carries on to the bottom of the convection zone with 
little depth dependence. In the radiation zone below, the equatorial and polar 
rotation rates approach a common value, within a layer which is too thin to be 
resolved as yet, i.e. which is less than about 1/10 of the solar radius (Brown 
etal. 1989; Goode etal. 1991). 

The theory of this transition layer has been completed recently by Spiegel 
and Zahn (1992). Considering the observed rotation law in the convection 
zone as given, they predict the angular velocity in the radiative interior below 
by expressing the hydrostatic balance and the conservation of energy. The 
governing equations are simplified by approximations usually applied to thin 
layers with rapid rotation. A similar approach is taken by the oceanographers, 
when they study ocean circulation driven by the wind stress at the sea surface: 
for that reason the solar transition layer has been named tacholine. 

The velocity boundary conditions applied to the top of the radiation enforce 
a horizontal pressure gradient, leading in turn to a horizontal temperature 
gradient in the pole-equator direction. This strong link between the temperature 
and differential rotation is well known in geophysical fluid dynamics as the 
thermal wind. In the Sun, because of radiation, the horizontal temperature 
distribution diffuses downwards, and it is accompanied by the differential 
rotation, which, in the inviscid case, can be modified only by advecting angular 
momentum. 

But the meridian motions required for this are hindered by the stable 
stratification, and thus the transition layer spreads inward at a much slower 
rate. Instead of growing in time as in the normal diffusive way like t1/2, and the 
thickness h of the layer increases approximately as 

h « Rc (t/tES)
1/4 , (3) 

where the local Eddington-Sweet time is given by tss = (Cl/N)'2 R\/K, in terms 
of the mean rotation rate fl, the buoyancy frequency N, and K the thermal 
diffusivity. A similar temporal evolution is found in the stratified spin-down 
problem (e.g. Sakurai 1970; Spiegel 1972). For the Sun, h » 2105 km after 
4.6109 yrs, according to this crude formula. 
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Fig. 3. The solar tachocline, whose thickness has been set arbitrarily to 50,000 
mk (the actual value depends on the horizontal viscosity Vh). The continuous lines 
show the contours of the angular velocity. The interior rotation is that of the 
convection zone at the latitude 42° (Spiegel k, Zahn 1992; courtesy Astr. Ap.). 

The actual calculation, allowing for the variation of the rotation rate with 
time, yields an even larger result: h « 310s km. Hence, we conclude that the 
differential rotation of the convection zone would have extended well into the 
Sun, if radiative diffusion were alone responsible for its spread. The apparent 
discontinuity represented by the observed tachocline must therefore be ascribed 
to another physical process, capable of preventing the expansion of the layer. 

In deriving the estimate above, the flow has been treated implicitely as 
laminar, while it is a well established fact that, at sufficiently high Reynolds 
numbers, virtually any flow becomes turbulent. Thus there is little doubt that 
the horizontal shear of the differential rotation will be unstable (Zahn 1975). 
An enhanced isotropic viscosity would spread the tachycline even more quickly 
into the interior than before, but one verifies that with sufficiently anisotropic 
turbulence one can construct solutions that resemble the observed tachycline 
(ng- 3). 

It thus proves the presence, below the solar convection zone, of a 
predominantly horizontal tubulence, such as encountered in the geophysical 
context (Rhines 1979). In this regime, the horizontal advection of angular 
momentum is balanced by the turbulent stresses, and a steady state is achieved 
in a layer whose thickness can be well within the bound set by observations. 
That thickness is determined by the turbulent Prandtl number, which is here 
the ratio between the horizontal eddy viscosity uh and the thermal diffusivity K: 

h = Re(Q/N)1'2(K/uh)
l/\ (4) 
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The theory also predicts that the interior uniform rotation is intermediate 
between the polar and equatorial rotation rates of the convection zone, in 
agreement with the observations. The vertical differential rotation changes sign 
at a latitude of about 42° (see fig. 3). 

ROTATION-INDUCED TURBULENCE 

In the solar tachocline, the differential rotation which is responsible for the 
turbulent motions is enforced by the convection zone above. But it can also 
arise from the advection of angular momentum through a large scale circulation. 
The origin of such meridian circulation has been known since Eddington (1925) 
and Vogt (1925): due to the centrifugal force, the radiation flux is no longer 
conservative, and the star cannot achieve thermal equilibrium. A large scale 
advection is thus induced to preserve the conservation of energy. 

This meridian flow depends sensitively on the rotation law, which itself is 
continually modified by the flow. The differential rotation is liable to various 
instabilities, as we have mentioned above, and the turbulent motions that then 
occur do also interfer with the transport of angular momentum. The problem 
to solve is thus rather intricate, and until recently, it had not been treated in 
a self-consistent way, mainly because of our poor knowledge of the turbulent 
transport. 

However, significant progress can be achieved by assuming that the 
turbulence is highly anisotropic, as observed in the solar tachocline: then it 
instaures a rotation state in which the angular velocity depends little on latitude, 
and may be considered as varying only with depth (Zahn 1992). With such 
a shellular rotation law, it is possible to derive an explicit expression for the 
meridian velocity, u(r,0) = U(r)P2(cos6), with <7(r) involving up to the third 
derivative of the angular velocity Q(r) (r and 6 are the polar coordinates). 

The evolution of the rotation profile is governed by the conservation of 
angular momentum, which is then expressed by 

li^ = hir>^ + hTr (5) 

with the usual notations, and vx being the vertical component of the turbulent 
viscosity. This viscosity is due essentially to the shear in the vertical direction, 
and vt is proportional to (dQ./dr)2 (Zahn 1975). A similar equation has been 
used by Endal & Sofia (1976), and later by Pinsonneault etal. (1989) to model 
the transport of angular momentum in stellar interiors, but the advective term 
was lacking. 

The p.d.e. above is of first order in time, and of fourth-order in space; it 
must be solved with suitable initial and boundary conditions, of which the most 
important expresses the loss of the. angular momentum J at the surface of the 
star: 

- _ , r < ^ - ^ r < _ = - - _ (6) 

When the star is not subject to a wind, the rotation rate settles rapidly 
into a state with little meridian circulation, the latter just compensating the 
adverse flux of angular momentum due to the turbulent motions. Moreover, if 
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the rotation speed lies below some threshold, the shear of the differential rotation 
is too weak to generate such turbulence, and there is no circulation at all. 

The situation is drastically different when the star emits a wind. Then a 
bulk circulation sets in to carry the angular momentum from the interior to the 
surface, and its speed is governed by the rate of angular momentum loss. The 
rotation profile adjusts slavishly to produce the required meridian flow, and so 
does also the turbulence. The core of the star rotates substantially faster than 
the surface, and one may expect that this is the case, in particular, for the Sun 
(fig- 4). 
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Fig. 4. Evolution of the rotation profile in a solar-like star which loses angular 
momentum (Zahn 1992). Work is in progress to refine this sketch. 

This notion, that it is the spindown which drives the circulation, is well 
known for viscous fluids as the so- called Ekman pumping (Bondi & Littleton 
1948; Greenspan & Howard 1963). Its relevance for stars has been recognized 
by Howard etal. (1967), with radiative diffusion taking the role of the viscous 
coupling, and with the whole convection zone acting as the turbulent Ekman 
layer (Bretherton & Spiegel 1968). But for some reason the astronomical 
community seems to have ignored these pionneering works. 

The transport of angular momentum is not much affected by the turbulent 
motions, whose role is chiefly to enforce the shellular rotation state. In contrast, 
the advection of chemical species is partly inhibited by the horizontal component 
Dh of the turbulent diffusivity, which acts to smooth out the horizontal 
inhomogeneities that are built up by the circulation. When Dh I rU, the vertical 
transport of matter behaves like a diffusion, with an effective diffusivity given 
by: 

Def, = — Jtii 
1 (rt/)2 

30 Dh 

(7) 

This result was established by Chaboyer and Zahn (1992), who showed that 
the process is closely related to Taylor's shear dispersion (Taylor 1953). Their 
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predictions were confirmed by Charbonneau (1992), who actually simulated, 
with a two-dimensional code, the interference of anisotropic turbulence with a 
meridian flow. 

This turbulent erosion provides a straightforward explanation for the strong 
link between the transport of lithium and that of angular momentum, and 
moreover for the disparity which is observed between the efficiencies of these 
transports in the case of the Sun (Law etal. 1984). With some simplifying 
assumptions, it is possible to show that the surface abundance of lithium varies 
approximately as 

—dlogc = —klogJ, (8) 

where k is a constant that depends only on the location of the base of the 
convection zone and that of the lithium destruction layer, but not on the 
spindown law itself (Zahn 1992). 

Work is in progress to explore all consequences of the master equation (5) 
above, and in particular to predict the internal rotation of the Sun. 
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