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Dedicated to Professor Kentaro Murata on his sixtieth birthday

Introduction

Complete parallel submanifolds of a real space form of constant sec-

tional curvature k have been completely classified by Ferus [3] when k ^

0, and by Takeuchi [19] when k < 0. A complex space form is by defini-

tion a 2n-dimensional simply connected Hermitian symmetric space of

constant holomorphic sectional curvature c and will be denoted by Mn(c).

The complex space form Mn(0) is isometric to the Euclidean space R2n

and so complete parallel submanifolds of Mn(O) are known by Ferus [3],

k = 0. Assume that c Φ 0. Then we know that a parallel submanifold

of Mn(c) is Kahlerian or totally real. Complete Kahlerian parallel sub-

manifolds of Mn(c) have been completely classified by Nakagawa-Takagi

[13] when c > 0, and by Kon [9] when c < 0. Recently, Naitoh [11] has

shown that the classification of n-dimensional complete totally real parallel

submanifolds of Mn(c), c > 0, is reduced to that of certain cubic forms

of ^-variables and Naitoh-Takeuchi [12] has classified these submanifolds

by the theory of symmetric bounded domains of tube type.

In the present article we will study the classification of complete

parallel submanifolds of Mn(c), c Φ 0.

In the present paper I, we will show that a parallel submanifold of

Mn(c), c Φ 0, is one of the following three types:

(a) Kahlerian submanifold,

(b) totally real submanifold which is contained in a totally real

totally geodesic submanifold,

(c) totally real submanifold which is contained in a totally geodesic

Kahlerian submanifold whose dimension is twice of the dimension of the

submanifold (Theorem 2.4).
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This implies that the classification of complete parallel submanifolds
of Mn(c), c > 0, is reduced to those of Nakagawa-Takagi [13], Ferus [3],
k > 0, and Naitoh-Takeuchi [12]. As application of our classification we
will completely classify complete Λ-isotropic parallel submanifolds of Mn(c),
c > 0, which the author has studied ealier in [10], [11] (Corollary 3.4).
Now, if c < 0, the classifications of complete parallel submanifolds of types
(a), (b) are reduced to those of Kon [9], Takeuchi [19] respectively.

In the section 4 we will study the "complete inverse" of an r-dimen-
sional complete totally real parallel submanifold of Mr(c), c Φ 0. The
complete inverse is an (r + l)-dimensional complete totally real parallel
submanifold of a pseudo-Hermitian space Er+ί (Proposition 4.1).

In the section 5 we will define "orthogonal Jordan triple system"
and "orthogonal symmetric graded Lie algebra". These notions may be
regarded as extensions of non-degenerate Jordan triple system and semi-
simple symmetric graded Lie algebra respectively. And two notions have
a natural one-to-one correspondence (Theorem 5.4). Moreover we will
construct a parallel submanifold of a pseudo-Euclidean space from an
orthogonal symmetric graded Lie algebra satisfying a certain condition
(Theorem 5.7).

In the forthcoming paper II we will construct an orthogonal Jordan
triple system and an orthogonal symmetric graded Lie algebra associated
with a complete inverse submanifold and show that the complete inverse
submanifold is equivalent to the parallel submanifold constructed from
the orthogonal symmetric graded Lie algebra. And we will classify r-
dimensional complete totally real parallel submanifolds of Mr(c), c < 0,
by determining orthogonal symmetric graded Lie algebras associated with
complete inverses.

The author wishes to express his hearty thanks to Professor S. Mura-
kami for useful comments and to Professor M. Takeuchi for much infor-
mation.

§ 1. Preliminaries

Let M, M be connected pseudo-riemannian manifolds and / an isome-
tric immersion of M into M. Throughout this paper we will identify a
vector X of M with a vector f*(X) of M. The pseudo-riemannian metrics
on M, M are denoted by the same notation <, >. Let F, F be the Levi-
Civita connections on M, M respectively. The metric and the connection
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on the pull back f~ιT{M) of the tangent bundle T(M) of M, induced

from <, > and F, are also denoted by < , > and F. The pull back

f~λT(M) is orthogonally decomposed into the sum of tangent bundle T(M)

of M and normal bundle N(M) for /. Let D be the normal connection

on N(M), σf the second fundamental form of /, and A the shape operator

of /. Then we have the formulas:

(1.1) PxY=PxY+σf(X,Y),

(1.2) Pxζ = -A:X+Dxζ9

(1.3) <AζX, Y) = (σf(X, Y), O, */(*, Y) = *,( Y, X)

for vector fields X, Y of M and a normal vector field ζ. We define

(F*σ,)(X, Y, Z) - (Ff^)(Y, Z) - D^/Y, Z) - σf(PxY9 Z) - σf(Y9 VXZ)

for vector fields X, Y, Z of M. The isometric immersion / is called parallel

if P*σf = 0, and the image /(M) of a parallel imbedding / is called a paral-

lel submanifold of M. Denote by R, R, RL the curvature tensors for F, F,

Z) respectively and by {*}x the normal component of *. Then we have

the Gauss-Codazzi-Ricci equations for an isometric immersion /:

(1.4) <Λ(Z, Y)Z, W) = (R(X, Y)Z, W) + (σf(X, Z), σ,(Y, W)}

(1.5) {Λ(Z, Y)Z}^ = (Flσ^ίF, Z) - (r$σfXX, Z) ,

(1.6) <S(X, Y)C, f> = ^ ( X , Y)C, O - <[Aς, AJX,

for vector fields X, Y, Z, VF of M and normal vector fields ζ, f.

Now, for a point p of an ^-dimensional pseudo-riemannian manifold

M9 there exists a basis {e19 , βfc, ek+1, , βn} of the tangent space TP(M)

such that

r-i, i^/=./^fe,

1, k+l<i=j£n,

0, i ^ j .

Here note that the non-negative integer k is independent of a point p.

The pair (k, n — k) is called the signature of the pseudo-riemannian mani-

fold M, and {eί9 , en} an orthonormal basis of TP(M).

Let / be an isometric immersion of an λi-dimensional pseudo-rieman-
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nian manifold M of signature (k, n — k) into a pseudo-riemannian manifold

M. We define the mean curvature vector field ηf for / as follows:

= - Σ * - i

for an orthonormal basis {eu , en) of TP(M). The isometric immersion

/ is called minimal if ηf = 0. It is called totally umbilical if

(1) the mean curvature vector field ηf is nowhere zero and σf(X, Y) =

<X, Y)ηf for vector fields X, Y of M, and

(2) ηf is parallel; Z)^ = 0.

The image /(M) of a totally umbilical isometric imbedding / is called a

totally umbilical submanifold of Λf. Here note that a totally umbilical

isometric immersion is always parallel.

Let ft: Mi —> Mί9 1 <̂  i <̂  5, be isometric immersions of n rdimensional

pseudo-riemannian manifolds Mt into pseudo-riemannian manifolds Mt.

Denote by σfi, ηfi the second fundamental form and the mean curvature

vector field of ft respectively. The product isometric immersion / = fx X

• X fs of the product pseudo-riemannian manifold M = Mx X X Ms

into the product pseudo-riemannian manifold M = Mx X X Ms is defined

by

for p^ e M^ 1 ̂  i ^ s. Then we have

σ/X, + ... +X,,Y1+ ... + Y,) = σfl(X19 YJ + . .. + σfs(Xs, Ys) ,

n η, = nrηfl + ••• + ns ηfs

for vector fields Xu Yt of Mu 1 ̂  ί ^ s. Therefore, / is parallel (resp.

minimal) if and only if each ft is parallel (resp. minimal). Moreover, ηf

is parallel if and only if each ηu is parallel.

LEMMA 1.1 (cf. Takeuchi [19]). Let M, Mf, M, be pseudo-riemannian

manifolds. Let f':M-> Mf be an isometric immersion, f"\ M; -> M a totally

geodesic or totally umbilical isometric immersion and let f = f" ° ff be the

composition of ff and fr/. Then

(1) σf(X, Y) = σf,(X, Y) + <X, Y>Vf, Vf = Vr + ?/» °f',

DxVt = D'XVJ; A,, = A\f + <ηr,, ηr.yiά

for vector fields X, Y of M {Here D', A' denote the normal connection and

the shape operator for f respectively),
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(2) ηf is parallel if and only if ηf, is parallel,

(3) / is parallel if and only if f is parallel.

Proof. See [19, Lemma 1.1]. q.e.d.

§ 2. The reduction theorem

In this section we study parallel isometric immersions of riemannian

manifolds M into a complex space form Mn(c), c Φ 0. (dim M I> 2)

Let M be a Kahlerian manifold and denote by J the complex stru-

cture. An isometric immersion / of a riemannian manifold M into M is

called Kdhlerian (resp. totally real) if JTV{M) == TP(M) (resp. JTP(M) c

NP(M)) for pe M. If / is Kahlerian, M i s a Kahlerian manifold such that

/: M -> M is a holomorphic isometric immersion.

Let f: M-> M be an isometric immersion of a riemannian manifold

M into a riemannian manifold M. For a point pe M, the first normal

space NP(M) and the first osculating space OP(M) at p are defined by

Nl{M) = {σ/X, Y): X, Ye Γp(Λf)}Λ, O*(M) - TP(M) Θ iVJ(ΛO

where { }R means the #-span of { }. Let M be a riemannian symmetric

space. A linear subspace V c TP(M) is called a Lie ίripZβ system if i?p(X, Y)Z

e V for X, Y, Ze V. For a Lie triple system V there is a unique com-

plete totally geodesic submanifold N of M such that p e N, TP(N) = V

(cf. Helgason [6]).

LEMMA 2.1. Let f be a parallel isometric immersion of a riemannian

manifold M into a complex space form Mn(c), c Φ 0. Then the first osculat-

ing space Oι

v(M) is a Lie triple system in Tp(Mn(c)) for a point pe M.

Moreover, the following cases occur:

(a) The immersion f is Kdhlerian and the subspace O\(M) is J-invari-

ant, i.e., J0l(M) = 0\{M),

(b) The immersion f is totally real and the subspace OP{M) is totally

real, i.e., JOP(M) and Oι

p{M) are orthogonal,

(c) The immersion f is totally real and the subspace O\(M) is J-invar-

ίant.

Here if the subspace OV(M) is J-invariant (resp, totally real), the com-

plete totally geodesic submanifold N defined by OV(M) is a complex space

form Mr(c) (resp. a real projective space RPs(c/4) or a real hyperbolic space

RHs(c/4:) of constant sectional curvature c/4 according as c > 0, c < 0

respectively).
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Proof. A parallel isometric immersion of a riemannian manifold

(dim ^> 2) into Mn(c), c Φ 0, is Kahlerian or totally real (cf. Chen-Ogiue

[1]) and the first osculating spaces are Lie triple systems (Naitoh [10]).

Since a totally geodesic submanifold is parallel, the submanifold N c Mn(c)

defined by OP{M) is Kahlerian or totally real. This implies that OP(M) is

J-invariant or totally real. If / is Kahlerian, we have JTP(M) = TP(M)

and σf(JX, Y) = Jσf(X, Y) for X, Y e TP(M), and thus OP{M) is J-invariant.

Now it is known that a complete Kahlerian (resp. totally real) totally

geodesic submanifold of Mn(c) is Mr(c) (resp. RPs(c/4) or RHs(c/4) accord-

ing as c > 0, c < 0 respectively). This completes our proof. q.e.d.

Let M be a Kahlerian manifold and denote by J the complex structure.

Let /: M-+M be a totally real isometric immersion of a riemannian

manifold M into M. The normal space NP(M), p e M, is decomposed into

the sum of subspace JTP(M) and its orthogonal complement {JTP(M)}L.

Denote by στ

f(X, Y) (resp. σj(X, Y)) the JTp(M)-component (resp. {JTP(M)}L-

component) of σf(X, Y) for X, Ye TP(M). The T(M)-valued symmetric

tensor Jστ

f is defined by

(Jστ

f)(X, Y) = J(στ

f(X, Y))

for vector fields X, Y of M. If we identify tangent spaces TP(M) with

cotangent spaces Γ*(M) through the riemannian metric on M, the tensor

Jστ

f is a covariant tensor of degree 3.

LEMMA 2.2. Let M and f be as above. Then,

(1) Jστ

f is a symmetric tensor of degree 3.

Moreover, if the totally real isometric immersion f is parallel,

(2) the tensor Jστ

f is parallel, i.e., F(Jστ

f) = 0,

(3) (σ}(X,W),Jσ}(Y,Z)} = 0

for vector fields X, Y, Z, W of M.

Proof. The claim (1) is the result of Lemma 2.4 in [10]. We show

the claims (2), (3). For vector fields X, Y, Z, W of M we have

(Fx(Jστ

f(ZZ)),W)

= (Fx(Jστ

f(Y, Z)), W} by (1.1),

= -(FAσf(Y, Z)), JW} + <VAσj(Y9 Z)), JW)

= -<DAσf(Y, Z)\ JW) - (σj(Y, Z), FXJW) by (1.2),
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= -<σf(F.YY, Z) + σf{Y, VXZ), JW) + (Jσ}(Y, Z), PXW)

by the parallelity of /,

= - (σWxY, Z) + σ*(Y, PXZ), JW) + (JσftY, Z), σf(X, W)> by (1.1),

= <JσT(FxY, Z) + Jστ,{Y, PXZ), W) + (Jσ}(Y, Z), σj(X, W))

since the subspace [JT^M)}1- is J-invariant. Hence we have

(2.1) <{MJ^)}(y, Z), W) = (σ}(X, W)9 Jσj(Y,

Since Jστ

f is a symmetric tensor of degree 3, the equation (2.1) means

that V(Jστ

f) is a symmetric tensor of degree 4. Moreover we have

<{FAJ*V}(X> χ)> X> = < ^ ( ^ X), Jσj(X, X)} = 0

for a vector field X of M, and thus V(Jστ

f) = 0. Together with (2.1) our

claim (3) is proved. q.e.d.

Let M be a riemannian manifold and c(t) a curve in M defined on

an open interval IB 0 and parametrized by arc-length. The curve c(t) is

called a Frenet curve in M of osculating rank r ( ^ 1) if for all t e I its higher

order derivatives

c(t) = (P°d/eMt), (Vdίdtc)(t\ , (Fί/V.cXί)

are linearly independent but

c(t) = (FUM), (Vd/dtc){t\ -", innc){t)

are linearly dependent in Tcω(M). Then there exist unique positive C°°-

functions tcjj), •••,̂ -1(0 °n ί a n ^ unique orthonormal C°°-vector fields

, Vr(ί) along the curve c(ί) such that

c(t) =

Φ)Vz{t),

(2.2)

Here we call κj(t)9 1 ^ j ^ r — 1, the Frenet curvature functions of c(ί),

{V/£); 1 ^ jf ^ r} the Frenet r-frame along c(ί), and the equations (2.2) the

Frenet formulas. For a given integer r ( ^ 1) and given positive C°°-func-

tions ΛΓ^), •••,£r_i(0 on 7, the Frenet formulas may b3 regarded as a

system of differential equations with variables c, V19 , Vr. It is known
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that this system has a unique local solution for given initial conditions;

a point c(0) = peM and an orthonormal r-frame {V/O) = V ;̂ 1 <̂  7 <̂  r}

of TP(M). If the riemannian manifold M is complete, the Frenet curve

c(i) is defined for -oo < t < +00(cf. [2], [17]).

LEMMA 2.3 (Strϋbing [17]). Let f: M->M be a parallel isometric im-

mersion of a riemannian manifold M into a riemannian manifold M. If

ϊ(t) is a geodesic in M parametrized by arc-length, the composition curve

(foϊ)(t) is a Frenet curve in M.

THEOREM 2.4. Let M be a complete riemannian manifold and f a pa-

rallel isometric immersion of M into a complex space form Mn(c), c Φ 0.

Then there exists a unique complete totally geodesic submanίfold N of Mn(c)

such that f(M) c N, Tq(N) = O\(M), q e M.

Moreover, the following cases occur:

(a) The manifold M and the immersion f are Kdhlerian, and the

submanίfold N is Mr(c),

(b) The immersion f is totally real and the submanίfold N is a real

protective space RPs(c/4) or a real hyperbolic space RHs(cj4) according as

c > 0, c < 0 respectively,

(c) The immersion f is totally real and the submanίfold N is Mr(c)

with r — dim M.

Proof. Fix a point pe M. By Lemma 2.1 the first osculating space

Oι

v{M) is a Lie triple system, and thus defines a unique complete totally

geodesic submanifold N such that p e N, TP(N) = O\(M). Let T(t) be a

complete geodesic in M with 7(0) = p, parametrized by arclength. By

Lemma 2.3 the composition curve (foϊ)(t) is a Frenet curve in Mn(c).

Denote by tc^t), -9/c^t(t) the Frenet curvature functions of (f°ϊ)(t), and

by {Vj(t); 1 <Lj £ £} the Frenet Mrame of (foT)(t). Then the parallelity

of / means that V3 = V/0) e Oλ

v(M) = TP(N) for j = 1, , £. Let c(t) be

the Frenet curve in N of osculating rank £ with the curvature functions

K^t), - - -, κt-ι(ΐ) and the initial conditions: c(0) = p, Vί9 , Ve. Since N is

totally geodesic in Mn(c), the curve c(t) is a Frenet curve in Mn(c) with

the same curvature functions and initial conditions. Hence we have

(f° T)(t) = c(i) by the uniqueness of Frenet curves. This means that f(M) C

N. The claim that O\(M) = Tq(N) is obvious by the parallelity of /.

The second claims (a), (b), (c) are almost trivial by Lemma 2.1. To

complete our proof we may show that dimc OP(M) = dim M in the case
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(c) of Lemma 2.1. Put NJ-(M) = {σj(X, Y);X,Ye TP(M)}R. Then we have

Np

λ(M) = {JTV(M)}L. Since the subspace 0\{M) is J-invariant, the sub-

space N^-(M) is also J-invariant. Hence, by Lemma 2.2, (3), we have σj =

0, and thus O\(M) = TP(M) Θ JTP(M). This implies that dimc O
ι

v(M) =

dim M. q.e.d.

Remark 2.5. Let M be a simply connected riemannian symmetric

space and / a parallel isometric immersion of M into Mn(c), c Φ 0. As

described in Introduction, such f's have completely classified when they

are of type (a) or of type (b) (c < 0). Moreover, by the argument of

Ferus [4], / of type (b) (c > 0) is an equivariant immersion of M into

RPs(c/4). Hence the classification of such /'s is reduced to that of parallel

isometric immersions of M into the Euclidean sphere S5(c/4) of constant

sectional curvature e/4 (Ferus [3] for the classification).

§ 3. Parallel submanifolds of type (c), c > 0

A complex space form Mr(c), c > 0, is the complex protective space

CPr(c) of constant holomorphic sectional curvature c. Let Όi be an {ri + 1)-

dimensional irreducible symmetric bounded domain of tube type and Όf

^—>Cn+1 the Harish-Chandra imbedding. Then the Shilov boundary S f

C dDt is an (rt + l)-dimensional compact submanifold in Cn+1. The space

Cri+ί has the canonical hermitian inner product: C(z, w) = Σrj=ozjΰij f ° r

z = (Zj), w = (Wj)eCri+\ and thus the positive definite inner product:

(z, w)c = Re C(z, w). The flat riemannian metric on Crί+ί induced from

the inner product < }c is also denoted by < >c. Let c{ be a positive

number and SZri+1(Ci) the hypersphere of radius 1/Vĉ  with the center 0,

Since St is contained in some hypersphere, there exists a real number at

such that a.'S.cz S2n+1(cx). Put Mt = arSt. Then the submanifold Mt

C S2ri+1(Ci) is a symmetric i?-space. For symmetric bounded domains and

symmetric iϋ-spaces, we refer readers to [16], [18].

Now we have completely classified r-dimensional complete totally real

parallel submanifolds of CPr(c) (Naitoh-Takeuchi [12]). The classification

is performed as follows. For an object Q) = (D19 , Ds; cί9 , cs), s Ξ̂> 1,

such that

(3.1) Σί-i dimc A = r + 1, Σί=i Vct = 1/c ,

we define a compact submanifold MQ by
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M, = M, X . • X M, c Siri+1(cj4) X X S2r°+ί(cs/4)

c SZr+1(c/4) c C r + 1 .

Then the submanifold MQ is totally real in Cr+1. The riemannian sub-

mersion π: S2r+1(c/4) -> CPr(c), which is called the Hopf fibring, is a principal

S^bundle. For a point ze S2r+1(c/4), the horizontal space £Γ2 is invariant

by the complex structure i of Cr+1. Then ΐ|i?"z is compatible with the

complex structure J on Tπω(CPr(c)) by the differential π%e. Since M s is

invariant under the S^-action, M9 = π(M9) is an r-dimensional compact

totally real submanifold of CPr(c).

THEOREM 3.1 (Naitoh-Takeuchi [12]). ( 1 ) For an object 9 = (A, ,

Ds;c19 •• ,c s) satisfying (3.1), the r-dimensional compact totally real sub-

manifold MQ is parallel

( 2 ) An r-dimensional complete totally real parallel submanifold of

CPr(c) is congruent to some M9.

(3) For objects 9 = (D19 ••-, Da;clf , cs), 9' = (D[, . ., U%\ c[, - . . , c θ

satisfying (3.1), ί/ie submanίfolds M9, M3, are congruent to each other if

and only if s = ί α ẑcί ί/iere exists α permutation τ such that UvU) = Dj ,

<(j) = Cj /or αZ/ .

Suppose that an r-dimensional complete totally real parallel submani-

fold M is not of type (c). Then, by Theorem 2.4, M is totally geodesic.

This submanifold M is realized by the object ^ 0 = (DIVr+1; c) where DIVr+1

is the irreducible symmetric bounded domain of type IVr+1.

COROLLARY 3.2. All the r-dimensional complete totally real parallel

submanίfolds of type (c) are realized by objects 9 satisfying (3.1) except 90.

Remark 3.3. The classification of totally real parallel isometric im-

mersions of r-dimensional simply connected riemannian symmetric spaces

into CPr(c) is reduced to that of r-dimensional complete totally real para-

llel submanifolds of CPr(c) (cf. [11], [12]).

An isometric immersion / of a riemannian manifold M into a rieman-

nian manifold M is called Λ-isotropic if \σf(X, X)\ = λ for a unit vector

X of M, where |ζ| denotes the length of a normal vector ζ. A 0-isotropic

immersion is totally geodesic. Nonzero isotropic parallel immersions /

into CPn(c) have been studied in [10]. Nonzero isotropic parallel immer-

sions / into CPn(c) of type (a) or (b) have been completely classified in

[10], [15].
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Let Lr c CPr(c) be an r(I> 2)-dimensional Λ-isotropic complete parallel

submanifold of type (c). Then we have shown that the universal rieman-

nian covering of Lr is isometric to one of riemannian symmetric spaces

R\ R X S\t ^ 2), SU(S)ISCK3), SU(3), SU(6)/Sp(S)9 EJFA and that λ =

Vc/2/2" ([10, Theorem 4.13]). Moreover we have constructed submanifolds

Lr concretely and uniquely when universal coverings are R2 or R X S\6 >̂ 2)

([10, Theorem 6.5]), and have given examples of Lr concretely when uni-

versal coverings are the other riemannian symmetric spaces ([11, Remark

5.4]). Let Mr be an r(^> 2)-dimensional simply connected riemannian

symmetric space and /: Mr —> CPn(c) be a Λ-isotropic parallel isometric im-

mersion of type (c). We may assume that n = r by Theorem 2.4. Then

the image f(M) is a parallel submanifold of type (c) and /: Mr -> f(M) is

a universal riemannian covering (cf. [11], [12]). Hence, together with

Remark 3.3, we have the following

COROLLARY 3.4. Let Mr be an r ( ^ ^-dimensional simply connected

riemannian symmetric space and f: Mr —> CPr(c) a λ-isotropic parallel im-

mersion of type (c). Then Mr is isometric to one of the following spaces:

R\ R X S%n > 2), SC7(3)/SO(3), SU(3), SC7(6)/Sp(3), EJF4 .

Moreover, the immersions are rigid and λ = V cj2*/~2.

Remark 3.5. Denote by Dlm>m, DU2m, D1Um, D1Vm, DE the irreducible

symmetric bounded domains of tube type corresponding to Im,m, II2 m, ΠIm,

IVm, exceptional types respectively. Then, the object Q) corresponding to

the submanifold f(M) is (Dllιl9 Dlltl, DUfl; 3c, 3c, 3c), (DΪ1X, DlYn+1; (n + 2)c,

(n + 2)c/(n + 1)), (An,; c), (Ai.; c), (A,,,; c), (DE; c) according as M= R\

R X Sn(n > 2), SC7(3)/SO(3), SU(6)ISp(3), SJ7(3), S6/F4 respectively.

§ 4. Complete inverses of parallel submanifolds of type (c)

A complex space form Mr(c), c < 0, is the complex hyperbolic space

CHr(c) of constant holomorphic sectional curvature c. We recall funda-

mental properties for CHr(c). Let F b e a hermitian form on the complex

vector space Cr+ί defined by

F(z, w) = ~zowo + Σ"=i 2;^j

for z = (zj), α; = (^;) e C r + 1 . It induces a non-degenerate symmetric bilinear

form (z,w)F = ΈίeF(z,w) on C r + 1. We also denote by < }F the flat
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pseudo-riemannian metric on C r + 1 of signature (2, 2r) induced from { }F,

and by Fr+ί the flat pseudo-riemannian manifold (Cr+\ < }F). (We denote

by Cr+1 the flat riemannian manifold (Cr+\ < >0).) Let H2r+1(c/4) be a

real hypersurface in Fr+ί defined by H2r+1(φ) = {ze Fr+ί; F(z, z) = 4/c}.

The hypersurface H2r+1(c/4), with the metric induced from < ) j P, is a

pseudo-riemannian manifold of signature (1,2r). Let CHr be the base

manifold of the principal S!-bundle H2r+1(c/4) with the action: z-+ eiθz.

Identify tangent spaces Tz(H2r+1(c/4)), ze H2r+1(c/4), with spaces {weFr+1;

(w,z}F = O\ and subspaces Hz(H2r+1(c/4)) c Tz(H2r+ι(c/4)) with subspaces

{w e F r + 1 ; (w, z)F = (w, ίz)F = 0}. The restriction of < }F into Hz(H2r+ι(c/4))

is positive definite and the restriction π*\Hz(H2r+i(cl4)) is a linear isomo-

rphism onto Tπ{z){CHr) where π denotes the projection of H2r+1(c/4) onto

CHr. Since the complex structure w->iw, we Hz(H2r+1(cj4)), and the rest-

riction < }F\Hz(H2r+1(c/4)) are compatible with the S^-action, the linear

isomorphism induces an almost complex structure J and a riemannian

metric ( > on CHr such that

π*{iX) = J(π*X), (π*X, π*Y) = (X, Y)F

for X, Ye Hz(H2r+1(cj4)). Then we can see that CHr is a Kahlerian mani-

fold of constant holomorphic sectional curvature c. We denote by CHr(c)

the Kahlerian manifold.

From now on notations Er+\ < }E, N2r+\cj4\ π: N2r+1(c/4) ->Mr(c)

denote Fr+\ < ) F , H2r+1(c/4), π: H2r+1(c/4) -> CHr(c), or C r + 1 , < > c,

S 2 r + 1 ( c / 4 ) , 7r: S 2 r + 1 ( c / 4 ) - > C P r ( c ) a c c o r d i n g a s c < 0 o r c > 0 r e s p e c t i v e l y .

T h e i n c l u s i o n r . N2r+1(c/4) -> Er+1 i s t o t a l l y u m b i l i c a l , i .e . ,

(4.1) σc(X,Y)= -(cl4XX,Y)E^z

for X, Ye T2(iV2r+1(c/4)) and the mean curvature vector field η£z) = — (c/4) 2,

zeN2r+1(c/4\ is parallel.

Let iV and JB be pseudo-riemannian manifolds. A submersion τ: N—>

B is said to be pseudo-riemannian if, for p eN, the restriction of the metric

into the vertical space VP(N) is non-degenerate and the restriction of τ*

into the orthogonal complement HP(N) is an isometry onto Tτ(p)(B). Here

y(JV) - U peN VP(N) (resp. ίf(iV) = U peN HP(N)) is called the vertical (resp.

the horizontal) subbundle of T(N). For a vector field X of N, its V(Λ/>

component and ίί(iV)-component will be denoted by rΓX and J^X respecti-

vely. If i^X — X (resp. 2^X — X), X is said to be vertical (resp. horizontal).
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If X is horizontal and projectable to a vector field X* of B, it is called

the horizontal lift of X* and denoted by X = A.̂ . -X*. If iV, JB are rieman-

nian manifolds, a pseudo-riemannian submersion is riemannian in the sense

of O'Neill [14]. He defined the fundamental tensors A, T for a rieman-

nian submersion. We can also define them for a pseudo-riemannian sub-

mersion in the same way as for a riemannian submersion. (See O'Neill

[14] for the definition of A, T.) The submersion π: N2r+1(φ) ->Mr(c) is

pseudo-riemannian with horizontal subspaces

Ht(N*r+1(φ)) = {we Tz(N2r+1(φ)); <κ;, z)E = (w, iz)E = 0}.

The Levi-Civita connections of iV2r+1(c/4), Mr(c) are denoted by FiV,

V respectively. Let v be a normal vector field defined by vz = (V\c\/2)z9

ze iV2r+1(c/4). Then we have (ye9 vz)E = — 1, 1 according as c < 0, c > 0.

Since each fibre of π is a geodesic in iV2r+1(c/4), the fundamental tensor

T equals zero. Then we have the following identities:

(4.2) VN

VX = ^VN

γX, VN

XV = AxV + TVIV, VN

XY- tfVN

xY + AXY

for horizontal vector fields X, Y and a vertical vector field V, and

(4.3) jeF^X = AXV, 2teVN

xY = U. VZJ*

for X = hJ. X*, Y = tiJ. Y#. The fundamental tensor A for π is given by

= f (VFι/2)<z, iy>^L if c < o,
^ x 1 (Vi]/2)<ZiY» i f c > 0 .

(See O'Neill [14] for the proof of (4.2) ~ (4.4).)

Let Mr be an r-dimensional totally real submanifold of Mr(c) and put

Mr+1 = π-\Mr) c iV2r+1(c/4), which is called the complete inverse of M\

Set H£M) = TZ{M) n Hz{N2r+\φ)) for z e M. Then we have the orthogo-

nal decomposition TZ(M) = F2(iV
27"+1(c/4)) Θ fl,(M) for the metric on Λf

induced from < }E. Hence M has signature (1, r), (0, r + 1) according as

c < 0, c > 0 respectively, and π: M —> M is a pseudo-riemannian submer-

sion with horizontal subspaces HZ(M), zeM. The total reality of M im-

plies that

(4.5) <iH.(M), HZ(M))E = {0} .

Let V, V be the Levi-Civita connections of M, M and σ, σ the second
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fundamental forms of M—> N2r+1(c/4), M-+Mr(c) respectively. Then, by

(4.2) ~ (4.5), we have the following identities:

(VXY = U. VXJ*, σ(X, Y) = U. σ(X^ Y#) ,

(4.6) Vxiv = rVN

xiv, a(X, iv) = W\c\/2)iX ,

ψίvX = FJv = 0, σ(ίv, ίv) = 0

for vector fields X, Y of M which are horizontal lifts of vector fields X*,

Y* of M respectively (Lemma 1.1, [12]).

A submanifold N c Rm is said to be substantial if N is not contained

in any affine hyperplane of Rm.

A pseudo-riemannian manifold is called complete if the Levi-Civita

connection is complete. A pseudo-riemannian manifold N is said to be a

pseudo-riemannian symmetric space if, for each point p e N, the geodesic

symmetry sp at p can be extended to a global isometry of N. A pseudo-

riemannian symmetric space is complete (cf. [7]).

PROPOSITION 4.1. Let Mr be an r-dίmensίonal totally real submanifold

of Mr(c) and M r + 1 the complete inverse of M\ Then,

( 1 ) M is minimal in Mr(c) if and only if M is minimal in iV2r+1(c/4),

( 2 ) V(M), H(M) are parallel subbundles of T(M),

( 3 ) M is parallel in Mr(c) if and only if M is parallel in 2V2r+1(c/4),

( 4 ) M is substantial in Er+1 = R2r+\

Assume that M is parallel in Mr(c) if c < 0. Then,

( 5 ) M is complete if and only if M is complete.

Proof. If c > 0, our claims are results of Lemma 1.1, [12]. Assume

that c < 0. Claims (1), (2), (3) are proved in the same way as in the case

c > 0. We show claims (4), (5).

( 4 ) Assume that M is contained in some real hyperplane of Fr+1.

Then there exists a complex linear hyperspace Vr of F r + 1 which contains

M(See the proof of Lemma 1.1, (3), [12]). Since Mis totally real in Fr+ί,

we have TZ(M) n iTt(M) = {0} for zeM. Identify TZ(V) with V. Then

the complex linear subspace TZ(M) Θ ίTz(M) is contained in V. This is

a contradiction since dimc {TZ(M) Θ iTz(M)} = r + 1. Hence M is sub-

stantial in F r + 1 .

(5) Since i/(M) is a parallel subbundle of Γ(M), there exists a totally

geodesic maximal integral submanifold Hr of H(M). Then ί P is rieman-

nian and π: Hr —> Mr is an isometric immersion.
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If M is complete, so is Hr by the maximality. Thus Mr is complete.

Conversely, assume that Mr is complete. Let (( )) be a riemannian met-

ric on M constructed from the pseudo-riemannian metric < }F as follows:

«X+ V, 7 + W)) = <X, Y)F - <V, WyF for X, YeH£M), V, We VZ(M\
Then 7r: (M, (( ))) -* M is a riemannian submersion with the same hori-

zontal subbundle H(M) as that of the pseudo-riemannian submersion π:

(M, < }F) —> M. Note that (M, (( ))) is complete by the compactness of

fibres. Let V be the Levi-Civita connection of (M, {( ))). If X is a hori-

zontal vector field for π:(M,(( ))) -> M, so is FZX ([14]). This implies

that the maximal integral submanifold Hr is totally geodesic in (M, (( ))).

Hence Hr is complete by the maximality. Now define φ: S1 X Hr -» M

by 00'*, z) = eίθ 'Z for eίθ eS1, ze Hr. Then 0 is a covering map. In fact,

let < >,$i be a riemannian metric on S1 such that (ίeiθ, ίeίθ)Si = — 4/c for

any ^. Then ^ is isometric immersion of the complete riemannian mani-

fold (S\ < >51) X (H\ < )F) into (M, (( ))). Thus 0 is a covering map.

Let (Hr, < ~ )jP) be the universal riemannian covering of (Hr, < )F). Since

(Hr, < }F) is a complete riemannian locally symmetric space, (Hr, <~>F)

is a riemannian symmetric space. Thus (S\ — < )jSi) X (Hr, (~)F) is a

pseudo-riemannian symmetric space. This implies that the space is com-

plete. Hence (M, < }F) is complete through the pseudo-riemannian cover-

ing (S\ - < }S1) X (fl-% < - >,) -> (S1, - < >51) x (H% < >,) -> (M, < >F).

q.e.d.

Let M be a complete parallel submanifold of a riemannian symmetric

space. Then M i s a complete riemannian locally symmetric space and

thus the universal riemannian covering space of M is a simply connected

riemannian symmetric space.

PROPOSITION 4.2. Let Mr be an r-dίmensional complete totally real

parallel submanifold of Mr{c). Then irreducible factors of the universal

covering space of Mr are isometric to some of the following riemannian

symmetric spaces:

SO(1, k)ISO(k\ SO(k + ϊ)ISO(k) (k ^ 2), SU(£)ISO(£), SU(£),

SU(2£)ISp(£) {I ^ 3), EJF4 .

Proof. Let N he a riemannian symmetric space. Fix a point p e N

and denote by S\TP(N)) the vector space of symmetric trilinear forms on

TP(N). Identify elements of S\T (N)) with Γp(iV)-valued bilinear forms
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on TP(N) through the metric < >. For τ e S%TP(N)), Xe TP(N), define a

symmetric endomorphism τ{X) of TP(N) by τ{X)Y = τ(X, Y) for Ye TP(N).

Let i?^, F be the curvature tensor, the holonomy algebra of JV respectively.

Put

and, for deR,

6 ^ for X,Y,ZeTp(N)

Assume that JV is irreducible. Then dim JίN = 1 if JV is one of the fol-

lowing spaces and their non-compact duals, and dim JίN — 0 otherwise:

(4.7) SU(β)ISO(£), SU(£), SU(2S)ISp(£) (£ ̂  3), EJF,

(Naitoh [11], Lemma 4.2).

Let M be the universal riemannian covering space of M and JV an

irreducible factor of M. Denote by σ the second fundamental form of the

isometric immersion M-+ Mr(c). Define an element σN e S*(TP(N)) by

<σN(X, Y), Z> = (Jσ(X, 7), Z)

for X, F, Z e TP(N). Then there exists a real number s such that JίN{s)

3 σN (Naitoh [11], Theorem 6.4, (A), (2)). If JV is none of the spaces in

(4.7) and their non-compact duals, JίN(s) = {0}, i.e., σN = 0 since άimJ?N

= 0. Hence we have

RN(X, Y)z = s«y, zyx - <x, z> Y)

for X, Y, Ze TP(N). This implies that JV has constant sectional curva-

ture. Since JV is irreducible, it is not flat, and thus is one of SO(1, k)j

SO(k), SO(k + ΐ)ISO(k) (k ̂  2).

Let JV* be one of the spaces in (4.7) and assume that JV is the non-

compact dual of JV*. Identify the tangent space TP(N) with a tangent

space TP*(N*) by the duality. Then the curvature tensor RN* at p* is

identified with — RN at p, and thus the representation (ϊ^*, TP*(JV*)) is

compatible with (ϊ^, TP(N)) (See Helgason [6] for the duality). Since JV*

is of compact type, there exists a number d > 0 such that JίN*{d) = {λ Φ 0}

(Naitoh [11], Proposition 4.4). Identify Jtji* with JKN. Since dim J(N = 1,

there exists ae R such that σN = aλ. Then we have
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, zyx - (x, z)Y) = R»(X, Y)Z - [σN

= RN(X, Y)Z - a2[λ{X\ λ(Y)]Z

and

d((Y, ZyX - (X, Z}Y) = -RN(X, Y)Z - [λ(X), λ(Y)]Z

for X, Y, Ze TP(N), and thus

R»(X, Y)z = (s - c?d)i{c? + i)«y, zyx - <x, z> y>.

This implies that N has constant sectional curvature, which is a contra-
diction.

Hence N is one of SO(1, k)ISO(k)9 SO(k + ΐ)/SO(k) (k ^ 2), and the
spaces in (4.7). q.e.d.

§ 5. Jordan triple systems and symmetric graded Lie algebras

In this section we recall Jordan triple systems and symmetric graded
Lie algebras, and define "orthogonal" Jordan triple systems and "ortho-
gonal" symmetric graded Lie algebras. These notions play important roles
for the classification of totally real parallel submanifolds of Mr(c), c Φ 0,
of type (c). The classification will be attained in the second series of this
paper.

Let V be a finite dimensional real vector space and { , , } a V-valued
trilinear form on V. Define endomorphisms L(X, Y), X, YeV, by L(X, Y)Z
= {X, Y, Z) for Ze V. An object (V, { }) is called a Jordan triple system
(abbreviated as JTS) if the following two conditions are satisfied:

(JT 1) L(X, Y)Z = L(Z, Y)X,

(JT 2) [L{W, Z\ L(X, Y)] = L(L(W, Z)X, Y) - L(X, L(Z, W)Y)

for W, Z, X, Ye V. The trace form β of a JTS (V, { }) is a bilinear form
on V defined by β(X, Y) = Tr L(X, Y) for X, YeV. A JTS is called non-
degenerate if the trace form is non-degenerate. Then the trace form is
always symmetric. It is said that two JTS's (V, { }), (V\ { }') are equi-
valent to each other if there exists a linear isomorphism g of V onto V
such that g{X, Y, Z} = {g(X), g(Y), g(Z)γ for X, Y, Ze V.

For a JTS (V,{ }) we denote by £f(V, { }) the set of non-degenerate
symmetric bilinear forms < , > on V such that L(X, Y)1 = L(Y, X) for X,
Ye V, where L(X, Y)1 denotes the transpose endomorphism of L(X, Y) for
< ). It is known that the trace form β belongs to £f(V, { }) for a non-
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degenerate JTS (V, { }). Assume that <¥(V, { }) Φ φ. An object (V, { };

< » is called an orthogonal Jordan triple system (abbreviated as OJTS)

for a JTS (V,{ }) and a form < > e S?(V9 { }). It is said that two OJTS's

(V> { }> ( })> (V>{ Yl ( >') a r e equivalent to each other if there exists

a linear isomorphism g of V onto V such that g{X, Y, Z} = {g(X), g(Y),

g(Z)}\ <g(X\g(Y)y = (X, Y> for X, Ye V.
A symmetric Lie algebra (g, p) (abbreviated as SLA (g, p)) is a pair of

a finite dimensional real Lie algebra g and an involutive automorphism

p of g such that p Φ idg. Let

ϊ = {Xe g; p(X) = X}, p = {Xe g; p(X) = -X} .

An SLA (g, p) is called effective if the representation (ad (ϊ) | p, p) of ϊ is

faithful.

For an SLA (g, p) we denote by ^(g, p) the set of non-degenerate sym-

metric bilinear forms < )„ on j) such that ad(Γ) | p , Teΐ, are skew sym-

metric for < >„. Assume that y(q, p) Φ φ. An object (g, p, < )p) is called

an orthogonal symmetric Lie algebra (abbreviated as OSLA) for an SLA

(g, p) and a form < >„ e ^(g, p).

A complex symmetric Lie algebra (g, p, Jp) (abbreviated as CSLA (g, p9

Jp)) is a pair of an SLA (g, p) and an almost complex structure Jp on p

such that ad(T) | p oJ p = J p o a d ( Γ ) | p for Tel. For a CSLA (g, p, Jp) we

denote by ^(g, ô, Jp) the set of forms < >p e ^(g, p) such that (J^X, JPY)P

= (X, Y)p for X, Yep. Assume that ^(g, p, Jp) Φ φ. An object (g, p, Jpy

< )„) is called a Hermitian symmetric Lie algebra (abbreviated as HSLA)

for a CSLA (g, p, Jp) and a form < }pe ^(g, />, Jp).

An SLA (g, p) is called a symmetric graded Lie algebra (abbreviated

as SGLA) if the following four conditions are satisfied:

(SGL 1) 8 = β-i + g0 + 8i is a graded Lie algebra, i.e., [β,, βJ <= qμ+v

for μ, ve Z, where ĝ  = {0} for λ Φ 0, ± 1 .

(SGL 2) p(qμ) - β-, for μ = 0, ± 1 .

(SGL 3) g0 acts faithfully on β-i Φ {0}.

(SGL 4) βo=[β-i,fli]-

An SGLA (a = Σ fl^> /°) ^s called semi-simple if g is semi-simple. For a

semi-simple SGLA the condition (SGL 4) is automatically attained from

other conditions. It is said that two SGLA's (β = Σ Qμ> p)> (&' = Σ 0>U Pf)

are equivalent to each other if there exists a Lie algebra isomorphism τ

of a onto g7 such that τ(qμ) = $'μ for μ = 0, ± 1 and τop = pf *τ. Here r is
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called a symmetric graded Lie algebra isomorphism, abbreviated as SGLA-

isomorphism.

Let (g = Σ β,> p) be an SGLA. Then an OSLA (g, p, < \) (resp. a

HSLA (g, p, c/p, < >„)) is called an orthogonal symmetric graded Lie algebra,

abbreviated as OSGLA (resp. a Hermίtian symmetric graded Lie algebra,

abbreviated as HSGLA). It is said that two OSGLA's (g = Σ g,, p, < >„),

(β' = Σ C P', < X') (^sp. HSGLA's (g = Σ β,, P> J» < >Λ (β' = Σ 9ί> f>',

Ĉ J'J < )*/)) a r e equivalent to each other if there exists an SGLA-isomor-

phism r of (g = Σ β,, p) onto (g7 - Σ P'» Pf) such that <τ(X), τ(Y))», = <Z,

y>p for X, Yep (resp. <τ(X), τ(Y)\ = <X, 7>p for X, F e p and r o j p =

We refer to Satake [16] for non-degenerate JTS's and semi-simple

SGLA's.

Now we study a correspondence between OJTS's and OSGLA's. Let

(V, { }, < » be an OJTS. Put L = {L(X, Y); X, Ye V}R, β = V+ L + V,

g_! = V + 0 + 0, g0 = 0 + L + 0, gx = 0 + 0 + V. Define a bracket pro-

duct [ , ] on g by

[(X, F, Y), (Z, G, W)]

(5.1) = (F(Z) - G(X), [F, G] - (1/2)L(X, W)

+ (1/2)L(Z, Y),

for X, Y, Z, W 6 V, F, G e L, and a linear isomorphism p of g by

(5.2) p(X, F, Y) = (Y, -F<, X)

for X, YeV, FeL.

LEMMA 5.1. The object (g = 2 Qμ, p) is an SGLA and is independent

of the choice of < ) e£f(V, { }). Moreover ί, p are ^iu

ϊ = {(X, L(Y, Z) - L(Z, Y), X); X,Y,Ze V}R ,

p = {(X, L(Y, Z) + L(Z, Y), -X); X, Y, Ze V}R .

Proof. We show the Jacobi identity for the bracket product [ , ].

Note that

(5.3) L(X, YY =

(5.4) L(x, γyz = L(x,zyγ,

(5.5) [F, L(X, Y)] -= L(F(X), Y) - L(X, F'(Y))
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for X, Ye V, FeL. In fact, (5.4) is attained by (5.3), (JT 1), and (5.5) is
attained by (5.3), (JT 2). Then the Jacobi identity is proved straightfor-
wardly by (5.3) ~ (5.5).

The identity (5.3) also implies that p is an involutive automorphism
of Q. The other claims are obvious. q.e.d.

We call this fe = 2 β,, p) the SGLA associated with a JTS (V, { })
such that S?(V,{ }) Φ φ.

Let (V, { }) be a JTS and (g = Σ qμy p) the SGLA associated with
(V, { }). For a form < > eS?(V, { }) define a symmetric bilinear form

< Xby

, F, -X), (Y, G, - Y)\ = <Z, Y) + Σ ϊ

for (X, F, -X), (7, G, - Y) e p, where 2F = Σ L i ( % ^ι) + UWi9 Zz)\ 2G

LEMMA 5.2. The form <( }p is a well-defined form in &"(§, p).

Proof. We show that Σ?=, <fi(Zτ), Wt} = Σy=i ^ ( ^ P , Wfr. Note that

> = <L{w, x)Y, zy
= (L{X, W)Z, Y) = <L(Z, W)X, Y)

for X, Y, Z, WeV by (5.3), (JT1). Then we have

j, w$zt, wt) +

This implies that < >p is a well-defined symmetric bilinear form on p.
Assume that <(X, F, -X\ (Y, G, - Y)\ = 0 for (7, G, - Y) 6 p. Put

G = 0. Then we have <Z, Y> = 0 for Ye V, and thus X = 0 by the non-
degeneracy of < >. Moreover, putting 2G = L(Z, W) + L(W, Z), we have
(F(Z\ W) = 0 for Z, We V, and thus F = 0. Hence the form < >p is
non-degenerate.

Finally we show that ad(Γ)|p> Teϊ, are skew symmetric for < >„.
Put T = (0, K, 0) e ϊ, 2F = L(Z, Y) + L(Y, Z), 2F' = L(Z7, Y0 + L(Y\ X')
e p. Then we have
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<(0, [K, F], 0), (0, F', 0)\ = <[K, F](X% y>

= -((F(X'\ K(Y')) + (K(X'\ F(Y')})

= -\ <(0, L(X', K(Y')) + L{K(Y>), X'), 0), (0, F, 0)>,

- I <(0, L(2Γ(X0, n + L(Y\ K(X% 0), (0, F, 0)>,

= - i <(o, -L(xf, κ\Y')) + L(tf(Y0, xo + UK(X'\ Y')

-L(Y', K'(X% 0), (0, F, 0)>p

= -i <(0, [if, L(X', 70] + [ΛΓ, i ( y , XO], 0), (0, F, 0)>p

= - <(0, [K, F'], 0), (0, F, O)X

by (5.5). Hence we have

<[(X, K, X), (Y, F, - Y)], (Y', F', - Y')\

= <(K(Y) - F(X), [K, F] + (1I2)(L(X, Y) + L(Y, X)),

= (K(Y) - F(X), F> + (F'(X), Y> + <(0, [K, F], 0), (0, F', 0)>p

= -<K{Y% Y) - ((F(X), y> - (F'(X), y »

- <(0, [UΓ, F'], 0), (0, F, 0)>p

= - <[(X, K, X), (Y', F', - 70], (7, F, - 7)>p

for (X, ΛΓ, X) e ϊ, (7, F, - Y), (7', F ' , - F ) e p. q.e.d.

We call this (g = Σ ĝ , ̂  < >„) the OSGLA associated with an OJTS

(y> { }. < »> a n d denote the morphism by c:(V,{ }, < » -> (g = Σ a«>

Let (g = Σ0^i i°) be an SGLA. Put V = g_j and define a V-valued
trilinear form { } on V by

{X, Y, Z} = -2[[X, p(Y)], Z)

for X, Y, Ze V. Then (V, { }) is a JTS. In fact, we have

L(X, Y)Z = -2[[X, ^7)], Z] = -2[X,
], X] = L(Z, 7)X

for X, Y, Ze V. This implies (JT 1). Note that

, p(Y)]\ Z] = p([X, p(Y)], p(Z)]) = -p([[p(Z), X],

= -[[Z, p(X)}, Y] = -[[Y, p(X)], Z]

for X,Y,Ze V, and thus p([X, p(Y)]) = -[Y, ^(X)] by (SGL 3). Then we
have
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[L(X, Y), L(Z, W)] = 4[ad([Z, p(Y)])\v, ad ([Z, p(W)])\r]

= 4aά([[X>P(Y)], [Z,p(W)]])\r

= 4 {ad ([[[X, p(Y)], Z], p(W)])\r + ad ([Z, [[X, p(Y)], P(W)]])\r}

= UL(X, Y)Z, W) - L(Z, L(Y, X)W)

for X, Y, Z, We V. This implies (JT2).

This (V, { }) is called the JTS associated with an SGLA (g = I ] Qμ, p).

Let (g = Σ 9/" p) be an SGLA and (V, { }) the JTS associated with

the SGLA. For a form < >„ e ^(g, p) define a symmetric bilinear form

< > on V by

(X, Y) = (X - p(X), Y - P(Y)\

for X, Ye V.

LEMMA 5.3. Let < > be a symmetric bilinear form on V defined as

above from < X e ^ g , p). Then, < >e^(V, { }).

Proo/. Note that

f = {X + P(X), [Y, p(Z)] - [Z, p(Y)];X, Y,Ze V}R ,

p = {X- P(X), [Y, p(Z)] + [Z, p(Y)]; X,Y,Ze V}R

by (SGL 4). Define a trilinear form a on V by

a(X, Y, Z) = ([X, P(Y)] + [Y, p(X)], Z - p(Z)}f

for X, Y, Ze V. Then we have

(5.6) a(X, Y, Z) = cc(Y, X, Z) .

Note that [X, P(Y)] + [Y, p(X)] = -{X + P(X), Y- p(Y)] for X, Ye V.

Since ad(T)| t, Teϊ, are skew symmetric for < )„ we have

(5.7) a(X,Y,Z)= -a(X,Z, Y)

and moreover

(5.8) oc(X, Y, Z) = a(Z, Y, X)

by (5.6), (5.7). Hence we have a = 0 by (5.6) ~ (5.8). This implies that

(5.9) (p Π g0> ί> Π (g_, Θ β,)>, = {0}.

Assume that <X, Y> = 0 for Ye V. Then we have (X - p(X), p Π

(fl-iθβ,)>, = {0} by the definition of < >, and thus (X - p(X), p)f = {0}
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by (5.9). Since < )„ is non-degenerate, we have X — p{X) = 0 and thus

X = 0. This implies that ( > is non-degenerate.

Finally we show that L(X, Y)1 = L(Y, X) for X, YeV. Note that

[([X, P(Y)] - [Y, p(X)]), Z - p{Z)\

= [([X, P(Y)] - [Y, p(X)]), Z] - P([([X, p(Y)] - [Y, p(X)]), Z])

for X, Y, Ze V. Then we have

({L(X, Y) - L(Y, X)}Z, W)

= (-2)<[([Z, p(Y)] - [Y, p(X)]\ Z - p{Z)l W - p(W)\

= 2<Z - p(Z), [([X, p(Y)] - [Y, p(X)}), W - p(W)]}p

= -(Z,{L(X,Y)-L(Y,X)}W)

for X, Y, Z, We V. This implies that L(X, Y) - L(Y, X), X, YeV, are

skew symmetric for < ). Note that

[Z + p(Z), [X, p(Y)) + [Y, p(X)]]

= [Z, [X, p(Y)] + [Y, p(X)]] - p([Z, [X, p(Y)] + [Y, p(X)]])

for X, Y, Ze V. Then we have

, Y) + L(Y, X)}Z, W)

P(Z), [X, p(Y)] + [Y, p(X)]], W - p(W)}t

, p(Y)] + [Y, p(X)l [Z + P(Z), W - p(W)])p

= 2([x, P(Y)] + [Y, p(X)i [z, p(W)] + [W, p(Z)]y,

for X, Y, Z, We V. This implies that L(X, Y) + L(Y, X), X, YeV, are

symmetric for < >. Hence we have L(X, Y)1 = L(Y, X) for X, YeV.

q.e.d.

We call this (V, { }, < » the OJTS associated with an OSGLA(g =

Σ 9,,, P, < >„) and denote the morphism by Γ':(Q = Σ Qμ> P> < >P) -* (V>

{ },< »•

THEOREM 5.4. (1) Two morphisms c, r1 are invertible to each other.

(2) Two OJTS's are equivalent to each other if and only if OSGLA's

associated with them are equivalent to each other.

(3) Let(V, { }, < » be an OJTS and (g = Σ 8,, />, < \ ) the OSGLA

associated with (V, { }, < )). Denote by β the trace form of (V, { }), and

by JBG, J3go the Killing forms of g, g0 respectively. Then,

B,((X, F, Y), (Z, G, W)) = BU(F, G) + 2ΎxFG - (β(X, W) + β(Y, Z))
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for (X, F, Y), (Z, G, W) e g. Moreover,

B,((X, F, -X), (Y, G, - Y)) = 2{Σtβ(G(Ud, Vτ) + β(X, Y)}

for (X, F, -X), (Y, G,-Y)e p, where IF = Σ* L{Ut, V,) + L(Vit Ut).

(4) Let (V,{ }, < » be an OJTS and (g = Σ 9,, p, < >>) the OSGLA

associated with (V, { }, < » . Then the JTS (V, { }) is non-degenerate

if and only if the SLA (g, p) is semi-simple.

(5) Assume that a JTS (V, { }) is non-degenerate. Then the OSGLA

associated with (V, { }, 2β) is (g = Σ Q?> P> -BgUx.,)-

Proof. (1) Let (V, { }, < » be an OJTS and (g = Σ 9,, p, < \ ) the

OSGLA associated with (V, { }, < ». Moreover let (V, { }', < >') be

the OJTS associated with (g = Σ Q?> P> ( \ ) Then we show that two

OJTS's (V,{ }, < », (V, { Y, < >') are equivalent to each other. Iden-

tify V with V by VzX^ (X, 0, 0) e g. t = V. Then we have

{X, Y, Z}' = -2[[X, p(Y)], Z] = L(X, Y)Z = {X, Y, Z}

for X, Y, Ze V, and

(x, Yγ = <x- P(X), Y- p(Y)yp = <x, y>

for X, Ye V. Hence OJTS's (V, { }, < », (V, { }', < >') are equivalent

to each other.

Conversely, let (g = Σ 9,, p, < X) be an OSGLA and (V, { }, < »

the OJTS associated with (g = Σ Q?> P> < X)- Moreover let (g' = Σ 9ί> P'>

< >„,) be the OSGLA associated with (V, { }, < ». Then we show that

two OSGLA's (g = Σ 8,. P, < >t)> (9' = Σ C p'> < V) a r e equivalent to

each other. Note that Q'O = {(0, ad(Γ) |g . 1 ; 0); Te g0} by (SGL4) for (g =

Σ Qμ, p) Define a linear mapping τ of g onto g' by τ(X + T + ρ(Y)) = (X,

adCTOIg^, Y) for X, F e g . 1 ; Γeg 0 . Then τ is injective by (SGL 3) for

(9 = Σ 9,, P) Since L(Z, Y) = - 2 ad ([X, p(Y)]) |,_, and L(Z, Y)( = L(Y, X)

for Z, YeV= g.,, we have

(5-10) (ad(Γ)L,y= -adOKD)!,.,

for Γ e ϊ by (SGL 4) for (g = Σ 9,.> ι°) T h e n w e h a v e

τ([X +T+ p(Y), Z+S+ P(W)]) = τ{([X, S) + [T, Z])

+ ([T, S] + [X, p(W)] + [p(Y), Z]) + ([p(Y), S] + [T, P(W)])}

= ([X, S] + [T, Z], ad ([T, S])\^ + ad ([X,

+ ad (MY), ZJ)\t_it [Y, ̂ (S)] + [p(D, W])
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= (ad (T)UZ) - ad(S)L,(X), [adίDI^, a d ( S ) U

- (1/2)(L(X, WO - L(Z, Y)), (ad (S)IJY - (ad (T)\tJ'W)

= [(X, ad (D|,_ t, Y), (Z, ad (S)|β_α, W)]

2* + p(Y», r(Z + S

by (5.1), (5.10), and thus r is a Lie algebra homomorphism. Since τ(Qμ)

= g£ for μ = 0, + 1 , T is an SGLA-isomorphism. Moreover we have

(r o p χ χ + Γ + ^(Γ)) = t(Y + p(T) + p{X)) = (Y, ad OKΓ))!..,, X)

= (7, - ( a d (Dl,^)', X) = p'(X, ad (T)|G_i; Y) = pΌτ(X+T+ P(Y))

for X, Ye g.j, Γ e ϊ by (5.2), (5.10), and thus r o ^ = p' o τ . Let Γ, S e p Π g0.

and put T = Σ i IT*, /o(Z,)] + [Z4, ̂ (Yj)]. Since ad {U)\f, Ue ϊ, are skew sym-

metric for < >„, we have

(T, syf = Σ

, [S, y j - P([S, y

Note that ad ( Γ ) | S i = (1/2) Σ i U~ Yι, Zd + UZt, - Yd- Then we have

(τ(X +T- p(X)), τ(Y+S- p(Y))}»,

= <(Z, ad ( Γ ) | 8 i , -X), (Y, ad (S)|,_ i( - Y))p,

= <X, Y> - Σ <ad (S)\,JYd, Zt) = <Z, Y> + <Γ, S>p

= <X+T-p(X), Y+S-p(Y))f

for Z, Yeg_1; T, Se\»C\Q0. Hence (a = Σ β ^ ι°. < >λ (fl' = Σ β ί . P%
< )„/) are equivalent to each other.

(2) Let (V, { }, < », (V, { }', < >0 be OJTS's and (g = Σ 8,, P,

< >p), (9' = Σflί. ί»', < >v) the OSGLA's associated with (V, { }, < »,

(V, { γ, < >') respectively. Assume that (V, { } < », (V, { }', < >')

are equivalent to each other, i.e., there exists a linear isomorphism g of

V onto V such that fe(X), £(Y), g(Z)}' = g{X, Y, Z}, (g(X), g(Y)y = (X,

Y> for X, Y, Ze V. Note that

(5.11) L'(g(X),g(Y)) = g

for X, Ye V, FeL. Define a linear isomorphism τg of g onto g' by τg(X,

F, Y) = (g(X),goFog-\ g(Y)) for (X, F, Y) e g. Then we have
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τg([(X, F, Y)> (z> G, W)]) = (g(F(Z) - G(X)), go([F, G] - (1/2)L(Z, W)

, Y))°g-\

,g(W))

, (g(Z),goGog-\

= [τg(X, F, Y), τg(Z, G, W)]

for (X, F, Y), (Z, G, W) e g, and thus τg is a Lie algebra isomorphism.

Since r̂ g,,) = %'μ for μ = 0, ±1, τg is an SGLA-isomorphism. Moreover

we have

{τgoP){X, F, Y) = τg(Y, -F\ X) = (g(Y), -goFΌg-\g{X))

= (g(Y), -(goF°g-J,g{X)) = PΌτg(X, F, Y)

for (X, F, Y) e g. Then it is straightforwardly proved by (5.11) that τg is
an OSGLA-isomorphism of g onto g'. Note that 2goG°g~1 = ΣiLigiUi),
g(Vd) + L{g(VΪ,g{U)) for 2G = ΣMUt, Vd + L(V(, t/^eg. Π p by (5.11).
Then we have

(τg(X,F,-X),τg(Y,G,-Y)}f,

= <(g(X),g°Fog-\ -g(X)),(g(Y),goGog-\ -g(Y))\,

Σ< <F(Vλ vty = <(z, F, -x), (Y, G, -

for (X, F, -X), (Y,G,-Y)e p. Hence OSGLA's (g = £ e,, /», < >,), (g' =
Σ βί> /°'> < )f) a r e equivalent to each other.

Conversely, assume that OSGLA's (g = Σ g,, p, < >p), (g' = Σ 8ί» /»
< }„/) are equivalent to each other, i.e., there exists an SGLA-isomorphism
τ of (g - Σ 9,, pθ onto (g' = Σ C p') such that <τ{A), τ(B)}p, = (A, B}p

for A, Be p. Define a linear isomorphism g, of V = g_i onto V = gl,
by g£X) = τ(X) f o r I e V = g_,. Then we have

), gT(Y), g£Z)Y = -2[[g,(X), p'(gτ(Y))], gτ(Z)]

= -2[[r(X), τ(p(F))], r(Z)] = r(-2[[Z, p(Y)], Z]) = gr{X, Y, Z}

and

, r(Y) - , / ( %

, τ(Y- p(Y))>p, = (X- p(X), Y - p(Y))v = (X, Y>
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for X, Y, Ze V. Hence OJTS's (V, { }, < », (V, { }', < >') are equi-
valent to each other.

(3) Note that Tr L(X, Y) = Tr L(Y, X)1 = Tr L(Y, X) for X, YeV.
Then the first identity is proved in the same way as in Koecher [8], II,
δ 4.

Now we show the second identity. Since (0, F, 0) = Σt [(Ut, 0, Ut),
(Vt,0,-V$, we have

B,((0, F, 0), (0, G, 0)) = -Σt Bt((Vt, 0, - V,), [(Uit 0, Ud, (0, G, 0)])

= Σ i A((K, 0, - VΛ (G(^), 0, -Gίί/,))) = 2Σiβ(G(Ud, Vd

and thus

, F, -X), (Y,G,- y» = B,((0, ί1, 0), (0, G, 0)) + 2β(X, Y)

ΐor(X,F,-X), (Y,G,-Y)ep.
(4) Assume that (V, { }) is non-degenerate and that BS((X, F, Y),

(Z,\G, W)) = 0 for (X, F, Y) e g. Putting F = 0, X = 0 (resp. F = 0, Y = 0),
we have /3(F, Z) = 0 for Ye V (resp. /9(Z, W) = 0 for Z e V) by (3). These
imply that Z = IV = 0. Note that (0, L(A, B), 0) = -2[(A, 0, 0), (0, 0, B)]
for'A, B e V. Then we have

0 = B,((0, G, 0), (0, L(A, B), 0)) = -2B9((0, G, 0), [(A, 0, 0), (0, 0, B)])

= 2B,([(Λ, 0, 0), (0, G, 0)], (0, 0, B)) = -2B,((G(Λ), 0, 0), (0, 0, B))

= 2β(G(A), B)

by (3). This implies that G = 0. Hence g is semi-simple.
Conversely, assume that (V, { }) is degenerate, i.e., there exists a

nonzero vector Ze V such that β(Z, Y) = 0 for Fe V. Then we have
B,((Z, 0, 0), (X, F, Y)) = -β(Z, Y) = 0 for (X, F, Y) e g by (3). This implies
that g is not semi-simple.

The claim (5) is obvious by (3). q.e.d.

A finite dimensional algebra A over if is called a Jordan algebra
(abbreviated as JA) if the following two conditions are satisfied:

(Jl) XY=YX>

(J2) X2-(X-Y) = X-(X2-Y)

for X, Ye A. Define linear endomorphisms Tx, XeA, of A by TX(Y) =
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X Y for Ye A. Put VA = A and define a V^-valued trilinear form { }A

on VA by

(5.12) {X, y, z}^ = (x. y) z + x (y Z) - γ.(χ.z)

for X, Y, Ze VA. Then the object (VA, { }A) is a JTS (cf. Satake [16]).

This (VA, { }A) is called the JTS coming from a JA A. If A has the unity

E, we can recover the Jordan product by X Y = {X, Y9 E}A = {X, E, Y}A

= {E, X, Y}A. Denote by £f(A) the set of non-degenerate symmetric bilin-

ear forms < ) on A such that Tx, XeA, are symmetric for < ). An

object (A, ( » is called an orthogonal Jordan algebra (abbreviated as

OJA) for a JA A and a form < > 6 5%A). Note that Sf(A) c ST(VA, { }J.

In fact, let < > e &{A). Since L^X, Y) = TX.F + [Γ*, Tγ] by (5.12), we

have

(LA(X, Y)Z, W) = <Γx.r(Z), W> + <[ΓZ, 2V](Z), W>

for X, y, Z, We A = VA, and thus LA(X, Y)< = LA(Y, X). This implies that

< > e<y(VA, { }A). We call this (VA, { }A, < » the OJTS coming from

an OJA (A, { )). Moreover assume that A has the unity E. Then S?(A)

= Sf(VΛ, { }A). In fact, let < }eSr(VΛ9{ }J. Since TE = iάA9 we have

(τx(Z), wy = <crx.s + [rx, ΓJXZ), ^> = (LA(x, E)Z, wy

for X, Z,

Now it is said that two OJA's (A, < )), (A', < )') are equivalent to

each other if there exists an algebra isomorphism g of A onto A7 such

that <£(X),£(y)y = <X, y> for X, ye A. If two OJA's are equivalent

to each other, the OJTS's coming from them are equivalent to each other.

But the converse is not necessarily true.

Let (VA, { }A, < » be the OJTS coming from an OJA (A, < » with

unity E, and (qA = 2] (βΛ» 9^ < >w) the OSGLA associated with (VA, { }A,

< ». (For simplicity, we call this (&A - Σ (flΛ, ^ , < > J the OSGLA

coming from (A, < ».) Put J = (E, 0, E) e ϊA and JPA = ad (J) | p .̂

THEOREM 5.5. (1) Let (A, < » 6e an OJA with unity E and (QA =

Σ (βΛ» î > < > J ί / ι e OSGLA coming from (A, < ». Then (qA = Σ (8 J,,

P̂ ? ̂ > ( )PJ ι"s always an effective HSGLA such that LA a id^.

(2) Lei (A, < », (A\ < >0 6β OJA's with unities E, E\ and ($A =
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Σ (flΛ> PA, JpΛ, < > J , (^' = Σ (a*'),, P̂ > ^ < >PΛ) t h e HSGLA's coming

from (A, < », (A', < >') respectively. Then (A, < », (A', < >') are equi-

valent to each other if and only if (QΛ = Σ (βΛ> PA, J9A, < }PA), (QA> =

Σ (8A0A«> i°̂ > c/̂ o <( )v) α r e equivalent to each other.

Proof. (1) Note that Tx.γ are symmetric and [!ΓX, Tγ] are skew sym-

metric in identities: LA(X, Y) = TZ.F + [Tz, TV], X, Ye A. Then we have

Γ(flJo npA = {(0, r z . F , 0); X, Ye A} = {(0, Tz, 0); Xe A} ,

l(βΛ H i , - (0, [TZ9 Tr], 0); X, 7 e A}

since A has the unity E. Now we have

JPA((X, TV, -X)) = [(£, 0, E), (X, ΓFf -X)]

= (-TAE), (V2){L(E, X) + L(X, E)}, ΓF(E)) = ( - Y, TZ9 Y)

for (X, Tγ, -X)epA and thus ( J J 2 = -idP j l. Since

[(E, 0, E)9 (X, [TY, Tz], X)]

S, X) - L(X, E)}, [ΓF,

= (0, 0, 0) = 0 ,

/ = (E, 0, E) is contained in the center of ϊA and thus ad (U) \ pA © J ^ =

J ί A o ad (tf) I pA for U e ΪA. Hence (qA = Σ (flΛ» ^ ^ < > J i s a n HSGLA.

Since LA(E, E) = iάA, we have id^ e LA. We show that (qA9 ρA) is effec-

tive. Let (X, F, X) e ϊA and assume that [(X, F, X), (Y, G, - Y)] - 0 for (y,

G, - y) e pA. Putting Y = 0, G - id^, we have (X, 0, - X ) = 0 and thus

X = 0. Moreover, putting G = 0, we have F(Y) = 0 for YeA=VA and

thus F = 0. Hence (QA9 ρA) is effective.

(2) Assume that (A, < )), (A'9 < )0 are equivalent to each other,

i.e., there exists an algebra isomorphism a of A onto Ar such that (a(X)9

a(Y)y = <X, Y> for X, Ye A. Note that a(JE) = ίJ7. Define a linear iso-

morphism ga of V^ onto V^ by ga(X) - or(X) for XeVA = A. Then (y*,

{ }4, < » is equivalent to (VA,, { }Afi < >0 by ga. Hence, by Theorem

5.4, (2), (qA = Σ (qA)μ, pA, < > J is equivalent to (g^ - Σ (β^)^, ^ ' , < >PJ

by τga. Since τ^α(£, 0, E) = (E', 0, £ 0 , we have

*,. ° ^ = **. ° ^ ((E, 0, E))\PA = ad ((E', 0, £ ' ) ) L ° r Λ = J9A. o τga .

Hence HSGLA's (qA = Σ (flΛ» ^ ^» < >PJ» (fl̂ ' = Σ (βA, ^'» ^ » < >^)
are equivalent to each other.
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Conversely, assume that (qA = 2 (βΛ» PA, J9A> < >J> (QA> = Σ (βA>

^'> ^4'> ( )^) a r e equivalent to each other, i.e., there exists an SGLA-

isomorphism τ of (g^, ρA) onto (g^, pA,) such t h a t τoJPA = JPA, o τ, (τ(A)> τ(B)}PA,

= (A, B}PA for A, BepA. Since τ is a Lie algebra isomorphism, we have

ad ((£', 0, £'))oτ\PA = road ((£, 0, E))\PA = ad (r(£J, 0, E))or|w .

Note that τ(ίA) = ί̂ , τ(pA) = pA,. Since (g^, pAi) is effective, we have

(5.14) τ((E, 0, £)) = (E\ 0, SO .

Now, by Theorem 5.4, (2), (V^, { }A, < » is equivalent to (VA,, { }r,

{ )0 by gτ. Then gτ(E) — E' by (5.14). Define a linear isomorphism a

of A onto Ar by a(X) = g£X) for l e A = VA. Then we have

* ( * . Y) - α{x, y, £}^ = ft{z, y, E}A =

for X, Ye A. Hence a is an algebra isomorphism. This implies that (A,

< )), (A7, < )0 are equivalent to each other. q.e.d.

Remark 5.6. The proof for the effectivity of (gΛ, ^oj depends only on

the fact that L^ B iάA. Hence the OSGLA (g = Σ 8A«> i°> < >*») associated

with an OJTS (V, { }, < » is effective if L 3 idF.

Let (g = Σ>qμ9p, < >,) be the OSGLA associated with an OJTStF,

{ }, < ». Assume that L 3 idF. Put v = (0, —id, 0) e p and define an invo-

lutive automorphism θ of the complexification of g by θ = exp ad (TΓV — lv).

Then we have Θ(X, F,Y) = (-X,F,- Y) for (X, F, Y) e g. Hence θ leaves

g, ϊ, JD invariant. Set

ϊ0 = ϊ n g0 - {(0, F, 0); Fe L, F> + F = 0}

m = ϊ Π (9-i θ βi) = {(*, 0, X); X e V}.

Then ϊ0, m are eigen spaces of eigen values 1, —1 of the effective SLA

(ϊ, θ) respectively.

Let K = Ad, (ί) = {exp ad (ϊ)|p}gen c GL (p) and set

K0 = {ke K; k(v) = »}.

Then Ko is a closed subgroup of K, Since (g, p) is effective by Remark

5.6, the Lie algebras of K, Ko are isomorphic to ϊ, ϊ0 respectively. Note

that ΘKΘ-1 = K and that the Lie algebra of Kθ = {ke K; θkθ~ι = }̂ is iso-

morphic to ί0 by the effectivity of (g, p). Since
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kθk~ι = exp ad (π^/ — lk(v)) — exp ad (π*J~—\v) = θ

for k e Ko, we have Ko c Kθ. Hence the pair(if, Ko) is a symmetric pair.

Let K(v) be the iί-orbit space of JΛ Then if(i>) is diffeomorphic to

the homogeneous space K/Ko. The tangent space TχK(v)) is identified

with the subspace [m, i>] — {(X, 0, —X)}: Xe V}. Note that the decomposi-

tion p = {(X, 0, -X); Xe V} ® {(0, F, 0); F e L, F< = F} is orthogonal for

< >p by (5.9). Since K acts isometrically for < \ , the orbit space K(v),

with the metric induced from < )p, is a pseudo-riemannian symmetric

space.

THEOREM 5.7. (1) Let (g = Σ Qμ, p, < \ ) be the OSGLA associated

with an OJTS(V, { }, < ». Assume that L9id F . Then the orbit space

K(v) is a complete parallel submanifold of a pseudo-Euclidean space (p,

< >,)•

(2) Let (QA = Σi (δ^)^ PA, J*A> < )PA)
 be t h e HSGLA coming from an

OJA (A, < ». Then LA B iάA and the orbit space K(v) is a complete totally

real parallel submanifold of a pseudo-Hermitian space (pA, JPA, < )PA).

Moreover K(v) is left invariant by the S^actίon: exp tJPA, teR.

Proof. (1) We show that K(v) C (p, < }p) is parallel. Denote by σ

the second fundamental form of K(v). Since the inclusion K(ι>) c=—> (p,

< >p) is equivariant, it is sufficient to see our claim at v e K(v). Identify

the tangent space To(K/K0) at o = K with the subspace m. Then the deri-

vative F*σ of σ at v is given by

(F*σ)(A, B, C) - {ad (A) ad (B) ad (C)ι>},of]p

for A, B, Cem, where {*}gonp denotes the g0 Π p-component of * for the

decomposition p = g0 Γl P Θ (β_i Θ 8i) Π P (See Ferus [5], Lemma 1 for the

proof). Let A = (X,0,X), B - (Y, 0, Y), C = (Z, 0, Z) for X, Y, ZeV.
Then we have

ad (A) ad (B) ad (C)v = ad (A) ad (B) (Z, 0, - Z )

= ad (A) (0, (1/2){L( Y, Z) + L(Z, Y)}, 0)

, Z) + L(Z, Y)}X, 0, (1/2){L(Y, Z) + L(Z} Y)}X)

and thus (F*σ) (A, B, C) = 0 for Λ, β, C e m. This implies that K{v) is a

parallel submanifold.

(2) We show that K(v) ^ ^ (pΛ, JPA9 < > J is totally real. Since the

inclusion is equivariant, it is sufficient to see our claim at v e i^(v). Note
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that TXK(v)) = {(X, 0, -X); Xe A}, Nv(K{v)) = {(0, TX9 0); Xe A}. Then we

have JPA(X, 0, -X) = [(£, 0, E), (X, 0, -X)] = (0, T x, 0) e #,(£(»)) for Xe A

= VA. This implies that K(v) is totally real in (pA9 JPA, < ><J.

The other claims are obvious. q.e.d.

Remark 5.8. Let Mr be an r-dimensional complete totally real parallel

submanifold of Mr(c), c Φ 0, and Mr+1 C iV2r+1(c/4) c £ r + 1 the complete

inverse of M\ Denote by σ the second fundamental form of Mr+ί C Er+ί.

Fix a point peM and put A = TP(M). Define a product on A by X- Y

= £<J(X, Y) for X, Ye A. Let < ) be the restriction of the pseudo-rieman-

nian metric < ) E into A = TP(M). Then (A, ( » is an OJA. The proof

will be given in the second series of this paper.
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