Inflammatory mediators in the pathogenesis of periodontitis

Tülay Yucel-Lindberg* and Tove Båge

Periodontitis is a chronic inflammatory condition of the periodontium involving interactions between bacterial products, numerous cell populations and inflammatory mediators. It is generally accepted that periodontitis is initiated by complex and diverse microbial biofilms which form on the teeth, i.e., dental plaque. Substances released from this biofilm such as lipopolysaccharides, antigens and other virulence factors, gain access to the gingival tissue and initiate an inflammatory and immune response, leading to the activation of host defence cells. As a result of cellular activation, inflammatory mediators, including cytokines, chemokines, arachidonic acid metabolites and proteolytic enzymes collectively contribute to tissue destruction and bone resorption. This review summarises recent studies on the pathogenesis of periodontitis, with the main focus on inflammatory mediators and their role in periodontal disease.

The inflammatory response is vital for our survival and occurs throughout many processes in our bodies. Among other things, inflammation is a necessary component for our defence against pathogens and in wound healing. In response to an injury or infection, acute inflammation occurs immediately and is usually short-lived. However, when inflammation remains unresolved, it evolves into chronic inflammation because host immune and inflammatory responses are insufficient to remove or clear the microbial challenge which initiates and perpetuates the disease. In chronic inflammation, tissue destruction and healing usually occur at the same time, but the balance is delicate and can tilt towards destruction. In the oral cavity, bacteria are constantly present and can trigger an inflammatory response to induce gingivitis, a reversible periodontal disease affecting gingival tissue. The balance between the resident microbiota and the host might be disrupted by either compromised host responses (e.g., poorly controlled diabetes mellitus) or an increase in the microbial challenge (e.g., cessation of oral hygiene procedures). In disease-susceptible individuals, gingivitis may progress into periodontitis, the irreversible stage of periodontal disease, with the presence of both gingival inflammation and clinical attachment loss.

Periodontal disease is common and around 5–15% of the population suffers from severe periodontitis (Refs 1, 2, 3, 4). The definition of periodontitis is based on a number of clinical criteria, including bleeding on probing, periodontal pocket depth and clinical attachment loss (Ref. 5). The specific use of these criteria however, varies substantially between different studies and cohorts, indicating a lack of consensus in the epidemiologic case definition of periodontitis and in measurement.
methods for the disease (Refs 5, 6). The primary hallmark of periodontitis, the destruction of periodontal tissue, is widely accepted to be a result of the host immune inflammatory response caused by periodontal microorganisms (Refs 7, 8).

The host response has traditionally been considered to be mediated mainly by B and T lymphocytes, neutrophils and monocytes/macrophages. These are triggered to produce inflammatory mediators, including cytokines, chemokines, arachidonic acid metabolites and proteolytic enzymes, which collectively contribute to tissue degradation and bone resorption by activation of several distinct host degradative pathways (Refs 9, 10). In recent years, resident cells in gingival connective tissue have also been revealed as important contributors to the inflammatory response and the increased levels of various inflammatory mediators (Refs 11, 12, 13). The role of the host response in periodontal disease is complex, and with regard to cell infiltration, polymorphonuclear leukocytes (PMNs), which are first to arrive, are the dominant cell type within the junctional epithelium and gingival crevice. Regarding inflammatory mediators, studies have previously demonstrated that cytokines, chemokines and prostaglandins, which are all within the scope of this review, play a critical role in periodontal tissue breakdown (Refs 14, 15, 16, 17). One important effector mechanism of the inflammatory mediators present in periodontal tissue is stimulation of the formation of osteoclasts, multinucleated cells believed to be the major cell type responsible for bone resorption (Refs 18, 19).

Pathogenesis of periodontitis

Besides dental caries, periodontal disease is one of the most prevalent diseases in the world and includes the major conditions gingivitis and periodontitis. The milder, reversible form of the disease, gingivitis, comprises inflammation of the gingival tissue. In disease-susceptible individuals, gingivitis may progress to periodontitis, which is a chronic inflammatory state of the gingiva causing destruction of connective tissue as well as of alveolar bone resulting in reduced support for the teeth and ultimately tooth loss (Fig. 1) (Refs 20, 21, 22).

The pathogenesis of periodontitis has been gradually elucidated during the later half of the 20th century. In the 1960s and 1970s, research on humans and animals showed that bacteria play a critical role in initiating gingivitis and periodontitis (Refs 23, 24, 25). Leading up to the 1980s, there were further advances within the field and the pivotal role of the host inflammatory response in disease progression began to emerge (Refs 26, 27, 28). The importance of hereditary factors was subsequently demonstrated in several studies, including those comparing monzygotic and dizygotic twins (Refs 29, 30). Systemic conditions and environmental factors such as smoking were also shown to greatly affect the disease onset and progress (Refs 7, 31, 32). For over a decade now, the concept of periodontitis has been considered to be a complex interaction between the microbial challenge and the host response, which alters connective tissue and bone.

Characteristics of periodontitis

Healthy periodontal tissue (left) and periodontitis (right). Periodontitis is characterised by degradation of the soft connective tissue and alveolar bone supporting the tooth, ultimately resulting in tooth loss.
Host response

Bacterial components, such as lipopolysaccharides (LPS), peptidoglycans, lipoteichoic acids, proteases and toxins, which instigate the inflammatory reaction, can be found in the biofilm on tooth surfaces (Refs 31, 32). The host response to the bacterial challenge includes the action and stimulation of various inflammatory cell types as well as of resident cells of the tissue, as schematically illustrated in (Fig. 3) (Refs 7, 33, 34, 35, 36, 37). The “red complex” comprising the pathogens Tannerella forsythia, Porphyromonas gingivalis and Treponema denticola, has been demonstrated in the biofilms at sites expressing progressing periodontitis (Refs 38, 39). Antigens and products, such as LPS and peptidoglycans, released by bacteria are recognised by toll-like receptors (TLRs) on the surface of host cells, which initiates an inflammatory response (Ref. 40).

Through a cascade of events, mast cells are stimulated to release vasoactive amines and preformed tumour necrosis factor α (TNFα), which increases vascular permeability and the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and P-selectin on endothelial cell surfaces (Refs 32, 34). This process recruits PMNs into the tissue, where they release lysosomal enzymes, which contribute to tissue degradation (Ref. 34). In response, lymphocytes and macrophages further invade the tissue. At this point, 60–70% of the collagen in the gingival connective tissue is degraded at the site of the lesion, but the bone is still intact (Refs 26, 34). At this stage, it is still possible for gingival tissues to repair and remodel without permanent damage. However, in some individuals, owing to innate susceptibility and/or environmental factors, the inflammation fails to resolve, with subsequent connective tissue breakdown and irreversible bone loss (Refs 34, 41, 42). In this scenario, macrophages form pre-osteoclasts which, after maturing into osteoclasts, are capable of degrading alveolar bone (Ref. 18).

Without active resolution of inflammation, the bacterial antigens eventually encounter antigen-
Inflammatory mediators in the pathogenesis of periodontitis

Figure 3. Inflammatory mediators in the pathogenesis of periodontitis (See next page for legend.)

Accession information: doi:10.1017/erm.2013.8; Vol. 15; e7; August 2013
© Cambridge University Press 2013. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence
http://creativecommons.org/licenses/by-nc-sa/3.0/
presenting cells such as dendritic cells, macrophages and B cells. When naïve CD4 T helper cells (Th0) interact with antigen-presenting cells, naïve T cells differentiate into various subsets of cells including Th1, Th2, Th17 and regulatory T cells (Tregs), depending on the cytokines which they produce. Th1 cells drive the cell-mediated immune response and produce interferon-γ (IFN-γ), transforming growth factor-β (TGF-β), interleukin-2 (IL-2) and TNFα in the presence of IL-12. Th2 cells mediate the humoral immune response and produce the cytokines IL-4, IL-5, IL-6, IL-10, IL-13 and TGF-β in the presence of IL-4. The additional two CD4 T cells, Th17 and Tregs play a critical role in autoimmunity and in the maintenance of immune homeostasis. The Th17 subset of cells secrete IL-17, IL-23, IL-22, IL-6 and TNFα in the presence of TGF-β, IL-1β and IL-6 whereas Tregs arise in the presence of TGF-β and secrete the immunosuppressive cytokines IL-10 and TGF-β. Notably, IL-17 stimulates the production of various inflammatory mediators including TNFα, prostaglandin E_2 (PGE_2), IL-6 and IL-1β, mediating bone resorption via osteoclasts activation. Defective regulation of the immune system by Treg cells, thought to mediate the resolution of inflammation, contributes to the pathogenesis of several autoimmune diseases, such as rheumatoid arthritis (RA), multiple sclerosis and colitis (Refs 34, 35, 36, 37, 43, 44). Tregs and Th17 cells have been demonstrated to occur in periodontal tissue with an increased expression of Foxp3 and IL-17, characteristic markers of Tregs and Th17 cells, in periodontitis suggesting an important role for these cells in the immunoregulation of periodontitis (Refs 34, 37, 45). Numerous studies, however, indicate a plasticity between Treg and Th17 cell subsets which coexist in the same tissues, including periodontitis lesions (Ref. 43). Further studies are thus required to elucidate the role of the balance between the T cell subsets, Treg/Th17 and Th1/Th2, and their cross-talk in the pathogenesis of periodontitis.

Besides invading inflammatory cells, which produce inflammatory mediators and drive the inflammatory process, resident gingival cells may also affect the progression and persistence of periodontitis. Blood vessels, consisting of endothelial cells and smooth muscle cells, are the first to come in contact with invading inflammatory cells. In gingival connective tissue, the most ubiquitous resident cells are gingival fibroblasts. By producing inflammatory mediators, such as cytokines, chemokines, proteolytic enzymes and prostaglandins, these cells participate in the inflammatory response and contribute to disease persistence (Refs 31, 46, 47, 48, 49, 50, 51). Periodontal ligament fibroblasts, located between the tooth and the alveolar bone, are also involved in the inflammatory reaction and produce inflammatory mediators such as prostaglandins, proteolytic enzymes and factors which affect bone resorption (Refs 52, 53, 54). Throughout each step of the inflammatory process, proinflammatory mediators are released which affect various cell types and propel the inflammatory cascade. These mediators, which are the focus of this

Figure 3. Inflammatory mediators in the pathogenesis of periodontitis. (Legend; see previous page for figure.) The host response in periodontitis is a complex interplay between numerous cell types and inflammatory mediators, some of which are illustrated here. (1) In innate immunity, components of the pathogens present in the oral biofilm, such as LPS, stimulate mast cells to release vasoactive amines and preformed TNFα and cause a release of inflammatory mediators in resident cells of the gingival tissue. (2) Through the action of the released mediators, inflammatory cells are recruited into the tissue. (3) PMN leukocytes release lysosomal enzymes, and in response to the milieu of inflammatory mediators, MMP levels increase. MMPs and lysosomal enzymes contribute to degradation of the gingival tissue. (4) Lymphocytes and macrophages invade the tissue. Antigen-presenting cells activate Th0 cells. T-cell-produced cytokines can increase or inhibit the production of inflammatory mediators. (5) Cytokines and PGE_2 affect RANKL and OP expression, resulting in the formation and activation of osteoclasts capable of alveolar bone degradation. IFN-γ, interferon-γ; IL, interleukin; LPS, Lipopolysaccharide; MMP, matrix metalloproteinase; OPG, osteoprotegerin; PAMPs, pathogen-associated molecular patterns; PGE_2, prostaglandin E_2; PMN, polymorphonuclear leukocytes; RANK, receptor activator of nuclear factor-κB; RANKL, receptor activator of nuclear factor-κB ligand; TGF-β, transforming growth factor-β; TLRs, toll-like receptors; TNFα, tumour necrosis factor α; and Treg, regulatory T cell.
review, include proinflammatory cytokines, chemokines and arachidonic acid metabolites such as prostaglandins.

Cytokines and chemokines

Numerous cytokines and chemokines have been detected in the gingival crevicular fluid (GCF), exudates collected at the gingival margin, and in gingival tissue from patients with periodontitis. Table 1 summarises the changes in cytokine and chemokine levels determined in GCF and gingival tissue during periodontitis and the effect of periodontal treatment on these levels.

Several proinflammatory cytokines including IL-1, IL-6, IL-12, IL-17, IL-21, TNFα and IFN-γ have been demonstrated to be involved in the pathogenesis of periodontitis. The prominent cytokines IL-1 and IL-6, for example, are produced in the B-cell/plasma cell response which characterises the progression of periodontitis (Ref. 34). IL-6 is produced by epithelial cells, lymphocytes, monocytes and fibroblasts in response to bacterial LPS, IL-1 and TNFα and has been shown to stimulate the formation of osteoclasts in vitro (Refs 32, 84). Enhanced levels of IL-6 have been demonstrated in the GCF of patients with periodontitis, compared with healthy controls, and higher expression of IL-6 was reported in diseased gingival tissues when compared with healthy tissue in periodontitis patients (Refs 71, 85). Similarly, increased circulating systemic levels of IL-6 decreased after nonsurgical periodontal therapy resulting in clinical improvement of the periodontal status (Ref. 86).

The inflammatory cytokines IL-1 and TNFα play a prominent role in the pathogenesis of periodontitis (Ref. 87). As mentioned above, TNFα is involved at an early stage in the inflammatory cascade, as it is released from mast cells in response to bacterial challenge. In the clinical context, TNFα and IL-1β have been found in increased concentrations in GCF and gingival tissue of periodontitis sites (Refs 79, 88, 89), and levels are reported to decrease after treatment of periodontal disease (Refs 55, 59). The pivotal role of these cytokines in periodontitis is further supported by reports that attachment loss is reduced in periodontitis patients with RA after anti-TNF treatment and that the administration of recombinant TNFα or IL-1 to the gingiva exacerbates experimental periodontitis in rats (Refs 90, 91, 92). In addition, soluble receptors of IL-1 and TNF have been shown to greatly inhibit the progress of periodontitis in a primate model (Refs 14, 93). At the cellular level, these two cytokines are involved in the induction of several other inflammatory mediators, such as IL-6, IL-8, matrix metalloproteinases (MMPs) and PGE2 (Refs 20, 32, 94, 95, 96). The cellular mechanisms underlying the direct involvement of TNFα and IL-1β in inducing bone resorption are covered later in this review. The cytokines TNFα and IL-1 are themselves synthesised by many cell types in the periodontal tissue: monocytes/macrophages, PMN cells, fibroblasts, epithelial cells, endothelial cells and osteoblasts (Ref. 87). These two cytokines seem to occupy a spider-in-the-web position among mediators of the inflammatory cascade in periodontitis. However, there is substantial interplay between numerous cytokines involved in the inflammatory response, and studies are ongoing to identify additional key players for future treatment and management of inflammatory diseases.

Chemokines are cytokines involved in inducing chemotaxis in responsive cells. In periodontitis, the chemokines IL-8, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP1α) attract neutrophils and other leucocytes to the inflammation site. IL-8 is secreted by various cells, including monocytes, lymphocytes, epithelial cells, endothelial cells and fibroblasts, in response to IL-1, TNFα and LPS (Refs 20, 97). High levels of IL-8 expression have been shown to be localised to sites with high concentrations of PMN cells in gingival tissue from patients with aggressive periodontitis (Ref. 98). In addition, enhanced levels of IL-8 were demonstrated in the GCF collected from periodontitis sites compared with healthy control sites and IL-8 levels decreased after periodontal therapy (Ref. 72). The chemokine MCP-1 is produced by endothelial cells, epithelial cells and fibroblasts in response to bacterial components such as LPS or inflammatory mediators (Refs 32, 99). The involvement of MCP-1, and also MIP1α and RANTES (regulated on activation, normal T cell expressed and secreted), in periodontitis is supported by studies demonstrating increased levels of the chemokines in gingival biopsies and/or GCF of patients with periodontitis, as well as decreased levels of chemokines in the...
<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Role of cytokine</th>
<th>Change in periodontitis</th>
<th>Change after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>Proinflammatory</td>
<td>Increased in GCF (Refs 55, 56, 57), with correlation to clinical parameters (Ref. 58)</td>
<td>Decreased in GCF (Refs 55, 56)</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Proinflammatory</td>
<td>Increased in GCF (Refs 55, 56, 57, 59, 60, 61), with correlation to clinical parameters (Refs 58, 62, 63, 64)</td>
<td>Decreased total amount (Refs 55, 56, 59)</td>
</tr>
<tr>
<td>IL-4</td>
<td>Anti-inflammatory</td>
<td>Decreased total amount in GCF (Ref. 60)</td>
<td>Increased in GCF (Refs 68, 69, 70)</td>
</tr>
<tr>
<td>IL-6</td>
<td>Proinflammatory</td>
<td>Increased in GCF (Refs 57, 61, 71) with correlation to clinical parameters (Ref. 63)</td>
<td>Decreased in GCF (Ref. 56)</td>
</tr>
<tr>
<td>IL-8</td>
<td>Chemokine</td>
<td>Increased in GCF (Refs 57, 59, 61) with correlation to clinical parameters (62, 63)</td>
<td>Decreased in GCF (Refs 56, 59, 72)</td>
</tr>
<tr>
<td>IL-10</td>
<td>Anti-inflammatory</td>
<td>Increased total amount in GCF (Refs 59, 64), correlated to clinical parameters (Ref. 63)</td>
<td>Decreased in GCF (Ref. 59)</td>
</tr>
<tr>
<td>IL-12 (p40)</td>
<td>Proinflammatory</td>
<td>Increased in GCF (Ref. 57)</td>
<td>Decreased in GCF (Ref. 56)</td>
</tr>
<tr>
<td>IL-17</td>
<td>Proinflammatory</td>
<td>Increased mRNA expression (Ref. 74)</td>
<td>Decreased in GCF (Refs 70, 75)</td>
</tr>
<tr>
<td>IL-18</td>
<td>Proinflammatory</td>
<td>Increased in GCF with correlation to clinical parameters (Ref. 76)</td>
<td>Decreased in GCF (Ref. 76)</td>
</tr>
<tr>
<td>IL-21</td>
<td>Proinflammatory</td>
<td>Increased in GCF (Ref. 77)</td>
<td>Decreased in GCF (Ref. 70)</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Proinflammatory</td>
<td>Increased in GCF (Refs 57, 78)</td>
<td>Decreased in GCF (Refs 56, 69)</td>
</tr>
<tr>
<td>TNFα</td>
<td>Proinflammatory</td>
<td>Increased in GCF with correlation to clinical parameters (Refs 62, 63, 79)</td>
<td>Increased concentration in GCF (Ref. 67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased protein expression (Ref. 80)</td>
<td>No change in GCF (Ref. 81)</td>
</tr>
</tbody>
</table>

(continued on next page)
GCF after periodontal treatment (Refs 56, 57, 76, 79, 83).

Various cytokine gene polymorphisms have been reported to be associated with periodontitis (Refs 100, 101). Gene polymorphisms in the genes for IL-1, TNFα, IL-6 and IL-10 as well as combined genotypes of TNFα and lymphotoxin alpha have been reported in patients with periodontitis (Refs 102, 103, 104, 105, 106). These reports support the view of periodontitis as a disease that is largely dependent on the manner of the inflammatory response to components of the oral biofilm. The nature of the inflammatory response is collectively influenced by individual genetic differences in the host, specific components of the oral microbiome and past history of periodontal infection.

Arachidonic acid metabolites – prostaglandins

A range of arachidonic acid metabolites are produced in the gingival tissues. These eicosanoids include prostanoids and leukotrienes, which are produced from arachidonic acid through distinct enzymatic systems. Leukotrienes, known to play an important role in asthma and allergy, are also involved in bone remodelling (Refs 107, 108). Their involvement in periodontitis remains to be investigated, although some data indicate raised levels of the mediators in the disease (Refs 109, 110). Leukotriene B$_4$ (LTB$_4$) in particular has been implicated in RA, which is highly similar to periodontitis in that it is a chronic inflammatory condition which affects bone remodelling. A possible role for LTB$_4$ has been suggested in the progression of periodontal disease because of the findings that the substantial increase in GCF LTB$_4$ concentrations, which are associated with the severity of periodontal disease, decreased following periodontal treatment (Ref. 109). Some leukotrienes also have anti-inflammatory effects, and one such leucotriene investigated in relation to periodontal disease is Resolvin E$_1$ (RvE$_1$). This anti-inflammatory eicosanoid has been reported to down-regulate inflammation-induced bone loss in experimental periodontitis (Ref. 111) and inhibit osteoclast growth and bone resorption by interfering with osteoclast differentiation (Ref. 112). It was also recently reported that RvE$_1$ restored impaired phagocytic activity in macrophages from the blood of patients with aggressive periodontitis (Ref. 113) and inhibited LTB$_4$-induced production of the antimicrobial peptide LL-37 from PMNs, thus terminating the LL-37/LTB$_4$ proinflammatory circuit (Ref. 114).

Prostaglandins are a group of potent arachidonic acid-derived inflammatory mediators with the capacity to induce a wide variety of biological responses (Ref. 115). They influence many biological processes, including vasodilatation, vascular permeability, oedema, pain and fever, and the mediator also play an immunoregulatory role in neutrophil and
monocyt e chemotaxis (Ref. 116). Prostaglandins, synthesised by virtually all mammalian cells, are local hormones, acting at or near the site of their synthesis. They function in both an autocrine and a paracrine fashion and modulate the responses of other hormones, which have profound effects on many cellular processes (Refs 115, 117, 118, 119). Among prostaglandins, PGE₂ is the most prominent in the pathogenesis of periodontitis (Refs 108, 120). PGE₂ is produced by immune cells, fibroblasts and other resident gingival cells and has a wide range of biological effects on the cells of the diseased gingiva (Refs 46, 120). The actions of PGE₂ include the stimulation of inflammatory mediators and MMPs, as well as osteoclast formation via receptor activator of nuclear factor-κB ligand (RANKL) (Refs 120, 121, 122). The effect of PGE₂ on a specific cell type depends on the prostaglandin receptors, EP₁ through EP₄. The receptors most relevant to the pathogenesis of periodontitis are EP₂ and EP₄, which are reported to activate adenylate cyclase and protein kinase A signalling (Ref. 123). In rodent models, these two receptors have been shown to be involved in bone resorption in response to PGE₂ (Refs 124, 125).

Several clinical alterations observed in periodontal disease can be associated with PGE₂, especially when IL-1 and TNFα are present in the gingival tissue. PGE₂ is detected at significantly higher levels in human inflamed gingival tissue and especially from periodontal sites exhibiting recent attachment loss (Refs 126, 127, 128). Higher levels of PGE₂ are also found in the GCF of patients with periodontitis compared with levels found in GCF of healthy individuals (Refs 129, 130, 131). Accordingly, increasing levels of PGE₂ in crevicular fluid have been suggested to serve as a predictor of periodontal attachment loss (Ref. 132). Furthermore, polymorphisms within the cyclooxygenase-2 (COX-2) gene as well as the methylation levels within the COX-2 promoter, which affect COX-2 mRNA expression, have been repeatedly implicated in periodontitis (Refs 133, 134). Altogether, over-production of PGE₂ is suggested to have a significant role in the pathobiology of periodontitis (Refs 127, 129, 135).

Inflammatory mediators and tissue destruction

Maintenance of the extracellular matrix is important for normal development and function of gingival tissue. Proteolytic MMP enzymes and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), are involved in the homeostasis of the extracellular matrix in healthy tissue, but they are also key players in the process of tissue destruction in inflammatory diseases. Besides modifying the extracellular matrix, MMPs are also involved in regulating the activities of cytokines and cytokine receptors. In periodontitis, both host- and bacteria-derived proteolytic enzymes contribute to the degradation of the extracellular matrix of the connective tissue. Numerous host proteolytic enzymes such as MMPs, elastase, mast cell tryptase, dipeptidyl-peptidase, plasminogen activators and the lysosomal cysteine proteinases, cathepsins and protease 3 have been detected in the GCF of patients with periodontitis (Refs 136, 137). Increased expressions of MMPs (gelatinase and collagenase) are associated with pathological conditions including RA and periodontitis.

MMP expression and activity are in general low in noninflamed periodontium but increase to pathologically high levels in inflamed gingiva, where increased levels of inflammatory mediators upregulate MMP expression (Ref. 138). Studies also suggest, however, that MMP-8 and -9 have the capacity to exert anti-inflammatory effects by processing anti-inflammatory cytokines and chemokines (Refs 138, 139, 140, 141). Among the MMPs, levels of MMP-8 and -13 have been correlated with the severity of periodontal disease (Refs 10, 138, 142). In addition, MMP-8, TIMP-1 and carboxyterminal telopeptide of type I collagen (ICTP) and especially their ratios and combinations are potential candidates in the detection of advanced periodontitis through salivary diagnostics (Ref. 143). Recently, it was reported that MMP-3 and TIMP-1 mRNA expression were significantly higher in diseased tissues than control tissues and that polymorphisms of MMP-3 and TIMP-1 are associated with chronic periodontitis (Ref. 144). In addition, MMP-1, MMP-3 and MMP-9 polymorphisms were newly demonstrated to be associated with susceptibility to periodontitis in a Chinese population (Ref. 145).

In vitro studies, the inflammatory mediators IL-1β, TNFα and bacterial LPS upregulate MMP-1, -3, -8 and -9 expression in gingival fibroblasts (Refs 146, 147, 148, 149). Moreover, the periodontal pathogen Porphyromonas gingivalis, in
the presence of cigarette smoke condensate, increases collagen degradation and protein levels of MMP-1, -2, -3 and -14 in gingival fibroblasts (Ref. 150). The cytokine IL-1β stimulates MMP-2 expression via a PGE2-dependent mechanism in human chondrocytes (Ref. 151). The close interactions between PGE2 and the MMPs are further emphasised by the key role of PGE2 in the regulation of MMP-9 expression in macrophages and in the induction of MMP-3 and MMP-13 in chondrocytes via the PGE2-regulatory enzyme microsomal prostaglandin E synthase-1 (mPGES-1) (Refs 152, 153). Moreover, PGE2 stimulates MMP-1 production in human gingival fibroblasts via activation of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) (Ref. 154) and in mouse osteoblasts via the cAMP-PKA signalling pathway (Ref. 155).

The TIMPs that control MMP activity and thereby act as regulators of MMP-mediated extracellular matrix breakdown play an important role in tissue remodelling and the pathology of periodontal tissue destruction (Ref. 156). TIMP levels are generally higher in healthy periodontal tissue compared with inflamed periodontal tissue, resulting in an excess of MMP levels over TIMP-1 levels (Ref. 156). In GCF samples, levels of TIMP-1 and -2 are decreased whereas the levels of MMP-1, -2, -3 and -9 are increased in periodontitis-affected patients compared with healthy controls (Ref. 157). MMP inhibition via nonantimicrobial tetracyclines such as doxycycline has been suggested as a potential treatment of chronic inflammatory diseases, including periodontitis. It has been shown that treatment with doxycycline, as an adjunct to periodontal treatment, suppressed collagenase activity in the periodontal pocket of patients with periodontitis (Ref. 158), which suggests significant therapeutic potential for nonantimicrobial tetracyclines in treatment of periodontal disease.

Inflammatory mediators and bone resorption

Bone resorption is a well-regulated process which depends on the differentiation of monocytes to osteoclasts capable of bone resorption. Although bone formation and bone resorption are processes which occur continuously in healthy alveolar bone, in periodontitis, the normal balance is shifted towards resorption through mechanisms including increased osteoclast activation. Cytokines such as IL-1β, TNFα, IL-6, macrophage colony-stimulating factor (M-CSF), IL-17 and PGE2 are among the more important proinflammatory mediators reported to stimulate osteoclast activation (Refs 159, 160). The TNF family cytokine RANKL induces the differentiation of osteoclasts in the presence of M-CSF (Ref. 161) and activates TRAF6 (member of TNF receptor associated factor), c-Fos and calcium signalling pathways, which are indispensable for the induction and activation of nuclear factor of activated T cells (NFAT) c1, a key transcription factor for osteoclastogenesis. Recently, it was also demonstrated that Wnt5a, a member of the highly conserved Wnt protein family, upregulates RANK expression in osteoclast precursors enhancing RANKL-induced osteoclastogenesis proposing Wnt5a as a new co-stimulatory cytokine for osteoclastogenesis (Ref. 162). In the context of periodontitis, elevated levels of RANKL and reduced levels of osteoprotegerin (OPG) were detected in the GCF samples of patients with periodontitis and the RANKL/OPG ratio was suggested as a possible biomarker test for detection of bone destruction (Ref. 163). OPG acts as a decoy receptor for RANKL and inhibiting OPG expression enables RANKL to interact with its receptor RANK on other cells. RANKL then binds to RANK on osteoclast lineage cells to drive differentiation to osteoclasts (Fig. 3) (Refs 18, 123). The ratio of the GCF levels of RANKL and OPG was higher in patients with periodontitis compared with healthy subjects, suggesting that increased RANKL and/or decreased OPG contribute to osteoclastic bone destruction in periodontal disease (Ref. 164).

IL-1 and TNF stimulate bone resorption by increasing osteoclast formation (Ref. 165) and furthermore, IL-1 also mediates the osteoclastogenic effect of TNF by enhancing expression of RANKL and differentiation of osteoclast precursors (Ref. 166). Inflammatory cytokines such as IL-1β induce RANKL and/or OPG expression in several cell types, including osteoblasts, gingival fibroblasts and periodontal ligament fibroblasts (Refs 54, 167). Similarly, IL-6, produced and secreted by various cells including fibroblasts and osteoblasts, induces osteoclast formation and stimulates bone resorption and IL-6 receptor blockade/antagonist strongly reduces osteoclast formation in inflamed joints and bone erosion in vivo.
Inflammation-induced bone resorption has been shown to be mediated by the inflammatory mediator PGE2. The biosynthesis of PGE2 involves three different groups of enzymes acting sequentially. The first group of enzymes, phospholipase A2 (PLA2), converts membrane lipids to AA (Refs 174, 175). The second group of isoenzymes, COX-1 and COX-2, convert AA to prostaglandin H2 (PGH2) (Ref. 176). Multiple enzymes then metabolise the intermediate PGH2 to diverse prostaglandins, including PGE2, PGF2, PGD2 and PGI2 (Refs 176, 177). The third group of isoenzymes, prostaglandin E synthase (PGE synthase), which is the terminal enzyme in the synthesis of PGE2, catalyses the conversion of COX-derived PGH2 to PGE2 (Refs 178, 179).

As Nobel Laureate John R. Vane first suggested in 1971 (Ref. 180), the COX enzymes are the primary targets for nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin. NSAIDs inhibit the first step of the reaction, the formation of PGH2. Specific COX-2 inhibitors have been developed to achieve inhibition of inflammation-induced PGE2 production without the detrimental inhibition of baseline, COX-1-derived prostaglandin production was thought to account for the gastrointestinal side-effects of traditional NSAIDs (Ref. 181). Treatment strategies with nonselective NSAIDs and selective COX-2 inhibitors have suggested a potential adjuvant role for COX-inhibitors in periodontal therapy (Ref. 182). Evidence from animal experiments and clinical trials demonstrates that both NSAIDs and selective COX-2 inhibitors are generally responsible for stabilisation of periodontal conditions by reducing the rate of alveolar bone resorption (Ref. 183). Recently, it was also reported, in a small sample size, that “low-dose” aspirin may reduce the risk of periodontal attachment loss (Ref. 184). In contrast, adjunctive treatment with oral administration of meloxicam does not seem to improve clinical parameters or GCF levels of PGE2 and IL-1β (Ref. 185). In experimental periodontitis of rats, the selective COX-2 inhibitor celecoxib and prophylactic omega-3 fatty acid, alone and in combination, inhibit gingival tissue MMP-8 expression (Ref. 186).

However, COX-2-specific drugs have several side-effects, including cardiovascular problems (Ref. 187), and one of the COX-2-specific pharmaceutical inhibitors, Vioxx, was withdrawn from the market because of these side-effects. Owing to the side-effects experienced during COX enzyme inhibition, particular attention has been given to the downstream enzymes of the PGE2 cascade synthesis. Recently, several
different groups of compounds that inhibit mPGES-1 activity have been described (Refs 188, 189). One of the most promising groups of inhibitors are the disubstituted phenanthrene imidazoles, which were found to be orally active in a guinea pig model (Ref. 190). The indole 5-lipoxygenase-activating protein inhibitor MK-886 and its derivatives have been shown to inhibit mPGES-1 in enzyme assays (Ref. 191). Furthermore, natural products such as curcumin (Ref. 192) (from the spice turmeric) and epigallocatechin-3-gallate (Ref. 193) (from green tea) have been shown to affect mPGES-1 in vitro. Several mPGES-1 inhibitors are being studied in animal models, but none are as yet available for use in humans (Refs 194, 195, 196, 197). In experimental periodontitis in rats, the mPGES-1 inhibitor curcumin effectively inhibited cytokine gene expression at the mRNA and the protein level and inhibited activation of NF-κB in the gingival tissues although the inhibitor did not prevent alveolar bone resorption (Ref. 198). It was also recently reported that aminothiazoles targeting mPGES-1 decrease PGE2 synthesis in vitro and ameliorate experimental periodontitis in vivo (Ref. 199). PGE2 inhibitors, targeting the enzyme COX using NSAIDs or specific COX-2 inhibitors, have been shown to block periodontal PGE2 synthesis and prevent disease progression in numerous animal models and a few clinical studies (Refs 183, 200). Well-designed, large-scale clinical trials are needed to further evaluate the role of PGE2 inhibitory drugs as new therapeutic strategies in the management of periodontal disease.

Inhibition of proinflammatory cytokines

Cytokines have been validated as therapeutic targets for treatment of numerous inflammatory diseases such as RA, inflammatory bowel disease (IBD) and periodontitis. TNFα was the first cytokine to be validated as a therapeutic target for RA, and although several other cytokine antagonists including TNFα, IL-1 and IL-6 have been or are being validated as biological therapies for treatment of RA, TNFα seems to be the preferred target of first-line biological therapy (Ref. 201). Soluble antagonists to IL-1 and TNFα, at this time only demonstrated in experimental periodontitis, have shown a reduction in loss of connective tissue attachment, osteoclast formation and loss of alveolar bone (Refs 15, 87, 93). However, although a few studies have reported a reduction of alveolar bone loss in patients with RA in response to anti-TNFα treatment, there are limited results suggesting that anti-TNFα agents can reduce local production of inflammatory cytokines and periodontal inflammation in RA patients with periodontitis (Ref. 202).

Levels of inflammatory cytokines and other mediators can also be regulated through inhibition of intracellular signalling pathways. Induction of cytokines in response to activation of TLRs by bacterial pathogens involves numerous signal transduction pathways including NF-κB, MAPK and janus kinase-signal transducer and activator of transcription (JAK-STAT). The MAPK signal pathway comprises of the subfamilies extracellular regulated kinases (ERKs) and the c-Jun N-terminal activated kinases (JNK) and p38. Inhibitors that target JNK have been suggested to have therapeutic potential in the chronic inflammatory conditions RA and IBD (Refs 203, 204). Recently, it was reported that silencing the MAP kinase-activated protein kinase-2 (MAPKAPK-2) impeded LPS-induced inflammatory bone loss, decreased the inflammatory infiltrate and reduced osteoclastogenesis (Ref. 205). Moreover, studies on experimental rat periodontitis suggest that orally active p38 MAPK inhibitors can reduce LPS-induced inflammatory cytokine production and osteoclast formation and protect against LPS-stimulated alveolar bone loss and decreased IL-6, IL-1β and TNFα expression (Ref. 206). This highlights the importance of p38 MAPK signalling in immune cytokine production and periodontal disease progression (Ref. 207).

Cytokine expression is also endogenously regulated through post-transcriptional modifications that affect mRNA stability, known to play an important role in inflammatory disease progression. Cytokines such as TNFα, IL-6 and IL-8, which activate multiple signalling cascades including ERK, JNK, NF-κB and p38 MAPK are regulated via mRNA stability. The absence of post-transcriptional regulation of the mRNAs of these cytokines may increase cytokine production, leading to tissue destruction (Ref. 208). Thus, RNA-binding proteins and microRNAs, which bind to the AU-rich elements of cytokine mRNA that affect mRNA stability, have been suggested as...
potential new treatments for controlling the cytokine mRNA expression (Ref. 208).

Research in progress and conclusions

Continuing advancement in scientific methodology, including high throughput analysis techniques, is enabling studies on genomic variations and gene expression patterns in periodontal disease. Whole-genome microarrays and RNA sequencing will be valuable tools for identifying genetic and biological markers of increased susceptibility to periodontal disease. In recent years, both transcriptome studies and a genome-wide association study have been performed on periodontitis cohorts (Refs 209, 210, 211, 212). The massive amounts of data generated by such studies require painstaking analyses to yield biologically significant results, but the capacity for identification of novel mediators involved in the pathogenesis of periodontitis is promising, especially in sequencing approaches that are unhampered by predefined probe sets (Refs 213, 214). However, upcoming breakthroughs in the understanding and treatment of periodontitis need not be derived only from periodontitis-focused research. Much is to be gained from research progress in other chronic inflammatory conditions. Studies are ongoing to evaluate the role of other proinflammatory cytokines in the pathophysiology of conditions similar to periodontitis, such as RA, Crohn’s disease and IBD, and to develop antibodies which specifically target these cytokines for novel future treatment strategies. IL-21, a new member of the type 1 cytokine superfamily, promotes osteoclastogenesis in RA (Ref. 215) and has been suggested as target for immune-mediated diseases, especially for preventing bone destruction (Ref. 216). IL-23, a member of the IL-12 family, has been reported to be involved in osteoclastogenesis via induction of RANKL expression. Treatment with the IL-12p40 monoclonal antibody Ustekinumab against the common p40 subunit of IL-12 and IL-23, which thereby neutralises IL-12 and IL-23, has shown clinical efficacy in patients with Crohn’s disease (Ref. 217) and psoriatic arthritis (Ref. 218). Currently, numerous IL-23 receptor antagonists are reported to be under development in clinical or preclinical studies (Refs 219, 220).

As discussed throughout this review, research into the molecular pathogenesis of periodontitis is continuously producing novel and significant results. Despite extensive research, however, the detailed mechanisms of the pathogenesis of periodontitis are still not elucidated. Nevertheless, the field is moving forward, utilising technological advances and synergy effects from findings in closely related diseases. Periodontitis is currently being connected to the pathogenesis of various systemic diseases and conditions, further emphasising the importance of a deeper understanding of this common condition. Progress in the understanding of periodontal disease may enable adjunctive treatments focused on modulating the host response. Successful novel treatment strategies have the potential to improve both the oral and the systemic health of patients afflicted with periodontitis.

Acknowledgements and funding

Research on the pathogenesis of periodontal disease and molecular periodontology is supported by the Swedish Research Council; the Swedish Patent Revenue Fund; the Swedish Dental Society; Stockholm County Council; and Karolinska Institutet. We thank the peer reviewers for their valuable comments and suggestions on the manuscript.

References

5 Savage, A. et al. (2009) A systematic review of definitions of periodontitis and methods that have been used to identify this disease. Journal of Clinical Periodontology 36, 458-467
Inflammatory mediators in the pathogenesis of periodontitis

14 Assuma, R. et al. (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. Journal of Immunology 160, 403-409
15 Delima, A.J. et al. (2002) Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin-1 antagonists. Journal of Infectious Diseases 186, 511-516
19 Tanabe, N. et al. (2005) IL-1 alpha stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sciences 77, 615-626
Inflammatory mediators in the pathogenesis of periodontitis

47 Heath, J.K. et al. (1987) Bacterial antigens induce collagenase and prostaglandin E2 synthesis in human gingival fibroblasts through a primary effect on circulating mononuclear cells. Infection and Immunity 55, 2148-2154
50 Bage, T. et al. (2010) Signal pathways JNK and NF-kappaB, identified by global gene expression profiling, are involved in regulation of TNFalpha-induced mPGES-1 and COX-2 expression in gingival fibroblasts. BMC Genomics 11, 241-200
54 Hormdee, D. et al. (2005) Protein kinase-A-dependent osteoprotegerin production on interleukin-1 stimulation in human gingival fibroblasts is distinct from periodontal ligament fibroblasts. Clinical and Experimental Immunology 142, 490-497
59 Gamonal, J. et al. (2000) Levels of interleukin-1 beta, -8, and -10 and RANTES in gingival crevicular fluid and cell populations in adult periodontitis patients and the effect of periodontal treatment. Journal of Periodontology 71, 1535-1545
61 Giannopoulos, C., Kamma, J.J. and Mombelli, A. (2003) Effect of inflammation, smoking and stress...
on gingival crevicular fluid cytokine level. Journal of Clinical Periodontology 30, 145-153

63 Fujita, Y. et al. (2012) Correlations between pentraxin 3 and cytokine levels in gingival crevicular fluid and clinical parameters of chronic periodontitis. Odontology 100, 215-221

64 Cetinkaya, B. et al. (2013) Proinflammatory and anti-inflammatory cytokines in gingival crevicular fluid and serum of patients with rheumatoid arthritis and patients with chronic periodontitis. Journal of Periodontology 84, 84-93

65 Lo, Y.J. et al. (1999) Interleukin 1beta-secreting cells in inflamed gingival tissue of adult periodontitis patients. Cytokine 11, 626-633

70 Zhao, L. et al. (2011) Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients. Journal of Clinical Periodontology 38, 509-516

71 Kurtis, B. et al. (1999) IL-6 levels in gingival crevicular fluid (GCF) from patients with non-insulin dependent diabetes mellitus (NIDDM), adult periodontitis and healthy subjects. Journal of Oral Sciences 41, 163-167

73 Sanchez-Hernandez, P.E., et al. (2011) IL-12 and IL-18 levels in serum and gingival tissue in aggressive and chronic periodontitis. Oral Diseases 17, 522-529

74 Honda, T. et al. (2008) Elevated expression of IL-17 and IL-12 genes in chronic inflammatory periodontal disease. Clinica Chimica Acta 395, 137-141

75 Vernal, R. et al. (2005) Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis. Journal of Clinical Periodontology 32, 383-389

93 Delima, A.J. et al. (2001) Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28, 233-240

95 Kwan Tat, S. et al. (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine and Growth Factor Reviews 15, 49-60

99 Preshaw, P.M. and Taylor, J.J. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? Journal of Clinical Periodontology 38(Suppl 11), 60-84

105 Zhong, Q. et al. (2012) Interleukin-10 gene polymorphisms and chronic/aggressive periodontitis susceptibility: a meta-analysis based on 14 case-control studies. Cytokine 60, 47-54

111 Hasturk, H. et al. (2006) RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB Journal 20, 401-403

Accession information: doi:10.1017/erm.2013.8; Vol. 15; e7; August 2013

© Cambridge University Press 2013. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence http://creativecommons.org/licenses/by-nc-sa/3.0/

114 Wan, M. et al. (2011) Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvins E1. FASEB Journal 25, 1697-1705

116 Harris, S.G. et al. (2002) Prostaglandins as modulators of immunity. Trends in Immunology 23, 144-150

117 Bergstrom, S. (1967) Prostaglandins: members of a new hormonal system. These physiologically very potent compounds of ubiquitous occurrence are formed from essential fatty acids. Science 157, 382-391

137 Laugisch, O. et al. (2012) Periodontal pathogens affect the level of protease inhibitors in gingival crevicular fluid. Molecular Oral Microbiology 27, 45-56

Accession information: doi:10.1017/erm.2013.8; Vol. 15; e7; August 2013

© Cambridge University Press 2013. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence. http://creativecommons.org/licenses/by-nc-sa/3.0/
Owen, C.A. et al. (2004) Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. Journal of Immunology 172, 7791-7803

Letra, A. et al. (2012) MMP3 and TIMP1 variants contribute to chronic periodontitis and may be implicated in disease progression. Journal of Clinical Periodontology 39, 707-716

Li, G. et al. (2012) Association of matrix metalloproteinase (MMP)-1, 3, 9, interleukin (IL)-2, 8 and cyclooxygenase (COX)-2 gene polymorphisms with chronic periodontitis in a Chinese population. Cytokine 60, 552-560

Gosset, M. et al. (2010) Inhibition of matrix metalloproteinase-3 and -13 synthesis induced by IL-1beta in chondrocytes from mice lacking microsomal prostaglandin E synthase-1. Journal of Immunology 185, 6244-6252

Kida, Y. et al. (2005) Interleukin-1 stimulates cytokines, prostaglandin E2 and matrix metalloproteinase-1 production via activation of MAPK/AP-1 and NF-kappaB in human gingival fibroblasts. Cytokine 29, 159-168

Golub, L.M. et al. (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Advances in Dental Research 12, 12-26

fluid of patients with periodontitis. Journal of Dental Research 83, 166-169
166 Wei, S. et al. (2005) IL-1 mediates TNF-induced osteoclastogenesis. Journal of Clinical Investigation 115, 282-290
168 Axmann, R. et al. (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis and Rheumatism 60, 2747-2756
170 Choi, B.K. et al. (2005) Prostaglandin E(2) is a main mediator in receptor activator of nuclear factor-kappaB ligand-dependent osteoclastogenesis induced by Porphyromonas gingivalis, Treponema denticola, and Treponema socranskii. Journal of Periodontology 76, 813-820
171 Brandstrom, H. et al. (1998) Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells. Biochemical and Biophysical Research Communications 247, 338-341
175 Needleman, P. (1978) Characterization of the reaction sequence involved in phospholipid labeling and deacylation and prostaglandin synthesis and actions. Journal of Allergy and Clinical Immunology 62, 96-102

Accession information: doi:10.1017/erm.2013.8; Vol. 15; e7; August 2013
© Cambridge University Press 2013. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence http://creativecommons.org/licenses/by-nc-sa/3.0/ The written permission of Cambridge University Press must be obtained for commercial re-use.

190 Giroux, A. et al. (2009) Discovery of disubstituted phenanthrene imidazoles as potent, selective and orally active mPGES-1 inhibitors. Bioorganic and Medicinal Chemistry Letters 19, 5837-5841

215 Kwok, S.K. et al. (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis and Rheumatism 64, 740-751
217 Fuss, I.J. et al. (2006) Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflammatory Bowel Diseases 12, 9-15

Features associated with this article

Figures
Figure 1. Characteristics of periodontitis.
Figure 2. Schematic overview of the pathogenesis of periodontitis.
Figure 3. Inflammatory mediators in the pathogenesis of periodontitis.

Table
Table 1. Cytokine levels in the gingival crevicular fluid and in gingival tissue.

Citation details for this article