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Abstract

We investigate two mean–variance optimization problems for a single cohort of workers
in an accumulation phase of a defined benefit pension scheme. Since the mortality
intensity evolves as a general Markov diffusion process, the liability is random. The
fund manager aims to cover this uncertain liability via controlling the asset allocation
strategy and the contribution rate. In order to have a more realistic model, we study
the case when the risk aversion depends dynamically on current wealth. By solving
an extended Hamilton–Jacobi–Bellman system, we obtain analytical solutions for the
equilibrium strategies and value function which depend on both current wealth and
mortality intensity. Moreover, results for the constant risk aversion are presented as
special cases of our models.
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1. Introduction

The optimal management of dynamic pension schemes is becoming increasingly
important since pension funds currently play an influential role in financial markets
for their high capitalization, and participants are starting to pay more attention to the
security of promised benefits.

There are two major types of pension funds; defined contribution (DC) pension
plans and defined benefit (DB) pension plans. In a DC scheme contributions are fixed,
and benefits depend on the returns of the fund portfolio, so the participants bear the
financial risk. In a DB scheme benefits are fixed in advance by the sponsor, and
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contributions are set in order to maintain the fund in balance. Future benefits due to
the participants are, thus, a liability for the sponsor who bears the financial risk.

Our aim in this paper is to analyse a DB pension scheme which is a common
model in the employment system. DB pension funds have been extensively studied
in the literature. They have been generally modelled as linear quadratic (LQ) optimal
control problems, and the manager’s objectives are usually related to the minimization
of the risk of solvency and contribution. See, for instance, the work of Cairns [3],
Josa-Fombellida and Rincón-Zapatero [9–11], Ngwira and Gerrard [15] and
Delong et al. [4].

The mean–variance (MV) approach proposed by Markowitz [14] is well known
as the foundation of modern finance theory and a vast number of papers have been
published on this topic. Most of them deal with the single-period case, since the MV
criterion in the multiperiod framework lacks the iterated expectation property, which
results in inconsistency in MV problems in the sense that the Bellman optimality
principle does not hold, and consequently the traditional dynamic programming
approach cannot be directly applied.

In the literature, there are two basic ways of handling time-inconsistent problems.
One is to find the pre-committed strategies, where “optimal” is interpreted as “optimal
from the point of view of the initial time”. In the context of MV portfolio choice, the
traditional objective can be described as minimizing

J0(0, x, π) =
γ

2
Var0,x[Xπ(T )] − E0,x[Xπ(T )]

over all admissible policies, where γ is a pre-specified risk aversion coefficient.
The term “pre-commitment” involves the target given implicitly by considering
the variance as the quadratic deviation from the target E0,x[Xπ(T )], that is, the
manager pre-commits to the target determined at time 0 but does not update the
target at subsequent dates. Li and Ng [12] and Zhou and Li [20] developed an
embedding technique to transform the original time-inconsistent problem into a
tractable stochastic LQ problem in discrete and continuous time settings, respectively.
In the pension fund literature, similar problems are investigated by Delong et al. [4]
and Josa-Fombellida and Rincón-Zapatero [10]. Note that all these works derived only
pre-committed strategies.

Another possibility for dealing with time-inconsistent problems is to study them
within a game-theoretic framework and seek the corresponding time-consistent
strategy (subgame perfect Nash equilibrium point), which means that the optimal
strategy derived at time t will agree with that derived at time t + ∆t. Strotz [17] first
formally treated a deterministic Ramsay problem which was time inconsistent using
the game-theoretic approach. Björk and Murgoci [1] considered a fairly general class
of time-inconsistent objective functions in a Markovian setting, derived an extended
Hamilton–Jacobi–Bellman (HJB) equation and provided a verification theorem. Björk
et al. [2] further studied the time-consistent strategy for a continuous-time MV
portfolio problem where the risk aversion depends dynamically on current wealth.
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In addition, Hu et al. [7] investigated an equilibrium for a general time-inconsistent
stochastic LQ control problem within the class of open-loop controls. Zeng and Li [18]
explored time-consistent strategies for optimal investment and reinsurance problems
under an MV criterion in a Black–Scholes market. Zeng et al. [19] extended the model
to incorporate jumps, and Li and Li [13] focused on the case with state-dependent risk
aversion.

It seems very difficult to require investors not to deviate from the optimal strategy
chosen at the initial time during the entire investment horizon. A reasonable investor
sitting at time t would consider starting from t + ∆t, and would follow the policy
that would be optimal sitting at time t + ∆t. Therefore, in our paper, we take the
time-inconsistency seriously by updating the target to Et,x,λ[Xπ(T ) − Da(λ(T ))] and
considering a state-dependent risk aversion. More explicitly, we consider an objective
function of the form

J(t, x, λ, π) = 1
2Vart,x,λ[Xπ(T ) − Da(λ(T ))] − (µ1x + µ2)Et,x,λ[Xπ(T ) − Da(λ(T ))],

where Da(λ(T )) is the liability of the fund and µ1x + µ2 represents the state-dependent
risk aversion.

To our knowledge, little work has been done in the pension fund literature on time-
consistent strategies for portfolio optimization problems, except for the work of He
and Liang [5] who studied the time-consistent investment strategy for a DC pension
plan. In this paper, we investigate the optimal time-consistent investment strategy and
supplementary contribution rate for a DB pension scheme under the MV criterion. The
evolution of the mortality intensity follows a general Markov diffusion process. We
solve two problems. The supplementary contribution rate in the first problem is set by
the spread method of the fund amortization, so that the control process depends only
on the investment strategy. In the second problem, the objective is to determine the
contribution rate and the investment strategy, minimizing both the contribution and the
solvency risk. Delong et al. [4] considered a similar model. However, they managed to
obtain the precommitted strategies for the optimization problems.

In this paper, we also study a state-dependent risk aversion, where the risk
aversion dynamically depends on current wealth. For a constant risk aversion,
the optimal amount invested in the risky asset is independent of current wealth,
which is economically unreasonable. We formulate our problem in a game-theoretic
framework and provide analytical solutions where the equilibrium investment strategy
and supplementary contribution rate are dependent on both the current wealth and
the mortality intensity. Moreover, results for constant risk aversion are derived as
comparisons with the general cases.

The outline of this paper is as follows. We introduce the model and basic
assumptions in Section 2. In Section 3, we formulate the MV optimization problem
within a game-theoretic framework and provide a verification theorem. An explicit
time-consistent strategy and an equilibrium value function are derived. In Section 4, a
generalized MV problem with the contribution risk is also considered and analytical
results are obtained. Finally, we give numerical examples to illustrate our results in
Section 5.
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2. Model and assumptions

We consider a complete probability space (Ω,F , P) with a filtration F = (Ft)0≤t≤T ′

for a finite T ′ which denotes the maximum future lifetime of the fund’s participants.
The filtration F consists of two subfiltrations: we set F = FF ∨ FM , where FF

contains information about the financial market and FM contains information about
the mortality intensity. Suppose that the subfiltrations FF and FM are independent of
each other. Let E denote the expectation with respect to P.

2.1. The financial market In the financial market, there are one risk-free asset and
one risky asset. The price of the risk-free asset R(t) is modelled by dR(t) = rR(t) dt,
and the dynamics of the price of the risky asset follows a jump-diffusion process

dS (t) = S (t−)
[
µ dt + σ dW(t) +

∫
z>−1

zM̃(dt, dz)
]
,

where r, σ, µ are positive constants and µ > r. Here, {W(t)}0≤t≤T ′ is a standard FF-
adapted Brownian motion and M̃(dt, dz) = M(dt, dz) − ν(dz) dt is an FF-compensated
Poisson martingale measure, where M is a Poisson random measure, independent of
W, with the intensity measure ν satisfying

∫
R

(z2 ∧ 1)ν(dz) < ∞ and
∫

z≥1 z4ν(dz) < ∞,
ensuring that

sup
t∈[0,T ′ ]

E
[∣∣∣∣∣∫ t

0

∫
z>−1

zM̃(dt, dz)
∣∣∣∣∣4] <∞.

2.2. The pension model Denote by λ(t) the level of the mortality intensity of the
fund participants, t years after they enter the plan. This evolves as a general Markov
diffusion process given by

dλ(t) = θ(t, λ(t)) dt + η(t, λ(t)) dW(t), (2.1)

where W(t) is an FM-adapted BM independent of W. Assume that the coefficients fulfil
the following regularity conditions to ensure the existence of a strictly positive solution
to (2.1).

(A1) The functions θ : [0, T ′] × (0,∞)→ (0,∞) and η : [0, T ′] × (0,∞)→ (0,∞) are
continuous, locally Lipschitz continuous in λ and uniformly continuous in t.

(A2) There exists a sequence (Dn)n∈N of bounded domains with closure Dn ⊆ (0,∞),
and

⋃
n≥1 Dn = (0,∞), such that θ(t, λ) and η(t, λ) are uniformly Lipschitz

continuous on [0,T ′] × Dn.
(A3) For all (t, λ) ∈ [0,T ′] × (0,∞), P({s ∈ [t,T ′] | λ(s) ∈ (0,∞) and λ(t) = λ}) = 1.

In this paper, we analyse a DB pension fund during the accumulation phase [0, T ],
where T < T ′ denotes the retirement time of all participants. Then the liability of the
plan, also known as the expected discounted present value of future pension benefits to
the cohort of the participants conditioned on the given level of the mortality intensity
at time T , is equal to

Da(λ) = DET,λ

[∫ T ′

T
e−r(s−T )e−

∫ s
T λ(u) du ds

]
, (2.2)
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where D is the promised pension benefit, defined in advance, and the residual
probability of payments after time T ′ is set to zero.

Let X(t) be the value of the accumulated fund at time t, AL(t) the actuarial liability,
and C(t) the contribution rate which funds the liability and consists of two elements:
the normal cost rate NC(t) and the supplementary cost rate SC(t) amortizing the
unfunded actuarial liability, which is defined as UAL(t) = AL(t) − X(t−). Then X(t)
satisfies the stochastic differential equation (SDE)

dXπ(t) = π(t−)
(
µ dt + σ dW(t) +

∫
z>−1

zM̃(dt, dz)
)

+ (Xπ(t) − π(t))r dt + C(t) dt,

where π(t) is the amount invested in the risky asset.
Denote by M(t) a distribution function on [0, T ], which represents the percentage

of the actuarial value of the future benefits (2.2) accumulated during the first t years.
We assume that M : [0, T ]→ [0, 1] is absolutely continuous with respect to Lebesgue
measure, and its density function m(t) is Lipschitz continuous on [0, T ]. The actuarial
liability and the normal cost can be defined as in the paper by Delong et al. [4]:

AL(t, λ) = e−ρ(T−t)M(t)Et,λ[Da(λ(T ))], 0 ≤ t ≤ T, (2.3)
NC(t, λ) = e−ρ(T−t)m(t)Et,λ[Da(λ(T ))], 0 ≤ t ≤ T, (2.4)

where ρ is the fund’s valuation rate. Moreover, we investigate two MV optimization
problems. In the first one, the supplementary contribution rate is set as

SC(t, λ) = κ(AL(t, λ) − Xπ(t−)), (2.5)

where κ is some predefined constant. The value of the fund process (Xπ(t), 0 ≤
t ≤ T ) depends only on the investment strategy π. In the second one, we add the
supplementary contribution rate into our optimization problem and minimize the MV
objective along with the expected value of squares of future supplementary costs.

3. Mean–variance optimization problem

In this section, we consider the optimal investment strategy for a DB pension
scheme where the supplementary contribution rate is predetermined as in (2.5). The
manager aims to manage the fund in order to cover the liability Da(λ(T )) at the
retirement time T . In this case, the dynamics of the fund process Xπ(t) can be given by

dXπ(t) = [π(t)(µ − r) + (r − κ)Xπ(t) + NC(t, λ) + κAL(t, λ)] dt

+σπ(t) dW(t) + π(t−)
∫

z>−1
zM̃(dt, dz). (3.1)

Moreover, an investment strategy π(t) is admissible if it satisfies the following
conditions:

(i) For all t ∈ [0,T ], π(t) is a predictable mapping with respect to Ft.
(ii)

∫ T
0 π2(t) dt <∞ almost everywhere.
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(iii) The stochastic differential equation (3.1) has a unique solution Xπ on [0,T ].

The set of all admissible strategies is denoted byA.
In the literature, MV problems are usually transformed into LQ control problems,

which can be solved by standard methods. Contrary to the existing literature in this
field, our paper aims to obtain the optimal time-consistent policies instead of the pre-
committed policies.

Our main goal is to formalize the MV optimization problem without pre-
commitment, and consider a state-dependent risk aversion. Thus, the objective
function is of the form

J(t, x, λ, π) = 1
2Vart,x,λ[Xπ(T ) − Da(λ(T ))] − (µ1x + µ2)Et,x,λ[Xπ(T ) − Da(λ(T ))],

(3.2)
where µ1, µ2 are constants and the term µ1x + µ2 represents the state-dependent risk
aversion. This problem can be viewed as a dynamic MV problem, we analyse it in a
game-theoretic framework which is developed by Björk and Murgoci [1].

Definition 3.1. An admissible control π̂ is an equilibrium control law if for any given
π ∈ R, h > 0 and (t, x, λ) ∈ [0,T ] × R × R+,

lim sup
h→0

J(t, x, λ, π̂) − J(t, x, λ, πh)
h

≤ 0,

where the control law

πh(s, y, λ) =

{
π for t ≤ s < t + h, y ∈ R, λ ∈ R+,
π̂(s, y, λ) for t + h ≤ s ≤ T, y ∈ R, λ ∈ R+.

The corresponding equilibrium value function V is defined by

V(t, x, λ) = J(t, x, λ, π̂).

We will now provide a verification theorem for the MV problem (3.2) without pre-
commitment. To generalize this theorem, we consider a general optimization problem
of the form

J(t, x, λ, π) = f (t, x, λ, yπ(t, x, λ), zπ(t, x, λ)),

where f is a function in C1,2,2,2,2([0, T ] × R4) (that is, f is continuous on [0; T ] × R4,
continuously differentiable with respect to the first variable, and has continuous
derivatives up to order 2 with other variables), and

yπ(t, x, λ) = Et,x,λ[Xπ(T ) − Da(λ(T ))],
zπ(t, x, λ) = Et,x,λ[(Xπ(T ) − Da(λ(T )))2].

In particular, if we set

f (t, x, λ, y, z) = 1
2 (z − y2) − (µ1x + µ2)y, (3.3)

then the problem reduces to our MV optimization problem without pre-commitment.
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Theorem 3.2 (Verification theorem). Suppose that there exist three real-valued
functions W(t, x, λ), G(t, x, λ), H(t, x, λ) ∈ C1,2,2([0, T ] × R × R+) satisfying the
following extended HJB system such that, for all (t, x, λ) ∈ [0,T ] × R × R+,

inf
π∈R
{AπW(t, x, λ) −Aπ f (t, x, λ,G,H) + fy(t, x, λ,G,H)AπG(t, x, λ)

+ fz(t, x, λ,G,H)AπH(t, x, λ)} = 0, (3.4)

W(T, x, λ) = f (T, x, λ,G,H),

Aπ̂G(t, x, λ) = 0, (3.5)

G(T, x, λ) = x − Da(λ),

Aπ̂H(t, x, λ) = 0, (3.6)

H(T, x, λ) = (x − Da(λ))2,

where

Aπφ(t, x, λ)

= φt + φx

[
(r − κ)x +

(
µ − r −

∫
z>−1

zν(dz)
)
π + NC(t, λ) + κAL(t, λ)

]
+ φλθ(t, λ)

+
1
2
φxxσ

2π2 +
1
2
φλλη

2(t, λ) +

∫
z>−1

[φ(t, x + πz, λ) − φ(t, x, λ)]ν(dz),

Aπ f (t, x, λ,G,H)

= ft + fx

[
(r − κ)x +

(
µ − r −

∫
z>−1

zν(dz)
)
π + NC(t, λ) + κAL(t, λ)

]
+ fλθ(t, λ)

+ fyAπG(t, x, λ) + fzAπH(t, x, λ) +
1
2

U1( f ,G,H)σ2π2

+
1
2

U2( f ,G,H)η2(t, λ)

+

∫
z>−1

[ f (t, x + πz, λ,G(t, x + πz, λ),H(t, x + πz, λ)) − f (t, x, λ,G,H)]ν(dz)

− fy

∫
z>−1

[G(t, x + πz, λ) −G(t, x, λ)]ν(dz)

− fz

∫
z>−1

[H(t, x + πz, λ) − H(t, x, λ)]ν(dz),

U1( f ,G,H) = fxx + 2 fxyGx + 2 fxzHx + 2 fyzHxGx + fyy(Gx)2 + fzz(Hx)2,

U2( f ,G,H) = fλλ + 2 fλyGλ + 2 fλzHλ + 2 fyzHλGλ + fyy(Gλ)2 + fzz(Hλ)2,

with f = f (t, x, λ,G,H),G = G(t, x, λ) and H = H(t, x, λ) for simplicity, and

π̂ = arg inf
π∈R
{AπW(t, x, λ) −Aπ f (t, x, λ,G,H) + fyAπG(t, x, λ) + fzAπH(t, x, λ)}.
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Then

V(t, x, λ) = W(t, x, λ)
G(t, x, λ) = Et,x,λ[Xπ̂(T ) − Da(λ(T ))],
H(t, x, λ) = Et,x,λ[(Xπ̂(T ) − Da(λ(T )))2]

and the equilibrium control law is given by π̂.

Proof. The proof is analogous to that of Theorem 4.1 by Björk and Murgoci [1]
(see Appendix). �

3.1. Solution to the optimization problem We derive the optimal time-consistent
investment strategy and the value function for problem (3.2). In this case, the function
f is given by (3.3), that is, f (t, x, λ,G,H) = 1

2 (H −G2) − (µ1x + µ2)G, hence,

fx = −µ1G, fxy = −µ1, fyy = −1,
ft = fxx = fxz = fyz = fzz = 0, fλ = fλλ = fλz = fλy = 0.

Thus,

U1( f ,G,H) = −2µ1Gx − (Gx)2, U2( f ,G,H) = −(Gλ)2.

According to Theorem 3.2, equation (3.4) can be rewritten as

inf
π∈R

[
Wt + (Wx + µ1G)

{
(r − κ)x +

(
µ − r −

∫
z>−1

zν(dz)
)
π + NC(t, λ) + κAL(t, λ)

}
+ Wλθ(t, λ) +

1
2
σ2π2{2µ1Gx + (Gx)2 + Wxx} +

1
2
η2(t, λ){Wλλ + (Gλ)2}

+

∫
z>−1

µ1πzG(t, x + πz, λ)ν(dz) +
1
2

∫
z>−1
{G(t, x + πz, λ) −G(t, x, λ)}2ν(dz)

+

∫
z>−1
{W(t, x + πz, λ) −W(t, x, λ)}ν(dz)

]
= 0. (3.7)

By the linear structure of the dynamics of Xπ(t) and the boundary conditions, it is
natural to guess that

W(t, x, λ) = A(t)x2 + B(t, λ)x + C(t, λ) (3.8)

with A(T ) = −µ1, B(T, λ) = −µ2 + µ1Da(λ),C(T, λ) = µ2Da(λ);

G(t, x, λ) = ā(t)x + b(t, λ)

with ā(T ) = 1, b(T, λ) = −Da(λ); and

H(t, x, λ) = q(t)x2 + l(t, λ)x + d(t, λ)

with q(T ) = 1, l(T, λ) = −2Da(λ), d(T, λ) = (Da(λ))2.
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Substituting W(t, x, λ),G(t, x, λ) and their corresponding derivatives into (3.7) yields

inf
π∈R

[
At x2 + Bt x + Ct

+ {(2A(t) + µ1ā(t))x + B(t, λ) + µ1b(t, λ)}{(r − κ)x + NC(t, λ) + κAL(t, λ)}

+ (Bλx + Cλ)θ(t, λ) +
1
2
{2A(t) + 2µ1ā(t) + ā2(t)}

(
σ2 +

∫
z>−1

z2ν(dz)
)
π2

+
1
2
η2(t, λ)(Bλλx + Cλλ + b2

λ)

+ {(2A(t) + µ1ā(t))x + B(t, λ) + µ1b(t, λ)}(µ − r)π
]

= 0. (3.9)

Differentiating with respect to π and setting the derivative to zero, we obtain the value
of the equilibrium control law

π̂(t, x, λ) = −β̄
(2A(t) + µ1ā(t))x + B(t, λ) + µ1b(t, λ)

2A(t) + 2µ1ā(t) + ā2(t)
,

β̄ =
µ − r

σ2 +
∫

z>−1 z2ν(dz)
.

Instead of analysing the above equality directly, we make the assumption that

π̂(t, x, λ) = k1(t)x + k2(t, λ), (3.10)

where

k1(t) = −β̄
2A(t) + µ1ā(t)

2A(t) + 2µ1ā(t) + ā2(t)
, (3.11)

k2(t, λ) = −β̄
B(t, λ) + µ1b(t, λ)

2A(t) + 2µ1ā(t) + ā2(t)
, (3.12)

with k1(T ) = µ1β̄, k2(T, λ) = µ2β̄. Then, inserting (3.10) into (3.9), we obtain

At x2 + Bt x + Ct

+ [(2A(t) + µ1ā(t))x + B(t, λ) + µ1b(t, λ)][(r − κ)x + NC(t, λ) + κAL(t, λ)]
+ (Bλx + Cλ)θ(t, λ) + 1

2η
2(t, λ)(Bλλx + Cλλ + b2

λ)

+ 1
2 (µ − r)[(2A(t) + µ1ā(t))k1(t)x2 + (B(t, λ) + µ1b(t, λ))(2k1(t)x + k2(t, λ))] = 0.

Equating coefficients of x2, x and constant terms to zero, we get

At + {2A(t) + µ1ā(t)}(r − κ) + 1
2 (µ − r){2A(t) + µ1ā(t)}k1(t) = 0, (3.13)

Bt + {B(t, λ) + µ1b(t, λ)}(r − κ) + {2A(t) + µ1ā(t)}{NC(t, λ) + κAL(t, λ)}
+ Bλθ(t, λ) + 1

2 Bλλη2(t, λ) + (µ − r){B(t, λ) + µ1b(t, λ)}k1(t) = 0, (3.14)
Ct + {B(t, λ) + µ1b(t, λ)}{NC(t, λ) + κAL(t, λ)} + Cλθ(t, λ)

+ 1
2 (Cλλ + b2

λ)η
2(t, λ) + 1

2 (µ − r){B(t, λ) + µ1b(t, λ)}k2(t, λ) = 0. (3.15)
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Similarly, substituting G(t, x, λ) and (3.10) into (3.5) leads to

āt x + bt + ā(t)[(r − κ)x + NC(t, λ) + κAL(t, λ) + (µ − r)(k1(t)x + k2(t, λ))]
+ bλθ(t, λ) + 1

2 bλλη2(t, λ) = 0.

To ensure the above equality, we require

āt + ā(t)(r − κ) + ā(t)(µ − r)k1(t) = 0 (3.16)

and

bt + ā(t)(µ − r)k2(t, λ) + ā(t)[NC(t, λ) + κAL(t, λ)] + bλθ(t, λ) + 1
2 bλλη2(t, λ) = 0.

(3.17)

From (3.16) and the boundary condition ā(T ) = 1, we obtain

ā(t) = exp
[∫ T

t
{r − κ + (µ − r)k1(u)} du

]
. (3.18)

In addition, inserting H(t, x, λ) and (3.10) into (3.6) yields

qt x2 + lt x + dt + (2q(t)x + l(t, λ))[(r − κ)x + NC(t, λ) + κAL(t, λ) + (µ − r)(k1(t)x
+ k2(t, λ))] + (lλx + dλ)θ(t, λ) + q(t)β(k1(t)x + k2(t, λ))2

+ 1
2η

2(t, λ)(lλλx + dλλ) = 0,

where β = (µ − r)/β̄.
Combining the coefficients of x2, we get

qt + 2q(t)(r − κ) + 2q(t)(µ − r)k1(t) + q(t)βk2
1(t) = 0,

with the boundary condition q(T ) = 1. Hence

q(t) = exp
[∫ T

t
{2(r − κ) + 2(µ − r)k1(u) + βk2

1(u)}du
]
. (3.19)

On the other hand, from the fact that

W(t, x, λ) = 1
2 {H(t, x, λ) −G2(t, x, λ)} − (µ1x + µ2)G(t, x, λ)

= 1
2 {q(t) − 2µ1ā(t) − ā2(t)}x2 + 1

2 {l(t, λ) − 2ā(t)b(t, λ)

− 2µ1b(t, λ) − 2µ2ā(t)}x + 1
2 {d(t, λ) − b2(t, λ) − 2µ2b(t, λ)},

and the conjecture (3.8), we obtain

2A(t) = q(t) − 2µ1ā(t) − ā2(t). (3.20)

Using (3.11) and (3.18)–(3.20), we find the integral equation

k1(t) = −β̄
q(t) − µ1ā(t) − ā2(t)

q(t)

= −β̄
[
1 − exp

{
−

∫ T

t
βk2

1(u) du
}

− µ1 exp
{
−

∫ T

t
[r − κ + (µ − r)k1(u) + βk2

1(u)] du
}]
. (3.21)

https://doi.org/10.1017/S1446181114000212 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000212


76 X. Liang, L. Bai and J. Guo [11]

Next, we derive the expression for k2(t, λ). From (3.12) and (3.20), we get

B(t, λ) = −µ1b(t, λ) −
1
β̄

q(t)k2(t, λ).

The partial derivatives are

Bt = −µ1bt −
1
β̄

q(t)
∂k2(t, λ)
∂t

+
1
β̄

q(t)k2(t, λ)[2(r − κ) + 2(µ − r)k1(t) + βk2
1(t)],

Bλ = −µ1bλ −
1
β̄

q(t)
∂k2(t, λ)
∂λ

,

Bλλ = −µ1bλλ −
1
β̄

q(t)
∂2k2(t, λ)
∂λ2 .

Substituting these into (3.14), collecting the similar terms and using (3.17) yields

∂k2(t, λ)
∂t

+ θ(t, λ)
∂k2(t, λ)
∂λ

+
1
2
η2(t, λ)

∂2k2(t, λ)
∂λ2

− p(t)k2(t, λ) − β̄
[
1 − exp

{
−

∫ T

t
βk2

1(u) du
}]

[NC(t, λ) + κAL(t, λ)] = 0,

where

p(t) = r − κ + (µ − r)k1(t) + βk2
1(t)

+ µ1(µ − r)β̄ exp
{
−

∫ T

t
[r − κ + (µ − r)k1(u) + βk2

1(u)] du
}
.

From the boundary condition k2(T, λ) = µ2β̄, we can state the Feynman–Kac
representation for k2(t, λ) as follows:

k2(t, λ) = Et,λ

[
µ2β̄ exp

(
−

∫ T

t
p(u) du

)
−

∫ T

t
β̄ exp

(
−

∫ s

t
p(u) du

)
×

{
1 − exp

(
−

∫ T

s
βk2

1(u) du
)}
{NC(s, λ) + κAL(s, λ)} ds

]
.

Combining (2.3) and (2.4), and applying Fubini’s theorem, the Markov property of the
mortality intensity and the law of iterated expectations lead to

k2(t, λ) = µ2β̄ exp
(
−

∫ T

t
p(u) du

)
− Et,λ[Da(λ(T ))]

∫ T

t
β̄ exp

(
−

∫ s

t
p(u) du − ρ(T − s)

)
×

{
1 − exp

(
−

∫ T

s
βk2

1(u) du
)}
{m(s) + κM(s)} ds. (3.22)

Remark 3.3. Denote a(t, λ) , Et,λ[Da(λ(T ))]. Based on the Theorem 1 in Heath and
Schweizer [6], a(t, λ) on [0,T ′] × R+ satisfies the partial differential equation

∂a(t, λ)
∂t

+ θ(t, λ)
∂a(t, λ)
∂λ

+
1
2
η2(t, λ)

∂2a(t, λ)
∂λ2 = 0,
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with boundary condition
a(T, λ) = Da(λ). ^

We combine the above results in the following theorem.

Theorem 3.4. For the mean–variance problem (3.2), the equilibrium control is
expressed as

π̂(t, x, λ) = k1(t)x + k2(t, λ),

where k1(t) and k2(t, λ) are given by (3.21) and (3.22), respectively. Moreover,
the corresponding equilibrium value function is expressed as V(t, x, λ) = A(t)x2 +

B(t, λ)x + C(t, λ), where the functions A, B and C are given by the expressions
in (3.13)–(3.15), respectively.

Remark 3.5. From Björk et al. [2], the above integral equation satisfied by k1(t) admits
a unique solution. We can use the analogous recursive algorithm numerically for the
determination of k1(t). Construct a sequence k(i)

1 (t) ∈ C[0,T ] as follows:

k(0)
1 (t) ≡ 1,

k(n)
1 (t) = −β̄

[
1 − exp

{
−

∫ T

t
β(k(n−1)

1 (u))2 du
}

− µ1 exp
{
−

∫ T

t
(r − κ + (µ − r)k(n−1)

1 (u) + β(k(n−1)
1 (u))2) du

}]
,

n = 1, 2, . . . . This sequence converges to k1(t) in C[0,T ]. ^

3.2. Special case We consider the case where µ1 = 0, that is, the risk aversion
coefficient is constant.

By setting µ1 = 0, we see that k1(t) ≡ 0 is the root of the integral equation (3.21).
Simplifying the expression (3.22) for k2(t, λ), we get k2(t, λ) = µ2β̄e−(r−κ)(T−t). Hence,
the equilibrium control is given by

π̂(t, x, λ) = µ2β̄e−(r−κ)(T−t).

Additionally, from (3.13), (3.14) and (3.16) and their corresponding boundary
conditions, we obtain

A(t) ≡ 0,
ā(t) = e(r−κ)(T−t),

B(t, λ) = −µ2e(r−κ)(T−t).

Substituting the values of ā(t) and k2(t, λ) into (3.17), and by applying the Feynman–
Kac formula, we get

b(t, λ) = µ2(µ − r)(T − t)β̄ + Et,λ[Da(λ(T ))]
[∫ T

t
e(r−κ−ρ)(T−s){m(s) + κM(s)} ds − 1

]
.
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Moreover, integration by parts yields

b(t, λ) = µ2(µ − r)(T − t)β̄ + Et,λ[Da(λ(T ))]
[ r − ρ
κ + ρ − r

−
κ

κ + ρ − r
M(t)e(r−κ−ρ)(T−t)

−
r − ρ

κ + ρ − r

∫ T

t
e(r−κ−ρ)(T−s)m(s) ds

]
.

Similarly, from (3.15) we get

C(t, λ) = µ2Et,λ[Da(λ(T ))]
[
1 −

∫ T

t
e(r−κ−ρ)(T−s){m(s) + κM(s)} ds

]
+

1
2
Et,λ

[∫ T

t
b2
λ(s, λ)η2(s, λ) ds

]
−
µ2

2(µ − r)(T − t)β̄
2

=
1
2
Et,λ

[∫ T

t
b2
λ(s, λ)η2(s, λ) ds

]
− µ2b(t, λ) +

µ2
2(µ − r)(T − t)β̄

2
.

Hence,

V(t, x, λ) = −µ2e(r−κ)(T−t)x + C(t, λ),
G(t, x, λ) = e(r−κ)(T−t)x + b(t, λ),

and the variance is given by

Vart,x,λ[Xπ̂(T ) − Da(λ(T ))] = 2(V(t, x, λ) + µ2G(t, x, λ))

= Et,λ

[∫ T

t
b2
λ(s, λ)η2(s, λ) ds

]
+ µ2

2(µ − r)(T − t)β̄.

We observe that the optimal time-consistent investment strategy is independent of
the current wealth x and the current mortality intensity λ. Therefore, from an economic
point of view, the equilibrium solution for the constant risk aversion is economically
unreasonable, as stated by Björk et al. [2] and Li and Li [13].

4. Generalized mean–variance optimization problem
In this section, we solve a generalized problem which is to minimize the MV

objective of the terminal debt Xπ(T ) − Da(λ(T )) along with the contribution risk SC2

on the interval [0, T ]. Minimization of the contribution risk has been explored, for
example, in Josa-Fombellida and Rincón-Zapatero [9–11], Ngwira and Gerrard [15]
and Delong et al. [4]. Thus, we consider an optimization problem

J1(t, x, λ, π, SC) = Et,x,λ

[∫ T

t
SC2(u) du

]
+

1
2
Vart,x,λ[Xπ(T ) − Da(λ(T ))]

− (µ1x + µ2)Et,x,λ[Xπ(T ) − Da(λ(T ))]. (4.1)

In this case, the wealth process Xπ,SC(t) evolves as

dXπ,SC(t) = π(t−)
(
µ dt + σ dW(t) +

∫
z>−1

zM̃(dt, dz)
)

+ (Xπ,SC(t) − π(t))r dt

+ (NC(t, λ) + SC(t)) dt. (4.2)

Moreover, the admissible strategy Π = {π(t),SC(t)}0≤t≤T is defined as follows:
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(i) For all t ∈ [0,T ], π(t) and SC(t) are predictable mappings with respect to Ft.
(ii)

∫ T
0 (π2(t) + SC2(t)) dt <∞ almost everywhere.

(iii) The stochastic differential equation (4.2) has a unique solution XΠ on [0,T ].

The set of all admissible strategies is denoted by B.
As in the previous section, we define the equilibrium control law and

equilibrium value function similarly and provide a verification theorem including the
supplementary cost rate.

Definition 4.1. We say that an admissible control Π̂ is an equilibrium control law if
for any fixed real numbers π,SC, h > 0 and (t, x, λ) ∈ [0,T ] × R × R+,

lim sup
h→0

J1(t, x, λ, Π̂) − J1(t, x, λ,Πh)
h

≤ 0,

where the control law Πh is given by

Πh(s, y, λ) =

{
(π,SC) for t ≤ s < t + h, y ∈ R, λ ∈ R+,

Π̂(s, y, λ) for t + h ≤ s ≤ T, y ∈ R, λ ∈ R+.

The corresponding equilibrium value function, V1, is defined by

V1(t, x, λ) = J1(t, x, λ, Π̂).

Theorem 4.2. Suppose that there exist three real-valued functions W̃(t, x, λ),G∗(t, x, λ),
H∗(t, x, λ) ∈ C1,2,2([0, T ] × R × R+) satisfying the following extended HJB system: for
all (t, x, λ) ∈ [0,T ] × R × R+,

inf
(π,S C)∈R2

[
S C2 + W̃t + (W̃x + µ1G∗)

{
rx +

(
µ − r −

∫
z>−1

zν(dz)
)
π + NC(t, λ) + SC

}
+ W̃λθ(t, λ) +

1
2
σ2π2{2µ1G∗x + (G∗x)2 + W̃xx} +

1
2
η2(t, λ){W̃λλ + (G∗λ)

2}

+
1
2

∫
z>−1

[G∗(t, x + πz, λ) −G∗(t, x, λ)]2ν(dz)

+

∫
z>−1

µ1πzG∗(t, x + πz, λ)ν(dz)

+

∫
z>−1
{W̃(t, x + πz, λ) − W̃(t, x, λ)}ν(dz)

]
= 0, (4.3)

W̃(T, x, λ) = −(µ1x + µ2)(x − Da(λ)),

AΠ̂G∗(t, x, λ) = 0
G∗(T, x, λ) = x − Da(λ), (4.4)

AΠ̂H∗(t, x, λ) = 0,
H∗(T, x, λ) = (x − Da(λ))2, (4.5)
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where

AΠφ(t, x, λ) = φt + φx

[
rx +

(
µ − r −

∫
z>−1

zν(dz)
)
π + NC(t, λ) + SC

]
+ φλθ(t, λ)

+
1
2
φxxσ

2π2 +
1
2
φλλη

2(t, λ) +

∫
z>−1

[φ(t, x + πz, λ) − φ(t, x, λ)]ν(dz),

and

π̂ = arg inf
π∈R

{
(W̃x + µ1G∗)

(
µ − r −

∫
z>−1

zν(dz)
)
π +

1
2
σ2π2[2µ1G∗x + (G∗x)2 + W̃xx]

+

∫
z>−1

µ1πzG∗(t, x + πz, λ)ν(dz)

+
1
2

∫
z>−1

[G∗(t, x + πz, λ) −G∗(t, x, λ)]2ν(dz)

+

∫
z>−1

[W̃(t, x + πz, λ) − W̃(t, x, λ)]ν(dz)
}
, (4.6)

ŜC = arg inf
S C∈R
{SC2 + (W̃x + µ1G∗)SC}. (4.7)

Then V1(t, x, λ) = W̃(t, x, λ), G∗(t, x, λ) = Et,x,λ[XΠ̂(T ) − Da(λ(T ))] and H∗(t, x, λ) =

Et,x,λ[(XΠ̂(T ) − Da(λ(T )))2], and the equilibrium control law is given by Π̂.

Proof. The proof is similar to that of Theorem 3.2. �

4.1. Solution to the generalized optimization problem In this subsection, we
try to find the time-consistent strategies and the value function for the generalized
problem (4.1). Similarly to Section 3, we guess that

W̃(t, x, λ) = Ã(t)x2 + B̃(t, λ)x + C̃(t, λ) (4.8)

with Ã(T ) = −µ1, B̃(T, λ) = −µ2 + µ1Da(λ), C̃(T, λ) = µ2Da(λ);

G∗(t, x, λ) = ã(t)x + b̃(t, λ)

with ã(T ) = 1, b̃(T, λ) = −Da(λ); and H∗(t, x, λ) = q̃(t)x2 + l̃(t, λ)x + d̃(t, λ) with
q̃(T ) = 1, l̃(T, λ) = −2Da(λ), d̃(T, λ) = (Da(λ))2.

Substituting W̃(t, x, λ),G∗(t, x, λ) and their corresponding derivatives into (4.6)
and (4.7), we obtain the values of the equilibrium control law π̂ and SC as follows:

π̂(t, x, λ) = −β̄
(2Ã(t) + µ1ã(t))x + B̃(t, λ) + µ1b̃(t, λ)

2Ã(t) + 2µ1ã(t) + ã2(t)
,

ŜC(t, x, λ) = −
(2Ã(t) + µ1ã(t))x + B̃(t, λ) + µ1b̃(t, λ)

2
.

Instead of analysing the above equalities directly, we make the following assumptions:

π̂(t, x, λ) = k1(t)x + k2(t, λ), (4.9)
ŜC(t, x, λ) = c1(t)x + c2(t, λ), (4.10)
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where

k1(t) = −β̄
2Ã(t) + µ1ã(t)

2Ã(t) + 2µ1ã(t) + ã2(t)
, (4.11)

k2(t, λ) = −β̄
B̃(t, λ) + µ1b̃(t, λ)

2Ã(t) + 2µ1ã(t) + ã2(t)
, (4.12)

c1(t) = −
2Ã(t) + µ1ã(t)

2
, (4.13)

c2(t, λ) = −
B̃(t, λ) + µ1b̃(t, λ)

2
, (4.14)

with k1(T ) = µ1β̄, k2(T, λ) = µ2β̄, c1(T ) = µ1/2 and c2(T, λ) = µ2/2.
Then, by substitution of (4.8)–(4.10) into (4.3), we obtain

Ãt x2 + B̃t x + C̃t + [(2Ã(t) + µ1ã(t))x + B̃(t, λ) + µ1b̃(t, λ)][rx + NC(t, λ)]
+ (B̃λx + C̃λ)θ(t, λ) + 1

2η
2(t, λ)(B̃λλx + C̃λλ + b̃2

λ)

+ 1
2 (µ − r)[(2Ã(t) + µ1ã(t))k1(t)x2

+ (B̃(t, λ) + µ1b̃(t, λ))(2k1(t)x + k2(t, λ))] − [c1(t)x + c2(t, λ)]2 = 0.

Equating coefficients of x2, x and constant terms to zero, we get

Ãt − 2c1(t)r − (µ − r)k1(t)c1(t) − c2
1(t) = 0, (4.15)

B̃t + B̃λθ(t, λ) + 1
2 B̃λλη2(t, λ) − 2c1(t)NC(t, λ)

− 2[r + (µ − r)k1(t) + c1(t)]c2(t, λ) = 0, (4.16)
C̃t + C̃λθ(t, λ) + 1

2 (C̃λλ + b̃2
λ)η

2(t, λ)

− [2NC(t, λ) + (µ − r)k2(t, λ)]c2(t, λ) − c2
2(t, λ) = 0. (4.17)

Similarly, we plug G∗(t, x, λ), (4.9) and (4.10) into (4.4), thereby obtaining

ãt x + b̃t + ã(t)[rx + NC(t, λ) + c1(t)x + c2(t, λ) + (µ − r)(k1(t)x + k2(t, λ))]
+ b̃λθ(t, λ) + 1

2 b̃λλη2(t, λ) = 0.

To ensure the above equality, we require

ãt + ã(t)r + ã(t)(µ − r)k1(t) + ã(t)c1(t) = 0, (4.18)
b̃t + ã(t)[(µ − r)k2(t, λ) + NC(t, λ) + c2(t, λ)] + b̃λθ(t, λ)

+ 1
2 b̃λλη2(t, λ) = 0. (4.19)

From (4.18) and the boundary condition ã(T ) = 1, we obtain

ã(t) = exp
(∫ T

t
{r + (µ − r)k1(u) + c1(u)} du

)
. (4.20)
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Then, inserting H∗(t, x, λ), (4.9) and (4.10) into (4.5) yields
q̃t x2 + l̃t x + d̃t + (2q̃(t)x + l̃(t, λ))[rx + NC(t, λ)

+ c1(t)x + c2(t, λ) + (µ − r)(k1(t)x + k2(t, λ))] + (l̃λx + d̃λ)θ(t, λ)
+ βq̃(t)(k1(t)x + k2(t, λ))2 + 1

2η
2(t, λ)(l̃λλx + d̃λλ) = 0.

Collecting the coefficients of x2, we see that
q̃t + 2q̃(t)[r + (µ − r)k1(t) + c1(t)] + βq̃(t)k2

1(t) = 0

with the boundary condition q̃(T ) = 1. Hence, q̃(t) = exp(
∫ T

t ψ(u) du), where

ψ(u) = 2r + 2(µ − r)k1(u) + 2c1(u) + βk2
1(u).

On the other hand, the dynamics of the fund process Xπ̂,ŜC under the optimal strategy
satisfies the SDE
dXπ̂,ŜC

t = [rXπ̂,ŜC
t + (µ − r)(k1(t)Xπ̂,ŜC

t + k2(t, λ)) + NC(t, λ) + c1(t)Xπ̂,ŜC
t + c2(t, λ)] dt

+σ[k1(t)Xπ̂,ŜC
t + k2(t, λ)] dWt + [k1(t)Xπ̂,ŜC

t− + k2(t, λ)]
∫

z>−1
zM̃(dt, dz).

Therefore,

d(Xπ̂,ŜC
t )2 = 2[r + (µ − r)k1(t) + c1(t)](Xπ̂,ŜCt)2dt+2Xπ̂,ŜC

t [(µ−r)k2(t,λ)+NC(t,λ)

+ c2(t, λ)] dt + β[k1(t)Xπ̂,ŜC
t + k2(t, λ)]2dt + 2σXπ̂,ŜC

t [k1(t)Xπ̂,ŜC
t

+ k2(t, λ)] dWt + 2Xπ̂,ŜC
t− [k1(t)Xπ̂,ŜC

t− + k2(t, λ)]
∫

z>−1
zM̃(dt, dz)

+ [k1(t)Xπ̂,ŜC
t− + k2(t, λ)]2

∫
z>−1

z2M̃(dt, dz).

Hence, by rearranging the terms we obtain

(Xπ̂,ŜC
s )2 = exp

(∫ s

t
ψ(u) du

)
(Xπ̂,ŜC

t )2 + 2
∫ s

t
e
∫ s

u ψ(v) dvXπ̂,ŜC
u [(µ − r)k2(u, λ) + NC(u, λ)

+ c2(u, λ) + βk1(u)k2(u, λ)] du +

∫ s

t
e
∫ s

u ψ(v) dvβk2
2(u, λ) du

+ 2
∫ s

t
e
∫ s

u ψ(v) dvXπ̂,ŜC
u σ[k1(u)Xπ̂,ŜC

u + k2(u, λ)] dWu

+ 2
∫ s

t

∫
z>−1

e
∫ s

u ψ(v) dvXπ̂,ŜC
u− [k1(u)Xπ̂,ŜC

u− + k2(u, λ)]zM̃(du, dz)

+

∫ s

t

∫
z>−1

e
∫ s

u ψ(v) dv[k1(u)Xπ̂,ŜC
u− + k2(u, λ)]2z2M̃(du, dz)

for all s ≥ t. Following the similar derivation of Lemma 4.2 by Delong et al. [4], we
conclude that the above three local martingales are in fact martingales. Therefore,

Et,x,λ[(Xπ̂,ŜC
s )2] = e

∫ s
t ψ(u) dux2 + 2Et,x,λ

{∫ s

t
e
∫ s

u ψ(v) dvXπ̂,ŜC
u [(µ − r)k2(u, λ) + NC(u, λ)

+ c2(u, λ) + βk1(u)k2(u, λ)] du
}

+ Et,x,λ

{∫ s

t
e
∫ s

u ψ(v) dvβk2
2(u, λ) du

}
.
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Moreover, from

W̃(t, x, λ) = Et,x,λ

[∫ T

t
ŜC

2
(s) ds

]
+

1
2

(H∗(t, x, λ) −G∗2(t, x, λ)) − (µ1x + µ2)G∗(t, x, λ)

= Et,x,λ

[∫ T

t
(c1(s)Xπ̂,ŜC

s + c2(s, λs))2 ds
]

+
1
2

(q̃(t)x2 + l̃(t, λ)x + d̃(t, λ)

− ã2(t)x2 − 2ã(t)b̃(t, λ)x − b̃2(t, λ)) − (µ1x + µ2)(ã(t)x + b̃(t, λ))

and equation (4.8), by comparing the coefficients of x2, we get

2Ã(t) + 2µ1ã(t) + ã2(t) = exp
(∫ T

t
ψ(u) du

)
+ 2

∫ T

t
c2

1(s) exp
(∫ s

t
ψ(u) du

)
ds. (4.21)

Hence, combining (4.11), (4.13), (4.20) and (4.21), we obtain the following integral
equation system:

k1(t) = −β̄
[
1 −

({
exp

(∫ T

t
2{r + (µ − r)k1(u) + c1(u)} du

)
+ µ1 exp

(∫ T

t
{r + (µ − r)k1(u) + c1(u)} du

)}
×

{
exp

(∫ T

t
ψ(u) du

)
+ 2

∫ T

t
c2

1(s) exp
(∫ s

t
ψ(u) du

)
ds

}−1)]
, (4.22)

c1(t) =
k1(t)
2β̄

[
exp

(∫ T

t
ψ(u) du

)
+ 2

∫ T

t
c2

1(s) exp
(∫ s

t
ψ(u) du

)
ds

]
. (4.23)

Next, we will calculate the values of k2(t, λ) and c2(t, λ) provided that k1(t) and c1(t)
are known. Equations (4.11)–(4.14) imply

k2(t, λ) = c−1
1 (t)k1(t)c2(t, λ) (4.24)

and B̃(t, λ) = −2c2(t, λ) − µ1b̃(t, λ). The partial derivatives corresponding to B̃(t, λ) are

B̃t = −2
∂c2

∂t
(t, λ) − µ1b̃t,

B̃λ = −2
∂c2

∂λ
(t, λ) − µ1b̃λ,

B̃λλ = −2
∂2c2

∂λ2 (t, λ) − µ1b̃λλ.
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Substituting these into (4.16) and using (4.19), we get

∂c2

∂t
(t, λ) + θ(t, λ)

∂c2

∂λ
(t, λ) +

1
2
η2(t, λ)

∂2c2

∂λ2 (t, λ)

+

{
c1(t) −

µ1

2
ã(t)

}
NC(t, λ) + α(t)c2(t, λ) = 0,

where α(t) = r + (µ − r)k1(t) + c1(t) − µ1ã(t)/2 − {µ1(µ − r)ã(t)c−1
1 (t)k1(t)}/2. Hence,

by the Feynman–Kac formula and assumption (2.4), we arrive at

c2(t, λ) =
µ2

2
exp

(∫ T

t
α(u) du

)
+

∫ T

t

(
c1(s) −

µ1

2
ã(s)

)
exp

(∫ s

t
α(u) du

)
− ρ(T − s)m(s) dsEt,λ[Da(λ(T ))]. (4.25)

We summarize the above results in the following theorem.

Theorem 4.3. For the generalized optimization problem (4.1), the equilibrium
strategies are given by

π̂(t, x, λ) = k1(t)x + k2(t, λ),
ŜC(t, x, λ) = c1(t)x + c2(t, λ),

where k1(t) and c1(t) satisfy the integral equation system (4.22) and (4.23), and
the values of k2(t, λ) and c2(t, λ) are given by (4.24) and (4.25). Moreover, the
corresponding equilibrium value function is given by V1(t, x, λ) = Ã(t)x2 + B̃(t, λ)x +

C̃(t, λ), where the functions Ã, B̃ and C̃ are given by the expressions in (4.15)–(4.17),
respectively.

4.2. Special case We now investigate the case of the generalized optimization
problem (4.1) with constant risk aversion. By setting µ1 = 0, we get k1(t) = 0 and
c1(t) = 0 as the roots of the integral equation system derived in Theorem 4.3. Moreover,
from (4.14)–(4.16), (4.18) and their corresponding boundary conditions, we obtain

Ã(t) = 0, B̃(t, λ) = −µ2er(T−t), ã(t) = er(T−t).

Furthermore, equations (4.12) and (4.14) respectively simplify to

c2(t) =
µ2

2
er(T−t), k2(t) = µ2β̄e−r(T−t),

so the optimal time-consistent strategies are given by

π̂(t) = µ2β̄e−r(T−t), ŜC(t) =
µ2

2
er(T−t),

which are independent of the current wealth x and the current mortality intensity λ.
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Substituting the values of ã(t), c2(t) and k2(t) into (4.17) and (4.19), and by applying
the Feynman–Kac formula, we get

b̃(t, λ) = Et,λ[Da(λ(T ))]
{∫ T

t
e(r−ρ)(T−s)m(s) ds − 1

}
+ µ2(µ − r)(T − t)β̄

+
µ2

4r
(e2r(T−t) − 1)

and

C̃(t, λ) =
1
2
Et,λ

[∫ T

t
b̃2
λ(s, λ)η2(s, λ) ds

]
− µ2b̃(t, λ) +

µ2
2(µ − r)(T − t)β̄

2
+
µ2

2

8r
(e2r(T−t) − 1).

Hence,

V1(t, x, λ) = −µ2er(T−t)x + C̃(t, λ),
G∗(t, x, λ) = er(T−t)x + b̃(t, λ),

and the variance is given by

Vart,x,λ[Xπ̂(T ) − Da(λ(T ))] = 2
[
V1(t, x, λ) + µ2G∗(t, x, λ) −

∫ T

t
ŜC

2
(s) ds

]
= Et,λ

[∫ T

t
b̃2
λ(s, λ)η2(s, λ) ds

]
+ µ2

2(µ − r)(T − t)β̄.

5. Numerical results

In this section, we provide numerical examples to illustrate our results. We consider
the cohort of workers who join the plan at the age of 45 and retire at the age of 65, so
that t = 0,T = 20. The maximum future lifetime is taken to be 100 years, and T ′ = 55.
We assume that the mortality intensity follows the Vasicek model

dλ(t) = 0.078 282λ(t) dt + 0.001 606 dW(t),

which has been considered by Jalen and Mamon [8] and Qian et al. [16]. The financial
market parameters are r = 0.05, µ = 0.1, σ = 0.2, D = 1000, ρ = 0.08,m(t) = 1/20,
κ = 0 and ν = 0.

Figures 1–5 show the graphical results of the optimal investment strategy in
Theorem 3.4. In Figure 1 we observe that k1(t) is increasing with t, and for a fixed
t, the value of k1(t) when µ1 = 0.6 is larger than that when µ1 = 0.3. We plot the
function k2(t, λ) for µ1 = 0.3 and µ2 = 0.5 in Figure 2. The changes in k2(t, λ) with
respect to t and λ are illustrated in Figures 3 and 4, respectively. In Figure 5 we show
the relationship between the optimal investment amount and the wealth level, when
t = 0 and λ = 0.001 217.
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Figure 1. k1(t) for µ1 = 0.3, 0.6.
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Figure 2. k2(t, λ) for µ1 = 0.3, µ2 = 0.5.
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Figure 3. Variation of k2(t, λ) with t for λ = 0.001 217.
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Figure 4. Variation of k2(t, λ) with λ for t = 0.
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Figure 5. Relationship between the optimal investment amount and wealth Xt for t = 0, λ = 0.001 217.
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Appendix

Proof of Theorem 3.2. (i) We first show that W(t, x, λ) = J(t, x, λ, π̂).
In light of (3.4), we see that

Aπ̂W(t, x, λ) −Aπ̂ f (t, x, λ,G,H) + fy(t, x, λ,G,H)Aπ̂G(t, x, λ)
+ fz(t, x, λ,G,H)Aπ̂H(t, x, λ) = 0.
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Since G and H satisfy (3.5) and (3.6), the above equation can be rewritten as

Aπ̂W(t, x, λ) −Aπ̂ f (t, x, λ,G,H) = 0.

Hence, from the boundary condition and Dynkin’s theorem,

W(t, x, λ) = f (t, x, λ,G,H). (A.1)

Again, from (3.5) and (3.6) and the boundary conditions, we know that G(t, x, λ)
and H(t, x, λ) are martingales, and consequently

G(t, x, λ) = Et,x,λ[Xπ̂(T ) − Da(λ(T ))],
H(t, x, λ) = Et,x,λ[(Xπ̂(T ) − Da(λ(T )))2].

Inserting the above results into (A.1), we obtain

W(t, x, λ) = J(t, x, λ, π̂). (A.2)

(ii) We now show that π̂ is indeed an equilibrium control law. For any h > 0 and an
arbitrary π ∈ A, we construct a control law πh as in Definition 3.1. From the fact that
J(t, x, λ, πh) = f (t, x, λ, yπh (t, x, λ), zπh (t, x, λ)),

J(t, x, λ, πh)
= Et,x,λ[J(t + h, Xπh

t+h, λt+h, πh)]
−Et,x,λ[ f (t + h, Xπh

t+h, λt+h, yπh (t + h, Xπh
t+h, λt+h), zπh (t + h, Xπh

t+h, λt+h))]
+ f (t, x, λ,Et,x,λ[yπh (t + h, Xπh

t+h, λt+h)],Et,x,λ[zπh (t + h, Xπh
t+h, λt+h)]).

With the help of the definition of πh, the above equation can be rewritten as

J(t, x, λ, πh)
= Et,x,λ[W(t + h, Xπ

t+h, λt+h)]
−Et,x,λ[ f (t + h, Xπ

t+h, λt+h,G(t + h, Xπ
t+h, λt+h),H(t + h, Xπ

t+h, λt+h))]
+ f (t, x, λ,Et,x,λ[G(t + h, Xπ

t+h, λt+h)],Et,x,λ[H(t + h, Xπ
t+h, λt+h)]). (A.3)

In addition, according to the extended HJB system, we have

AπW(t, x, λ) −Aπ f (t, x, λ,G,H) + fy(t, x, λ,G,H)AπG(t, x, λ)
+ fz(t, x, λ,G,H)AπH(t, x, λ) ≥ 0, for all π ∈ A.

Discretizing the above inequality, we obtain

Et,x,λ[W(t + h, Xπ
t+h, λt+h)] −W(t, x, λ)

− {Et,x,λ[ f (t + h, Xπ
t+h, λt+h,G(t + h, Xπ

t+h, λt+h),H(t + h, Xπ
t+h, λt+h))]

− f (t, x, λ,G(t, x, λ),H(t, x, λ))}
+ { f (t, x, λ,Et,x,λ[G(t + h, Xπ

t+h, λt+h)],Et,x,λ[H(t + h, Xπ
t+h, λt+h)])

− f (t, x, λ,G(t, x, λ),H(t, x, λ))} ≥ o(h).
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After simplification, it can be transformed to

W(t, x, λ)
≤ Et,x,λ[W(t + h, Xπ

t+h, λt+h)]
−Et,x,λ[ f (t + h, Xπ

t+h, λt+h,G(t + h, Xπ
t+h, λt+h),H(t + h, Xπ

t+h, λt+h))]
+ f (t, x, λ,Et,x,λ[G(t + h, Xπ

t+h, λt+h)],Et,x,λ[H(t + h, Xπ
t+h, λt+h)]) + o(h).

Combining the results of (A.2) and the expression for J(t, x, λ, πh) in (A.3), we obtain

J(t, x, λ, π̂) ≤ J(t, x, λ, πh) + o(h).

Hence,

lim sup
h→0

J(t, x, λ, π̂) − J(t, x, λ, πh)
h

≤ 0.

This completes the proof of Theorem 3.2. �
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