
Research Directions:
Quantum Technologies

www.cambridge.org/qut

Analysis

Cite this article: O’Neil SP, Langbein FC,
Jonckheere E, and Shermer S (2023).
Robustness of energy landscape control to
dephasing. Research Directions: Quantum
Technologies. 1, e13, 1–11. https://doi.org/
10.1017/qut.2023.6

Received: 9 March 2023
Revised: 24 September 2023
Accepted: 25 September 2023

Keywords:
Energy landscape control; spin networks;
robust control

Corresponding author:
Sean Patrick O'Neil; Email: seanonei@usc.edu

© The Author(s), 2023. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-ShareAlike licence (http://
creativecommons.org/licenses/by-sa/4.0/),
which permits re-use, distribution, and
reproduction in anymedium, provided the same
Creative Commons licence is used to distribute
the re-used or adapted article and the original
article is properly cited.

Robustness of energy landscape control to
dephasing

Sean P. O’Neil1 , Frank C. Langbein2 , Edmond Jonckheere1 and S. Shermer3

1Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA;
2School of Computer Science and Informatics, Cardiff University, Cardiff, UK and 3Faculty of Science and
Engineering, Physics, Singleton Park, Swansea, UK

Abstract

As shown in previous work, in some cases closed quantum systems exhibit a non-conventional
absence of trade-off between performance and robustness in the sense that controllers with the
highest fidelity can also provide the best robustness to parameter uncertainty. As the dephasing
induced by the interaction of the system with the environment guides the evolution to a more
classically mixed state, it is worth investigating what effect the introduction of dephasing has on
the relationship between performance and robustness. In this paper we analyze the robustness
of the fidelity error, as measured by the logarithmic sensitivity function, to dephasing processes.
We show that introduction of dephasing as a perturbation to the nominal unitary dynamics
requires a modification of the log-sensitivity formulation used to measure robustness about an
uncertain parameter with nonzero nominal value used in previous work. We consider
controllers optimized for a number of target objectives ranging from fidelity under coherent
evolution to fidelity under dephasing dynamics to determine the extent to which optimizing for
a specific regime has desirable effects in terms of robustness. Our analysis is based on two
independent computations of the log-sensitivity: a statistical Monte Carlo approach and an
analytic calculation. We show that despite the different log-sensitivity calculations employed in
this study, both demonstrate that the log-sensitivity of the fidelity error to dephasing results in a
conventional trade-off between performance and robustness.

Introduction

The advent of quantum technology and promise of applications ranging from quantum
computing to quantum sensing has resulted in strong interest in a range of quantum systems. In
particular coupled spin systems, or spin networks for short, show potential as simple prototypes
on the path to scaling to more complex systems (Awschalom et al., 2013). As control plays a
fundamental role in the translation of physical phenomena into technology, the development
and implementation of effective control schemes for quantum systems are essential to harness
their technological potential (Glaser et al., 2015). Coupled with the design of controllers for
quantum systems, tools to assess and guarantee robustness of these controllers to the effect of the
environment are essential to realizing the benefits of quantum technology for high fidelity
medical imaging, operation of quantum gates and quantum computing (Fu et al., 2007; Koch
et al., 2022; de Arquer et al., 2021).

A paradigm for quantum control based on energy landscape shaping has been proposed and
applied to derive feedback control laws for selective transfer of excitations between different
nodes in a spin network (Schirmer et al., 2018a, 2018b; Langbein et al., 2015). The controllersD(|
IN〉,|OUT〉) for this scheme are designed to maximize the fidelity |〈OUT|U(T)|IN〉|2 of transfer
from an input state |IN〉 to an output state |OUT〉 at a specified readout time T. U(T) is the
unitary time evolution operator of the system, which depends on static fields to shift the energy
levels of the system (Langbein et al., 2015, 2022b). These optimal controllers D are selective in
that no input other than |IN〉 can drive the system to |OUT〉 at time T.

Although this quantum control problem can be formulated as a linear time-invariant (LTI)
control system with state feedback, there are numerous differences between this quantum
control problem and a classical tracking problem. The unitary evolution of a closed quantum
system is characterized by persistent oscillations. As such, the system is not stable in a classical
sense, and the target states are not attractive or asymptotically stable steady states. Lack of
stability might be expected to bode poorly for robustness but this is not necessarily always the
case. In Schirmer et al. (2018a), it was shown that controllers achieving perfect state transfer also
have vanishing sensitivity with respect to perturbations to the coupling strengths of the drift
Hamiltonian. At the same time, statistical analysis of a set of optimal energy landscape
controllers for uniformly coupled spin rings, ranging in size from 3 to 20 spins, found that under
certain conditions, a concordant relationship between the error and the log-sensitivity is
possible for controllers that achieve low but nonvanishing errors (Jonckheere et al., 2018).
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Our goal in this paper is to investigate whether a nonconven-
tional lack of trade-off between robustness and performance is
observed in simple spin rings evolving under dephasing dynamics
or whether a conventional trade-off exists. We assess robustness
through the log-sensitivity, calculated both analytically and via
kernel density estimation (KDE). We also consider controllers
optimized to provide maximum fidelity under different assump-
tions on the system–environment interaction. In particular, we
consider controllers optimized formaximum fidelity under unitary
evolution, those optimized for fidelity with dephasing introduced
and those optimized for a linear combination of fidelity under
unitary dynamics and steady-state fidelity. To understand this
effect of decoherence on the controller design we will focus on the
intermediate regime where coherent dynamics play a significant
role but are modified by dephasing as a result of weak interactions
with the environment. The strongly dissipative regime where
asymptotic stability can be recovered (Schirmer and Wang, 2010)
and exploited to design backaction-based stabilization schemes
(Ticozzi et al., 2010; Motzoi et al., 2016) has been considered in
other work (Schirmer et al., 2022).

While the non-conventional absence of a trade-off between
robustness and performance observed in some cases under
coherent dynamics may carry over to systems subject to
decoherence, the addition of decoherence alters the dynamics
significantly. Pure dephasing, in particular, results in quantum
superposition states converging to classical mixed states. It is thus
reasonable to expect a more classical, in a control-theoretic sense,
behavior for systems subject to decoherence.

In Section “Coupled spin dynamics – single-excitation sub-
space,” we introduce the theory of coupled spin systems and their
evolution under decoherence in the single-excitation subspace. In
Section “Control objectives and controller design,” we introduce
the control objectives in terms of maximization of the transfer
fidelity and the objective functions for optimal controller design in
the different regimes. Next, in Section “LTI formulation of the state
equation,” we introduce an LTI form of the dynamical equations
amenable to robustness analysis. In Section “Robustness assess-
ment,” we provide the pair of methods (statistical and analytic)
used to gauge the sensitivity and robustness of the controllers. In
Section “Analysis,” we present results detailing the level of
concordance between the two log-sensitivity calculations, the
degree to which the robustness properties of the controllers agree
with the trade-offs from classical control theory, and explore the
effect of specific controller types on the fidelity and observed
robustness properties. Finally, we conclude with Section
“Conclusion.”

Methods

In this section, we outline the equations governing excitation
transfer for spin rings in the single-excitation subspace, describe
the control objectives and optimization scheme used to develop the
controllers, and detail the methods used to assess the robustness of
these controllers to perturbations in the form of dephasing.

Coupled spin dynamics – single-excitation subspace

We consider a ring of N spin-1/2 particles with nearest-neighbor
coupling in the subspace of the state space where the total number
of excitations is one, which consists of states where one spin is in an
excited state and N − 1 spins remain in the ground state, and
superpositions of such states. As detailed in (Langbein et al., 2015;

Schirmer et al., 2018a; O’Neil et al., 2023) the Hamiltonian for this
spintronic network in the single-excitation subspace is represented
as

HD ¼

D1 J1;2 0 . . . 0 J1;N
J1;2 D2 J2;3 0 0
0 J2;3 D3 0 0

..

. . .
. . .

. . .
. ..

.

0 0 0 DN�1 JN�1;N

J1;N 0 0 . . . JN�1;N DN

0
BBBBBBB@

1
CCCCCCCA

(1)

in the basis where each natural basis vector represents the
excitation localized at spin |n〉. The terms Jk, ℓ represent the
coupling between spins |k〉 and |ℓ〉 and are all assumed equal. The
terms Dn are scalar values of the time-invariant control fields
applied to shape the energy landscape. This single-excitation
subspace model is a simplification of the model for a system with
any number of excited spins up to N. Specifically, this is the
subspace that results by retaining only those eigenvectors with
eigenvalue 1 for the total spin operator SN ¼ 1

2

P
N
k¼1ðI þ ZkÞ (Joel

et al., 2013).
Assuming weak interaction with the environment, the

dynamics of the system are described by the Lindblad differential
equation:

ρ̇ðtÞ ¼ � j
ħ
½HD; ρðtÞ� þ LDðρðtÞÞ; (2)

where ℏ is the reduced Planck constant, HD the Hamiltonian
defined above and LD is a Lindblad superoperator

LDðρÞ ¼ VD
yρVD � 1

2
ðVD

yVDρþ ρVD
yVDÞ: (3)

By setting VD= 0 we recover the usual Hamiltonian dynamics
considered in previous work (Schirmer et al., 2018a; O’Neil et al.,
2023). Here, we study systems subject to decoherence that can be
modeled as dephasing in the Hamiltonian basis. This is a common
model for weak decoherence, described by a Lindblad operator LD
of dephasing type, given by a Hermitian dephasing operator that
commutes with the system Hamiltonian,

VD ¼ VD
y where ½HD;VD� ¼ 0: (4)

The subscript D in the Lindbladian indicates a dependence on the
control as, strictly speaking, decoherence in the weak coupling
limit depends on the total Hamiltonian, and hence on the control
(D’Alessandro et al., 2014, 2015). Although this is a simple
decoherence model, it is closer to the master equation in the weak
coupling limit developed in (D’Alessandro et al., 2014) as it appears
at first glance. For a Hermitian VD, it is easily verified that the
Lindblad superoperator simplifies to

LDðρÞ ¼ �1
2
½VD; ½VD; ρ��: (5)

As HD and VD commute for the dephasing model, they are
simultaneously diagonalizable and there exists a set of projectors
{Πk}k onto the (orthogonal) simultaneous eigenspaces of HD and
VD such that

P
k Πk ¼ ICN is a resolution of the identity on the

Hilbert space CN of the single-excitation subspace and
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HD ¼
X
k

�kΠk; VD ¼
X
k

ckΠk;

where λk and ck are the real eigenvalues ofHD and VD, respectively.
Pre- and post-multiplying the master equation (2) with

Lindblad term (3) by Πk and Πℓ yields

Πkρ̇ðtÞΠ‘ ¼ ð�j!k‘ � �k‘ÞΠkρðtÞΠ‘; (6)

where !k‘ ¼ 1
ħð�k � �‘Þ and �k‘ ¼ 1

2ħðck � c‘Þ2 � 0. The solution
for the projection Πkρ(t)Πℓ is

ΠkρðtÞΠ‘ ¼ e�tðj!k‘þ�k‘ÞΠkρ0Π‘:

Since
P

k Πk ¼ ICN , the full solution is

ρðtÞ ¼
X
k;‘

e�tðj!k‘þ�k‘ÞΠkρ0Π‘: (7)

Control objectives and controller design

In this section, we define the control objective as the transfer
fidelity and discuss differing conditions under which we seek to
maximize this measure. These varying conditions manifest as
distinct sets of controllers aimed at optimizing the fidelity under
differing conditions.

Transfer fidelity
Following the framework adopted in earlier work (Langbein et al.,
2015; Schirmer et al., 2018a), we seek static controllers that map an
input state to a desired output state by shaping the energy
landscape of the system. Specifically, our design objective is to find
a controller that steers the dynamics to maximize the transfer
fidelity of an excitation at an initial node of the network, |IN〉, to an
output node |OUT〉 at a specific readout time T. If the output state
is a pure state, this target state can be represented as ρOUT= |OUT〉
〈OUT|. We then evaluate the fidelity of the state ρ(t) at time T in
terms of the overlap with ρOUT as

F½ρðTÞ� ¼ Tr½ρOUTρðTÞ�: (8)

The maximum transfer fidelity, Fmax = 1, is attained when
ρ(T)= ρOUT as

F½ρðtÞ� � F½ρOUT� ¼ Tr½ρ2OUT� ¼ 1: (9)

The fidelity error e(T) at the readout time T is therefore given by
e(T)= 1− F[ρ(T)]. We thus seek controllers that maximize this
transfer fidelity (equivalently minimize the fidelity error) defined
in (8), where ρ(T) is the solution of Eq. (2) with ρ(0)= ρ0=
|IN〉〈IN|.

Optimal controller design
For the energy landscape control paradigm, finding a controller is
equivalent to finding an ordered N-tuple of control parameters
D1; D2; . . . ; DNf gT and a time T that maximizes the transfer

fidelity for a system evolving under the total Hamiltonian HD,
according to Eq. (2). If the decoherence process is known precisely
then it is straightforward to optimize the control objective by
evolving the system according to Eq. (2) and evaluating the fidelity.
However, the exact dephasing rates for a given system are often not

precisely known (Schirmer and Solomon, 2004). We thus consider
three different scenarios for optimal controller synthesis:

1. Optimize the transfer fidelity under unitary dynamics.
2. Optimize a convex combination of unitary transfer and

asymptotic transfer fidelity
3. Optimize the fidelity averaged over a sampling of

decoherence processes.

Option 1 is a reasonable choice if decoherence is a weak
perturbation to the Hamiltonian dynamics. Optimizing solely for
asymptotic transfer fidelity may be a reasonable choice if the
decoherence is so strong that the system is likely to reach a steady
state before the transfer is complete. However, in the intermediate
regime, when we are unsure of the dephasing rates, optimizing for
Options 2 and 3 is more practical.

Optimization under unitary dynamics
Optimization of Option 1 has been considered in previous work
(Langbein et al., 2015; Schirmer et al., 2018a; Langbein et al.,
2022b). The optimization problem in the other cases can be solved
similarly, using standard optimization algorithms with suitable
modification of the objective functional. Despite the complex
optimization landscape, we have found that the L-BFGS (limited
memory Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton
algorithm with restarts using randomly selected initial values in
a sufficiently large domain based on stratified sampling works well
for all options (Langbein et al., 2015, 2022a).

Optimization of coherent and asymptotic transfer fidelity
To simultaneously optimize coherent and asymptotic transfer, we
define an objective function that is a weighted average of both, for
example,

αTr½ρðTÞρOUT� þ 1� αð ÞTr½ρ1ρOUT�; (10)

where ρ(t)=U(t)ρ0U(t)† is the initial state propagated by unitary
evolution and ρ∞ is the steady state of decoherent evolution. Both
ρ(T) and ρ∞ are efficiently calculated from (7) by setting t= T,
γkℓ= 0 for coherent evolution and t=∞, k= ℓ for the decoherent
steady state, respectively.

Tomaximize this weighted average fidelity, a controller must be
superoptimal. Specifically, it must enable perfect state transfer
from ρ0 to ρOUT at time t= T. Simultaneously, it must maximize
the overlap of the steady state ρ∞ with the target state ρOUT. To see
that such controllers exist in principle, consider a controller that
achieves maximum asymptotic transfer by rendering the input and
output states orthogonal superposition states of the form
INj i ¼ 1ffiffi

2
p e1j i þ e2j ið Þ and OUTj i ¼ 1ffiffi

2
p e1j i � e2j ið Þ in the eigen-

basis of the Hamiltonian, HD ¼ P
N
k¼1 Ek ekj i ekh j. We refer to these

states as orthogonal pairs. Here, Ek and |ek〉 represent the energy
eigenvectors and eigenvalues ofHD. Since ρ0 and ρOUT only involve
the first two eigenvectors of HD, we can restrict ourselves to
considering the representation on this subspace,

ρ0 ¼
1ffiffiffi
2

p 1 1
1 1

� �
; ρOUT ¼ 1ffiffiffi

2
p 1 �1

�1 1

� �
: (11)

The general state evolves as
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ρðtÞ ¼ 1ffiffiffi
2

p 1 e�tðj!12þ�12Þ

e�tðj!21þ�21Þ 1

� �
: (12)

In terms of the first objective (fidelity under unitary dynamics),

γ12= γ21= 0, and at a time T ¼ ð2nþ1Þ�
!12

for n∈ Z the controller

achieves perfect state transfer or ρ(t)= ρOUT, maximizing the first
half of the objective. In terms of the asymptotic component of the
objective, with γ12= γ21> 0,

lim
t!1 ρðtÞ ¼ 1ffiffiffi

2
p 1 0

0 1

� �
: (13)

And so Tr ρ1ρOUT½ � ¼ 1
2, maximizing the possible overlap.

Decoherence-averaged optimization
Optimization of the transfer fidelity, averaged over many
dephasing processes, is in principle also straightforward. For a
given initial state ρ0 and controller D, the output state ρ(D,S)(T)
subject to a dephasing process S is calculated according to (7) and
transfer fidelity from (8). From this the average transfer fidelity can
be computed by taking the mean of the transfer fidelity over all
decoherence processes.

The computational overhead of the average fidelity evaluation,
and thus the optimization as a whole, depends linearly on the
number of decoherence processes averaged over. Efficient
sampling of the possible decoherence processes to minimize the
number of required decoherence processes and avoid sampling
bias is therefore important.

Decoherence in the form of dephasing in the Hamiltonian basis
is modeled by sampling the space of pure dephasing processes. We
generate a large set of N ×N lower triangular matrices with entries
Γkℓ

(S) in [0,1]. Here, N is the system dimension given by the
number of qubits in the network. To ensure even sampling of the
whole space, the entries of the triangularmatrices are drawn from a
Sobol sequence for low-discrepancy sampling, thus allowing an
even covering of the sample space (Burhenne et al., 2011). A set of
at least 10, 000 dephasing operators is then generated by
eliminating all trial dephasing matrices that violate the com-
plete-positivity physical constraints for evolution of an open
quantum system (Gorini et al., 1978; Oi and Schirmer, 2012). We
further normalize each dephasing matrix Γkℓ

(S) as

ḠðSÞ
k‘ ¼ GðSÞ

k‘

X
1< k�N1�‘< k

jGðSÞ
k‘ j

,
: (14)

We then use 1, 000 of these dephasing operators in each
optimization run for fidelity with dephasing dynamics.

LTI formulation of the state equation

To facilitate the following analysis we reformulate the Lindblad
equation (2) and its solution (7) through expansion by a set of N2

basis matrices for Hermitian operators on the space CN (Altafini
and Ticozzi, 2012). The result of this vectorization process is to
transform the master equation (2) to the LTI form

ṙðtÞ ¼ ðAþ LÞrðtÞ (15)

where r(t)∈RN2
is the vectorized version of the density matrix in

the Hamiltonian basis, A∈RN2�N2
is the matrix representation of

the Liouville superoperator which determines the unitary
evolution of the system, and L∈RN2�N2

is the matrix representa-
tion of the Lindblad superoperator. To see this, consider the
decomposition of the controlled Hamiltonian HD=UΛU† where
U∈U(N) and Λ∈RN�N is the diagonal matrix of real eigenvalues
ofHD. Pre-multiplying (2) byU†, post-multiplying byU and noting
that UU†=U†U = I, we have

ħ˙̃ρðtÞ ¼ jLρ̃ðtÞ þ jρ̃ðtÞLþ Cρ̃ðtÞC � 1
2
C2ρ̃ðtÞ � 1

2
ρ̃ðtÞC2 (16)

where ρ̃ (t) =U†ρ(t)U is the representation of the density matrix in
the Hamiltonian basis, andC =U†VDU is a diagonalmatrix of theN
scalar ck’s from the decomposition VD ¼ P

k ckΠk.
We choose the N2− 1 generalized Pauli matrices (Bertlmann

and Kramer, 2008) complemented by IN to form an orthonormal
basis for the Hermitian operators on CN which we designate as
{σn}. The orthonormality conditions are expressed as Tr(σm,σn)
= δmn. Expansion of (16) in terms of the basis {σn}, yields the
following (Floether and others, 2012):

rkðtÞ ¼ Tr ρ̃ðtÞσkð Þ; (17a)

Ak‘ ¼ Tr
j
ħ
L½σk; σ‘�

� �
; (17b)

Lk‘ ¼
1
ħ
TrðCσkCσ‘Þ �

1
2ħ

TrðC2fσk; σ‘gÞ: (17c)

Here [⋅,⋅] is the matrix commutator and {⋅,⋅} is the anti-
commutator. The solution to (15) is

rðtÞ ¼ etðAþLÞr0 (18)

where r0∈RN2
is the vectorized version of ρ0 with components

given by r0k= Tr(ρ0σk).
Before proceeding, wemake a few observations. Firstly, asC and

Λ are diagonal and commute, then so do A and L which simplifies
calculation of the log-sensitivity. Secondly, given the requirement
that Tr(ρ(t)) = 1 ∀t, we see that rN2ðtÞ ¼ 1ffiffiffi

N
p , which implies ṙN2 = 0.

This guarantees the existence of at least one zero eigenvalue of the
dynamical equation (15) and, similarly, the existence of a subspace
along which the trajectory is constant (a steady state).

Additionally, if the eigenvalues of Aþ L not equal to zero are
distinct, and the dephasing process is characterized by N distinct
jump operators not equal to zero, then Aþ L has N zero
eigenvalues corresponding to k= ℓ, consistent with the constant
populations on the main diagonal of ρ(t) in (7). We return to this
LTI formulation to assess robustness in Section “Robustness
assessment.”

Robustness assessment

Following (Schirmer et al., 2018b; Jonckheere et al., 2018; O’Neil
et al., 2022), we assess the robustness of the implemented
controllers to perturbations to the nominal system through the
logarithmic sensitivity of the fidelity error, or log-sensitivity
for short.

We consider our nominal system as the closed system evolving
under unitary dynamics with a nominal trajectory given by (7) with
γkℓ= 0 or the vectorized form (15) with L ¼ 0N2�N2 . We then
consider perturbations of this nominal trajectory due to the
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introduction of dephasing. We represent the dephasing process as
the matrix Sμ∈CN2�N2

where μ is used to index distinct dephasing
processes. Even though Sμ is an operator on the Hilbert space over
CN2

, it consists of strictly real elementsΓkℓ
(Sμ)= γkℓ

(Sμ) as defined in
(14). We will consider a set of 1000 dephasing operators in each
trial, indexed as μ∈ {1, 2, : : : , 1000}. Furthermore, we introduce a
parameter δ∈ [0,1] to modulate the strength of the dephasing
process for each Sμ. We then denote the perturbed trajectory in the
density matrix formalism as

ρ̃ðt; Sμ; δÞ ¼
X
k;‘

e�tðj!kl�δ�
ðSμÞ
k‘ ÞΠkρ0Π‘ (19)

or in the LTI formulation as

r̃ðt; Sμ; δÞ ¼ etðAþδSμÞr0: (20)

The fidelity error for the perturbed density matrix of (19) is then
given as

ẽðT ; Sμ; δÞ ¼ 1� Tr½ρ̃ðT ; Sμ; δÞρOUT� (21)

or

ẽðT ; Sμ; δÞ ¼ 1� ceðAþδSμÞTr0 (22)

where c is the N2 × 1 row vector corresponding to the transpose
vectorized representation of ρOUT.

We are now in a position to assess the robustness of ẽðT ; Sμ; δÞ
by measuring the effect of the dephasing perturbation through the
log-sensitivity (O’Neil et al., 2022). We rely on the log-sensitivity
based on its widespread use and relation to fundamental
limitations of classical control (Jonckheere et al., 2018; Dorf and
Bishop, 2000). Specific to the excitation transfer problem, we
quantify performance as high fidelity F[ρ(T)] (equivalently low
error 1− F[ρ(T)] = e(T)) and measure robustness as the size of the
differential change in the performance induced by an external

perturbation or @eðTÞ
@δ . In terms of fundamental limitations, we

expect that those controllers which exhibit the best performance
will display the greatest differential log-sensitivity (the least
robustness) and vice versa for those controllers exhibiting low
performance.

Next, in order to better gauge a normalized percentage change
in ẽðT ; Sμ; δÞ for a given Sμ, we consider a logarithmic sensitivity of

the form @ lnðẽðTÞ
@δ . We calculate the log-sensitivity of the fidelity

error to the perturbation Sμ as

sðSμ;TÞ ¼
@ lnðẽðT ; Sμ; δÞÞ

@δ

����
δ¼0

¼ 1
eðTÞ

@ẽðT ; Sμ; δÞ
@δ

����
δ¼0

: (23)

Note that we depart from the definition of log-sensitivity used in
(O’Neil et al., 2022), as we see two distinct cases when applying the
log-sensitivity. In the first case there are no changes in the inertia of
the system matrix when parameters drift about their nominal
values. By inertia of a system matrix, we mean the number of
eigenvalues λk with ℜλk= 0, ℜλk< 0 and ℜλk > 0, characterizing
the response of the system. This first case is the basis for the
analysis in (O’Neil et al., 2022) and includes the uncertain
couplings J as in (Jonckheere et al., 2018). In such cases, the
genuine log-sensitivity @ lnðeðTÞÞ=@ lnð�Þ�¼�0

provides a mean-

ingful, dimensionless measure of sensitivity to the uncertain
parameter � with nominal value �0. In the more complicated
second case there are changes of inertia around the nominal
parameter values. The present case falls in this category as the
nominal decoherence rate is δ0= 0. Introduction of the perturba-
tion induces a bifurcation in the system dynamics from unitary
evolution to decoherent evolution. In this case, evaluating the log-
sensitivity as ∂ln (e(T))/ ∂ln (δ)|δ= δ0 yields a zero value for all
controllers. This requires a revision of the log-sensitivity as ( ∂e(T)/
∂δ) ⋅ (1/e(T))|δ= 0 to obtain a meaningful log-sensitivity. Regard-
less, s(Sμ,T) as defined in (23) provides a percentage change in the
error with respect to the introduction of dephasing. Put differently,
the value of s(Sμ,T)δ for nonvanishing δ provides a means to
compare the effect of decoherence process Sμ of strength δ across
different controllers.

Kernel density estimate approach

As shown in (Schirmer et al., 2018b), evaluating the log-sensitivity of
the error numerically over a large number of perturbations provides
onemethod of assessing robustness. In the current study, we use this
as the first approach to calculating the log-sensitivity. Specifically, we
consider spin rings of size N= 5 and N= 6. For each ring, we
consider transfers from spin |IN〉= |1〉 to |OUT〉= |2,3〉 for N= 5
and |OUT〉= |2,3,4〉 for N= 6. For each transfer we select the best,
as measured by highest nominal fidelity, 100 controllers from the
three optimization categories described in Section “Optimal
controller design”: fidelity under unitary dynamics, fidelity under
dephasing, and unitary transfer combined with asymptotic fidelity.
For brevity, we refer to these optimization options as fidelity,
dephasing and overlap, respectively. For each controller, we select
1000 dephasing operators generated by the process described in
Section “Decoherence-averaged optimization.” For each dephasing
process, we consider a perturbation δ∈ [0,1] quantized into 1001
points with a uniform interval of 0.001.

With this setup, we calculate ẽðT ; Sμ; δÞ for each controller
across the entire population of Sμ and δ by (19) and (21). The result
is an 1000 × 1001 element array of error results arranged by
dephasing process along the rows and perturbation strength along
the columns. This array serves as the kernel for the MATLAB
function ksdensity to compute a kernel density estimate of the
error to dephasing for a given strength (Silverman, 1986). The
bandwidth used in the calculation is h= 3.5σn−1/3 as derived in
(Scott, 1979) where σ is the standard deviation of the samples in
each error array noted above and n is the number of samples. For
each step in δ we also calculate the mean and variance of the error
across the 1000 dephasing processes. These 1001 samples of the
mean error over all dephasing operators serves as input to the
MATLAB function fit with option “smoothingspline” to
produce a functional representation of the mean error designated
as ê(T; S,δ) where we drop the subscript μ on the dephasing
operator to indicate that the averaging process in the density
estimation has already been taken into account. We choose a
smoothing spline over a cubic fit to provide the greatest degree of
freedom while providing a functional fit that minimizes any
distortion in the data (Perperoglou et al., 2019). A numeric
differentiation of ê(T; S,δ), evaluated at the point where δ= 0, then
provides an estimate of the differential sensitivity. We then have

skðS;TÞ ¼
1

eðTÞ
@êðT ; S; δÞ

@δ

����
δ¼0

(24)
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where e(T)= ê(T; S,0) is the nominal error. The subscript k
indicates the value of the log-sensitivity is calculated from the
density estimate of the mean error.

As an example of the output of this KDE, Figure 1 displays a
heatmap visualization of the error versus decoherence strength in
the upper pane. The slope of the green line at the point where δ= 0
provides the estimate of the differential sensitivity used in the log-
sensitivity calculation. The repository located at (Langbein et al.,
2022c) contains the entire collection of these figures for all
controllers and optimization options.

Analytic calculation

The structure of the matrices A and Sμ greatly simplifies the
calculation of the log-sensitivity. Based on the fidelity error defined
in (20) and noting that A and Sμ commute we have that
ẽðT ; Sμ; δÞ ¼ ceATeδSμTr0. The log-sensitivity is then easily calcu-
lated as (Dorf and Bishop, 2000)

sðSμ;TÞ ¼
1

eðTÞ
@ẽðT ; Sμ; δÞ

@δ

����
δ¼0

¼ �1
eðTÞ ce

ATðSμTÞr0
����

����: (25)

For each controller, we calculate s(Sμ, T) for the same 1000
dephasing operators used in the approach of Section “Kernel
density estimate approach” for μ∈ {1, 2, : : : , 1000}. To arrive at a
single value of the log-sensitivity for each controller and to
maintain consistency with the KDE approach, we take the
arithmetic mean over all dephasing operators and define

saðS;TÞ ¼
1

1000

X1000
μ¼1

sðSμ;TÞ (26)

where the subscript a indicates the log-sensitivity is derived from
an analytic calculation of the perturbed trajectory of (20).

Analysis

We focus our analysis on three topics: the level of concordance
between the two log-sensitivity measures sk(S, T) and sa(S, T), the
degree to which the controllers in the data set exhibit robustness
properties that align with the trade-off induced by the Sþ T= I
identity of classical feedback control, and the role played by input–
output state orthogonal pairs in the fidelity and robustness of the
controllers. For the first two categories we execute a pair of
hypothesis tests based on the Kendall τ as a nonparametric
measure of correlation and the Pearson r as a measure of linear
correlation. The analysis of the role of orthogonal pairs is based on
a visual interpretation of the fidelity and robustness plots for
controllers that render input–output states as orthogonal pairs and
those that do not.

Hypothesis test

In Section “Comparison of robustness assessments” below, we test
the concordance between sa(S, T) and sk(S, T). We expect a positive
correlation between the two metrics and test the level of
concordance through a one-tailed hypothesis test with the right
tail. We establish

Figure 1 Top: heat map of KDE-based fidelity error distribution as a function of the dephasing strength for a 0→ 1 transfer in a 5-ring with dephasing-optimized controller. The
green lines indicate themean and standard deviation of the distribution. The slope of themean error as a function of the decoherence strength δ is used to estimate the sensitivity
in the limit δ→ 0, which provides the numerical estimate sk(S,T) of the log-sensitivity. Bottom left: values of the biases of the energy landscape controller, with transfer time T and
steady-state overlap indicated in the title. Bottom center and right: heat map of the initial state ρ0 and final state ρ(T) with respect to an eigenbasis of the controlled Hamiltonian.
Notice that in this example, the initial and final state form an orthogonal pair in this basis.
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• H0: no correlation between sa(S, T) and sk(S, T);
• H1: positive correlation between sa(S, T) and sk(S, T).

In Section “Robustness trend analysis,” we compare the trend
between each measure of log-sensitivity (sa(S, T) and sk(S, T)) with
the nominal error e(T). The classical control trade-offs require a
negative correlation between e(T) and the log-sensitivity, so we
establish a one-tailed hypothesis test on the left tail. For this test:

• H0: no correlation between e(T) and {sa(S, T), sk(S, T)};
• H1: negative correlation between e(T) and {sa(S, T), sk(S, T)}.

In both cases we consider the N= 5 transfers from |IN=1〉 to |
OUT〉= |2,3〉 and N= 6 transfers from |IN〉= |1〉 to |OUT〉= |
2,3,4〉. For each of these five transfers we consider the controllers
optimized for fidelity, dephasing and overlap. With 100 controllers
within each transfer-optimization target combination we thus have
15 tests for each hypothesis above, each with 100 samples.

To execute the computation of the Kendall τ and Pearson r we
leverage the MATLAB function corr(⋅,⋅) with the option
“Kendall” or “Pearson” as appropriate. In the following
discussion of hypothesis tests, use of τ refers to the Kendall rank
correlation coefficient and r to the Pearson correlation coefficient.
We compute the test statistic for the Kendall τ as

Zτ ¼ τ
ffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ5Þ
9nðn�1Þ

q� 	�1
(Abdi, 2007) where n= 100 denotes the

number of samples. We then determine the statistical significance
of the test by evaluating

pτ ¼ 1�ΦðZτÞ; for skðS;TÞ vs: saðS;TÞ;
ΦðZτÞ; for fsaðS;TÞ; skðS;TÞg vs: eðTÞ;



(27)

whereΦ(⋅) is the normal cumulative distribution function. For the
Pearson r-based test, we calculate the test statistic as

tr ¼ r
ffiffiffiffiffiffiffi
1�r2
n�2

q� ��1
. Here again, n= 100. We then quantify the

statistical significance of the test for a given value of r as

pr ¼ 1� SðtrÞ; skðS;TÞ vs: saðS;TÞ;
SðtrÞ; fsaðS;TÞ; skðS;TÞg vs: eðTÞ;



(28)

where S represents the cumulative Student’s t-distribution.
Finally, we establish the level of significance at α= 0.02 so that

the hypothesis test itself is

• accept H0 if pτ, r≥ α,
• reject H0, if pτ, r< α,

for both tests.

Comparison of robustness assessments

The hypothesis test reveals strong agreement between sa(S, T) and
sk(S, T) for all 15 tests with a Kendall τ or Pearson r of near unity in
all cases. Table 1 summarizes the results for the Kendall τ-based
hypothesis test. As depicted, all 15 test cases result in rejection of
H0 in support of H1 with p-values near zero. The Pearson r-based
test provides similarly strong evidence of linear correlation.
Though not indicative of equality, the hypothesis test confirms
strong concordance. Visually, we can see this strong correlation in
Figure 2, where both measures lie nearly on-top of the other. While
the analytic calculation is the preferred method of assessing
robustness, evidence of this correlation supports the efficacy of the

KDE measure when the equations of motion are so complex that
available computing power makes this Monte Carlo approach
more efficient than an analytic calculation.

Robustness trend analysis

The results of the hypothesis test to evaluate concordance of the
log-sensitivity with the fidelity error are summarized in Table 2.
The table presents the results of the Pearson r-based test, which
evaluates the level of linear correlation between the metrics on a
log − log scale. For all 15 test cases we see rejection of H0 in favor

Figure 2 Comparison sa(S, T) (solid blue line) vs. sk(S, T) (dashed red line) for fidelity-
optimized controllers in an N= 6 ring with transfer to spin 3. Note the near perfect
agreement of the two log-sensitivity measures. We can also observe here the
conventional trend between both log-sensitivity measures and the fidelity error
indicating a trade-off between performance (low e(T)) and robustness (small s{a, k}(S, T)).

Table 1. Results of Kendall τ-based hypothesis test for the concordance of sa(S, T)
and sk(S, T). The hypothesis test provides strong confirmation that both the
analytic and kernel density estimation are consistent in the evaluation of
robustness to dephasing

sa(S, T) vs. sk(S, T)

Controller Type Transfer τ Zτ p

Dephasing N= 5 out= 2 1.000 14.742 0.000

Dephasing N= 5 out= 3 1.000 14.736 0.000

Dephasing N= 6 out= 2 1.000 14.742 0.000

Dephasing N= 6 out= 3 1.000 14.742 0.000

Dephasing N= 6 out= 4 1.000 14.742 0.000

Fidelity N= 5 out= 2 1.000 14.742 0.000

Fidelity N= 5 out= 3 1.000 14.742 0.000

Fidelity N= 6 out= 2 1.000 14.736 0.000

Fidelity N= 6 out= 3 1.000 14.736 0.000

Fidelity N= 6 out= 4 1.000 14.742 0.000

Overlap N= 5 out= 2 1.000 14.742 0.000

Overlap N= 5 out= 3 1.000 14.742 0.000

Overlap N= 6 out= 2 1.000 14.736 0.000

Overlap N= 6 out= 3 1.000 14.742 0.000

Overlap N= 6 out= 4 1.000 14.742 0.000
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of H1 with p-values near zero. This suggests a strong negative
correlation between the two metrics. Furthermore, the Pearson r
provides the slope of the best linear fit through the data point,
valuable for assessing the impact of a given change in error on
robustness. Figure 3(a) shows a plot of sa(S, T) and sk(S, T) versus
e(T) on a log-log scale for a 5-ring, nearest-neighbor transfer and
fidelity-optimized controller. The near unity slope of the plot and r
value of − 0.972 indicates a nearly uniform cost in robustness,
measured by the log-sensitivity, for a given increase in
performance, quantified by the fidelity error. Conversely,
Figure 3(b) depicts the correlation for controllers optimized for
fidelity in a 6-ring for nearest-neighbor transfer. The linear
correlation coefficient is less strong than that in Figure 3(a) with
r= − 0.5882, indicating a less stringent adherence to a uniform
cost in robustness for increased performance. The visual plot
confirms this. For the highest-fidelity controllers (e(T)< 10−4 in
the figure) we still observe a nearly linear trend. However, in the
right-hand side of the plot (e(T)> 10−4 in the figure), we observe a
large number of controllers with varying log-sensitivity for the
same error.

Orthogonal pair states, robustness and fidelity

Given the suitability of orthogonal pairs tomaximize the combined
objective of fidelity under unitary transfer with asymptotic transfer
fidelity, we expect that controllers which render the input and
output states orthogonal pairs will dominate the “overlap”
controller data set. Of more interest, however, are what fidelity
and robustness properties input–output orthogonal pairs present
across the breadth of the controllers. As Table 3 confirms, input–
output states that form orthogonal pairs produce the best (highest-
fidelity) controllers for the case of overlap optimization. For both 5
and 6 rings, all overlap-optimized controllers for nearest-neighbor
and next-nearest-neighbor (i.e., |OUT〉= |3〉) transfers create an

orthogonal-pair input and output state. However, for the N= 6
and 1→ 4 transfer, the population of overlap-optimized con-
trollers is almost evenly split. For both fidelity-optimized and
dephasing-optimized controllers, the controllers that render
input–output orthogonal pairs dominate the nearest-neighbor
transfers for bothN = 5 andN= 6. However, for all other transfers,

Table 2. Table summarizing the Pearson r-based hypothesis test results for log-sensitivity versus e(T). The test results in rejection of H0 in favor of H1 in all cases,
indicating a trend in agreement with the conventional trade-off between performance and robustness

log [sk(S, T)] vs. log [e(T)] log [sa(S, T)] vs. log [e(T)]

Controller Type Transfer r tr pr r tr pr

Dephasing N= 5 out= 2 −0.9576 −32.8892 0.0000 −0.9575 −32.8548 0.0000

Dephasing N= 5 out= 3 −0.7262 −10.4582 0.0000 −0.7259 −10.4493 0.0000

Dephasing N= 6 out= 2 −0.6512 −8.4956 0.0000 −0.6510 −8.4908 0.0000

Dephasing N= 6 out= 3 −0.9193 −23.1170 0.0000 −0.9192 −23.1045 0.0000

Dephasing N= 6 out= 4 −0.8630 −16.9128 0.0000 −0.8629 −16.9029 0.0000

Fidelity N= 5 out= 2 −0.9723 −41.1452 0.0000 −0.9722 −41.1000 0.0000

Fidelity N= 5 out= 3 −0.8684 −17.3407 0.0000 −0.8683 −17.3271 0.0000

Fidelity N= 6 out= 2 −0.5882 −7.1994 0.0000 −0.5880 −7.1960 0.0000

Fidelity N= 6 out= 3 −0.9160 −22.5967 0.0000 −0.9160 −22.5995 0.0000

Fidelity N= 6 out= 4 −0.8498 −15.9608 0.0000 −0.8497 −15.9504 0.0000

Overlap N= 5 out= 2 −0.6895 −9.4229 0.0000 −0.6893 −9.4182 0.0000

Overlap N= 5 out= 3 −0.9410 −27.5300 0.0000 −0.9409 −27.4905 0.0000

Overlap N= 6 out= 2 −0.4157 −4.5253 0.0000 −0.4156 −4.5238 0.0000

Overlap N= 6 out= 3 −0.8907 −19.3993 0.0000 −0.8905 −19.3802 0.0000

Overlap N= 6 out= 4 −0.8836 −18.6857 0.0000 −0.8835 −18.6727 0.0000

Table 3. Table depicting the percentage of input–output states rendered as
orthogonal pairs by each type of controller and each transfer

Controller Type Transfer % Orthogonal % Non-orthogonal

Pairs Pairs

Dephasing N= 5 out= 2 81 19

Dephasing N= 5 out= 3 41 59

Dephasing N= 6 out= 2 98 2

Dephasing N= 6 out= 3 27 73

Dephasing N= 6 out= 4 26 74

Fidelity N= 5 out= 2 77 23

Fidelity N= 5 out= 3 39 61

Fidelity N= 6 out= 2 97 3

Fidelity N= 6 out= 3 24 76

Fidelity N= 6 out= 4 28 72

Overlap N= 5 out= 2 100 0

Overlap N= 5 out= 3 100 0

Overlap N= 6 out= 2 100 0

Overlap N= 6 out= 3 100 0

Overlap N= 6 out= 4 47 53
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orthogonal pairs constitute a minority of the controllers. Given
that the controllers under consideration were filtered for the best
performance (fidelity), this suggests that controllers facilitating the
highest levels of fidelity for nearest-neighbor transfer, regardless of
optimization choice, exhibit this orthogonal-pair property. This
suggests optimizing to produce input–output eigenstructures that
replicate orthogonal pairs as a means to generate high fidelity
controllers under a range of conditions for nearest-neighbor
transfer.

The robustness properties of the orthogonal-state controllers
are less clear. For fidelity-optimized and dephasing-optimized
controllers and nearest-neighbor transfer, the lower sensitivity
controllers exhibit the orthogonal pair property as seen in
Figure 4(a). Whereas for non-nearest-neighbor transfers, the
more robust controllers appear to not render the input–output
states orthogonal pairs. This behavior is evident in Figure 4(b)
where the most robust fidelity-optimized controllers in a 6-ring for
the |1〉→ |4〉 transfer are not of the orthogonal pair variety.
Whether the robustness properties of the controllers in these cases
are a characteristic of the orthogonal-like controllers or simply due
to the dominance of orthogonal-type controllers in nearest-
neighbor transfers still requires further investigation.

Conclusion

In this paper we applied two distinct approaches to evaluate the
log-sensitivity of the fidelity error to a perturbation of the system
dynamics in the form of dephasing in the Hamiltonian basis. The
KDE approach based on the error measurements of 1000
dephasing operators introduced at varying strength and with the
bandwidth input as described in Section “Kernel density estimate
approach” produced log-sensitivity values nearly identical to those
of the analytic calculation based on the same dephasing operators.
As distinct from previous work, we also considered controllers
optimized for not only fidelity under unitary dynamics but fidelity
under dephasing and fidelity in the asymptotic regime. We showed
that in all cases the relationship between the fidelity error and the
log-sensitivity adheres to the trade-off between performance and
robustness expected from classical control theory. Of note, though
we examined controllers optimized to maximize fidelity under
dephasing, these controllers exhibited no better robustness to
dephasing than the other optimization choices. This suggests that

(a)

(b)

Figure 4 Plot of sa(S, T) vs. e(T) on a log − log scale showing controllers that yield
orthogonal-pair input–output states in the eigenbasis of the Hamiltonian (blue
crosses) and those that do not (red boxes). Orthogonal pairs dominate, show the
greatest fidelity and also exhibit the smallest log-sensitivity in (b) while in (b) both the
highest-fidelity controllers and most robust controllers are not of the orthogonal-pair
variety.

(a)

(b)

Figure 3 sa(S, T) and sk(S, T) versus e(T) on a log − log scale. Plot (a) suggests a
strong linear correlation, which is confirmed by a Pearson r of − 0.972, while (b) shows
a much weaker linear correlation with r= − 0.589.
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optimizing for fidelity under decoherence does not accrue
robustness benefits, as measured by the log-sensitivity, over
optimizing for fidelity under unitary transfer without exact
knowledge of the dephasing process.

Several items still require further investigation. Firstly, we only
considered perturbations in the form of dephasing. It is necessary to
generalize the analytic formula to allow for perturbations in the formof
dephasing simultaneously with uncertainty in the Hamiltonian or
control parameters as well as to extend the analysis to consider general
decoherence processes that include dissipation with dephasing. This
would facilitate a better understanding of robustness for general open
quantumsystems, a persistent challengewithin quantumcontrol.Next,
an investigation of the robustness properties of the controllers that
produce input–output state orthogonal pairs is in order. In particular,
though these types of controllers tend to provide the best fidelity for
nearest-neighbor transfer, a comparison of their robustness properties
with controllers that do not provide this orthogonal-pair property is
missing, mainly due to the paucity of non-orthogonal-type controllers
for nearest-neighbor transfers for the controllers considered in this
study.An investigation into thismatterwould provide a justification for
either pursuing controllers of another sort, should they provide greater
robustness for the same fidelity, or relying on orthogonal-type
controllers to provide the best fidelity and robustness for nearest-
neighbor transfer and optimizing with that target as the goal.
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