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Abstract. We show that the birational classification in positive characteristic of smooth Fano three-
folds X with Picard number 1 isthe same as in characteristic zero. In particular, there are no exotic
such Fanos; as a consequence of the classification, X is shown to be liftable without ramification to
characteristic zero and to contain aline. The main techniques employed are those of Ekedahl and of
Mori and Takeuchi.
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Introduction

In characteristic zero, Fano 3-folds X can be classified along the following lines,
worked out by Mori and Takeuchi [M], [T]; their arguments represent a simplifi-
cation of those due to Iskovskikh and Shokurov [I 1,2], [Sh 1,2].

(1) Kodaira vanishing shows that H'(Oy) = 0 and H'(O(—Kx)) = 0 for
i>0.

(2) An elementary argument involving (essentially) varieties of minimal degree
shows that the index ~ of X is at most 4, and that if » = 4 (resp. r = 3) then
X = P3 (resp. X =2 Q2 — P?).

(3) For p(X) = 1and r > 1, the complete list was made by Iskovskikh;
for r = 2 he assumed that if H is the positive generator of NS(X), then | H |
contains a smooth member. This assumption was subsequently shown by Fujitato
be unnecessary (in all characteristics). Also, when r > 2 Megyesi (unpublished)
has classified these varieties and shown that they are liftable to characteristic zero.

(4) For p(X) = 1andr = 1 (‘primitive and of thefirst species’), thefirst point
isto show that | — K x| hasamember H with at worst RDPs; H isthenaK3 surface
(cf. [Sh 1]). Then Saint-Donat’s theorems about linear systems on K3's [SD] can
be used to show that if deg X > 8, then X isanintersection of quadrics.

(5) Then consideration of respectively triple projection from a general point
and double projection from a conic (which, after Mori, can be best understood
as respectively a double projection followed by a flop and ordinary projection
followed by a flop) leads to the inequality deg X < 24 (equivaent to g < 13,
where g = 3¢3(X) + 1is, asusual, the genus of a curve section). Moreover, the
analysis of the triple projection (involving a comparison of the various kinds of
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extremal rays with the results of computing certain intersection numbers) shows
that X iscovered by conics, and then double projection from ageneral conic (which
isan ordinary projection followd by a flop) excludes the possibilities g = 11 and
g = 13. Moreover, the analysis of this conic projection shows that X contains
aline. Taken together, the two kinds of projection give a birational classification
(that is, a detailed description of various birational equivalences between Fano's
of different degrees) [T]. Since this approach does not require the existence of
lines to be proved a priori, it gives a substantial simplification of the classification
(Shokurov’s proof [Sh 2], [R 1] that lines exist is complicated). Iskovskikh [13, 14]
and Cutkosky [C] have also given other derivations of this birational classification
using extremal rays and flops; however, they start by assuming the existence of
lines (in [13] and [C]) or lines and conics (in [14]), rather than prove it using this
part of Mori theory.

(6) Theanalysisof thecone N E(X) and hisdescription of extremal rays permits
aclassification if p(X) > 2 [MM]. This depends upon the fact, established in (5),
that if » = p = 1, then X contains a surface swept out by lines, so that for any
smooth curve C on X, Bl X isnot Fano.

Step (5) is the main part of the classification and depends upon a number of
other results, for example

(i) Grauert-Riemenschneider vanishing;
(ii) adescription of flops;
(iii) thefactsthat X isnot covered by lines, and that through a generic point P of
X thereisafinite (non-zero) number of conicsand only finitely many rational
guartic curvesthat are singular at P.

The aim of this paper isto establish (1)—(5) in characteristic p > 0; Kollar has
already shown that extremal rays on smooth threefol ds have the same description
in char. p asin char. 0 [K3], except that conic bundles and pencils of del Pezzo
surfaces may have wild behaviour. The additional arguments can be summarized
asfollows.

(1) By combining ideas of Ekedahl [E] with the elaboration developed by Kollar
[K1] of bend-and-break techniqueswe prove alarge piece of Kodairavanishing (in
particular, enough to show that — K has at least as many sections as are predicted
by Riemann—Roch; apriori, | —K | may be empty).

(2) Following a suggestion by Mori, we overcome the failure of Bertini's the-
orem by considering generic members of linear systems rather than geometric
generic members; this forces the consideration of linear systems on normal K3-
like surfaces that are not geometrically normal, but there are no difficulties. This
enables us to dispose of those Fano 3-folds for which Bs| — K| is not empty and
to deal with the singularities arising from the projections just as in characteristic
zero. The arguments are modifications of Mori’s [M] in characteristic zero.

(3) If X iscut out by quadrics, thenin odd characteristic amonodromy argument
showsthat it is not covered by lines. Thisis needed because double projection from
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apoint P on aline breaks down. When p = 1 this is extended to characteristic
2. The Hoffman-Singleton graph proves relevant at this point; it does not seem to
have appeared in the context of algebraic geometry before.

Now assumethat r = p = 1.

(4) Double projection from a general point P collapses only finitely many
curves. The arguments of Mori and Takeuchi then carry over without change to
show that ¢ < 13 and that there is a conic through P.

(5) Projection from ageneric conic also collapses only finitely many curves.

(6) Conic bundles and del Pezzo fibrations behave sufficiently well (although
thereis asubtlety involving del Pezzo fibrations in characteristic 2).

(7) If g > 7, then we get a birational description asin characteristic zero.

(8) We use this description to prove that H1(©Y) is generated by the Chern
classes of divisors. We then deduce that H2(©y) = 0, so that X can be lifted,
without ramification, to characteristic zero.

(9) Oncethe variety can belifted to characteristic zero the existence of linesis
immediate. Thisresultiscrucial in Mori and Mukai’s classification of Fano 3-folds
of Picard number at least 2.

On the other hand, Mukai has given a complete biregular classification of
embedded primitive Fano 3-folds of thefirst species. GivenaFano 3-foldwith 11 #£
g < 12, he constructs a vector bundle to embed the variety in some homogeneous
space G/ P, where P is a maximal parabolic. | have not checked whether or to
what extent this carries over to all characteristics. Perhapsit is worth pointing out
in this context that in characteristic p there are no exotic homogeneous spaces of
Picard number 1. Thereasonisthat if P isamaximal parabolicand Py = P, then
Lie(P) contains Lie(FPp), while Lie(Pp) isamaximal Lie sub—algebraof Lie(G).
Hence the morphism G/ Py — G/ P isapower of the geometric Frobenius, so that
G /Py and G/ P are conjugate varieties.

Mukai has also given a smple proof of the degree bound 11 # g < 12,
independent of any classification (birational or biregular), using the moduli of
curves and K3 surfaces. However, this depends on proving that for a smooth
hyperplane section S, the versal deformation space of the pair (X, .S) maps onto
the space of polarized deformations of S, which in turn depends on knowing that
HY(QL) is spanned by algebraic classes. This is not clear a priori in positive
characteristic (except as a consequence of the Tate conjecture).

Finally, the classification when p > 2 isleft open, although some of the results
used by Mori and Mukai in characteristic zero are established here (such as the
existence of lineswhen » = p = 1 and the analysis of conic bundlesand del Pezzo
fibrations).
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1. Kodairavanishing

THEOREM 1.1 If X isa Fano variety of arbitrary dimension, then theirregularity

q(X) iszero.
Proof. Leta: X — A bethe Albanese mapping, and let D be an ample divisor
on A. By the cone theorem, there are finitely many rational curves Cy,...,C),

on X such that for any curve I" on X, there are rational numbers mq, ..., m,
with T' = Y m;C;. Since a collapses every rational curve, we haveI'. o*D =
> m;Ci.a*D = 0. Then « collapses T, so that « is constant. O

COROLLARY 1.2 If X isa Fano 3-fold, then x(Ox) > 1.
Proof. H(Oy) isthetangent spaceto Pic® X and H?(Ox) isthe obstruction
space. By Theorem 1.1 dim Pic® X = 0, and the Corollary follows. O

THEOREM 1.3 If X isaFanon-fold, but possiblywith local completeintersection
(Ici) singularities, then through any smooth point z of X thereis a rational curve
LwithL.(—Kx) <n+1

Proof. Kollar hasshown [K1] thatif C'isacurveand f: C — X isamorphism
such that f(C') doesnot liein the singular locus of X, then

d[lfr]n Mor(C, X) > deg f*(—Kx) +n.x(Oc).
So we can bend-and-break just as usual, using the fact that — K x isample. O

THEOREM 1.4 Supposethat X isanormal Ici Fano 3-fold and that D € Pic X
isample. Then H}(O(—D)) = Qif either p > 50r X issmoothand D . ¢, > 0.

Proof. Assumethat H(X, O(—D)) # 0. By Serre vanishing, we may assume
that HY(X, O(—pD)) = 0. Takeanon-zeroclasso € H(O(-D)). Theno? =0,
so that by [E] there is a morphism p: Y — X which is a torsor under some
a,-group scheme over X; here, Y isreduced and irreducible with Ici singularities,
degp =pandwy = p*O(Kx — (p — 1)D).

(One can aso construct Y as follows. The class o corresponds to a hon-split
extension £ of O(—D) by Ox. The vanishing of o means that F*£ = &, say,
splits. Set P = P(€), which has a section X corresponding to the description of £
as an extension. Put U = P — XJ; thisisjust the torsor corresponding to o under
the line bundle O(—D), regarded as a G, -group scheme, and as such is an affine
linebundle. Put P = P(£); then P contains a section X that mapsto acopy of Y in
P which is digoint from Xg. The advantage of the torsorial description, however,
isthat it makesit clear, evenif X issingular, that Y isaCartier divisor on P so that
all information about Y that we need (mainly a description of wy and p,.Oy) can
be derived from the adjunction formula.)

(N.B. If X were non-normal, then this non-trivial torsor Y might be non-
reduced, and the argument that follows would not apply. In fact, Reid [R] has
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constructed non-normal del Pezzo surfaces in char. p on which Kodaira vanish-
ing fails, and if p = 2 or 3 then some of his examples even have hypersurface
singularities.)

Note that from the description above of wy-, Y is Fano. Choose a smooth point
yonY. By Theorem 3 thereisarational curve C through y with C'. (—Ky) < 4.
Hence p*((p — 1)D — Kx) .C < 4, sothat p < 3. Note also that this bound means
that we can assume that D isamaximal counterexample to Kodaira vanishing, in
that HY(X,O(—c1—rD)) = 0and HY(X,O(—sD)) = Oforallr > Lands > 2.

Assume now that X is smooth and D . ¢, > 0. Also, we know that p, Oy has
an increasing filtration whose graded piecesare Ox, Ox (D), ...,Ox((p — 1) D).
(This is proved by Ekedahl [E], and is derived from the description of Y as a
subvariety of the affine bundle U above.) So from Riemann-Roch and the inequal -
ities x(Ox) > 1, D.co > 0, we get x(Oy) > x(Ox). Then h?(Oy) >
h?(Ox), so that h2(Ox (rD)) > 0 for some r > 1. Serre duality now gives
hY(Ox(=(c1 +rD))) > 0, contrary to the maximality of D. 0

COROLLARY 1.5 If X isa smooth Fano threefold, then

(1) H(Ox) =0fori > 0and x(Ox) = 1.
(2) Pic X hasno torsion.

@) 79(x) = 1.

(4) hi°(O(-Kx)) > ca(X)3/2+ 3.

Proof. (1) By Corollary 1.2, Theorem 1.4 and the Riemann—Roch theorem, it
follows that H1(O(nK)) = 0for al n > 1. Then by Serre duality and Corollary
1.2, we seethat 0 = h'(O(K)) = h?(O) > h'(O), which proves (1).

Supposethat D € Pic X withnD = 0and D # 0.By (1) andR-R, x(O(D)) =
1, so that h2(O(D)) = 1. Via Serre duality, this gives a contradiction to Theorem
1.4, and so proves (2).

Supposethat Y — X isafinite étale cover of degreen. ThenY isFano, so that
by (1) n = 1. This proves(3).

(4) is now a consequence of Riemann—Roch. O

2. Linear systemson K 3-like surfaces

In this section we consider connected projective surfaces F' defined over the func-
tion field K of some k-variety. F will be normal, but possibly not geometrically
normal.

DEFINITION. FisK3-likeif inaddition wr = O and H*(Or) = 0.

Recall that the notion of RDP makes sense in the context of arbitrary normal
excellent 2-dimensional schemes.
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PROPOSITION 2.1 Supposethat F' is K3-like and has only RDPs, and that H is
a nef and big Cartier divisor on F. Then HY(O(—H)) = 0.

PROPOSITION 2.2 Suppose that F' is K3-like with only RDPs, that H is ample
and that Bs|H | is not empty and is defined over k.

(1) If H? > 4, the base locus is isomor phic to P,
(2) If H? = 2, then the base locusis a single RDP, F embedsinto P(1,1, 1,2, 3)
asa (2,6) completeintersectionand H = O(1).

Proof. Over an algebraically closed field these results are well known. One
proof of them depends upon the fact that if £ isarank two vector bundle on the
minimal resolution f: F' — F with ¢y(E)? — 4cy(E) > —2, then the Riemann—
Roch theorem shows that dmHom(E, E) > 3, so that, by the Cayley—Hamilton
theorem, E' has a non-zero nilpotent endomorphism. This proof carries over to
the present context, where F' isaregular scheme rather than a smooth surface. For
example, if PisaK-rational RDPinthebaselocus, let Z denotethe corresponding
fundamental cycle on F'. There is then a non-split extension £ of O(f*H — Z)
by O, and Reider’s arguments show that case (2) holds. (Recall that the defining
property of Z isthat Z? = —2andthat Z . A < Ofor any curve A contracted by f.)O

We shall apply these results when K is the function field of the anti—canonical
system | — K x| of aFano 3-fold X, F' isthe generic member of | — K x| and |H |
is the complete linear system cut out on F' by | — K x| (viaCorollary 1.5).

The next three sectionsdeal with the separate caseswhere | — K | has base points
or definesamorphism that is not birational or definesamorphism that isbirational.

3. Thebaselocusof | — Kx|

In this section Bs| — K x| is assumed to be non—empty. The aim is to describe X
under this hypothesis; the arguments are taken over almost unchanged from Mori’s
notes covering the case of characteristic zero, which in turn simplify Shokurov’s
arguments [Sh 1] by using the geometry of extremal rays. We give most of the
details since these notes are unpublished.

LEMMA 3.1 | — Kx| isnot composite with a pencil.
Proof. Omitted; the proof isasin Mori’s notes or [Sh 1]. O

THEOREM 3.2 (1) The generic member of | — Kx| is K3-like.
(2) HY(O(—Kx)) = 0and h2(Ox (—Kx)) = 3(—Kx)3+3.
(3) The geometric generic member of | — K| is reduced and irreducible.
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Proof. Put H = —Kx and |H| = Dg + |D|, where Dy is the fixed part.
According to Abhyankar, there s a sequenceof blow-ups X; 1 — X; with smooth
centres C; and exceptional divisor E; whose composite o : X — X resolvesthe
base locus. That is, if m;41: X — X;;1 isthe composite and F; = =, 1 E;, then
we can write

oc*D = 5 + ZniFia

wheren; > 1, |D| hasno base pointsand 3 n; F; isthe fixed part of |o*D|.
Now consider the generic member F' of |D|. By Lemma 3.1, this is a regular

K -scheme that is geometrically reduced and irreducible, where K is the function
fieldof |[H|. Let F beitsimagein X ® K and F' — F' — F the Stein factorization.
SinceK)? ~ c*Kx + > a;F;, wherea; = 1if F; mapsto acurvein X, we see
that Kﬁ ~ (—U*Do — E(nl — al)Fl)|ﬁ Hence

KF’ ~ (—O'*_Do — Z(nl - 1)F7,) |F’7

wherethe sumisover thoses: for which F; mapsto acurvein X. In particular, K
is anti—effective or zero.

DefineG = o*H|zand L = Kz +G. Soby Proposition2.1 H(Oz(-G)) = 0
fori > 1. Then

h(O#(L)) = x(Op(L)) = 3L (L — Kf) + x(OF).
We also know that hO(O(F)) = h%(O (F)) — 1, since H(O) = 0, sothat
W(Ox(L)) > K05 (F)) —1=h%(Ox(H)) — 1> $H3+2,
where the last inequality comes from Corollary 1.5. Hence
IH3+2¢ % (f) + ZaiFi) .D.o"H + x(05).
Since D = o*H — Y n,;F; — 0* Dy, we seethat
0342 < % (o"H + 3" (ai — ni)F; — " Do)
. (U*H > nFy - U*Do) .o*H + x(OF).

Now forall divisors A, Bon X wehaveF;.0*A.0*B = 0,andalso F; . Fj .0* A =
O unlessboth i = j and F; mapsto acurvein X, inwhich casea; = 1. Hence

$H3+2< 3H.(H - Do)?+ Y ni(n; — VF?.o*H + x(05),

wherethesumisover thoses suchthat F; mapstoacurve C;in X. Then Fi2 .0*H =
C; . H andthe Hodgeindex theorem on ageneral member of |nH | for n > 0shows
that H . (H — Do)? < H3, sothat
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Since K is anti-effective or zero, it follows readily that F' is K3-like and
that F/ = F. This proves the first part of the theorem. Also, it follows that all
the inequalities above are in fact equalities, and in particular that Do = 0 and
hO(Ox (H)) — 1 = $H*+ 2. The second part of the theorem now follows, and the
third is an immediate consequence of thefirst. O

LEMMA 3.3 If X isaP?-bundle over P! and is Fano, then Bs| — K x| is empty.
Proof. Write X =P(O & O(a) ® O(b)) with0 > a > bandlet C = P(O(b))
be the most negative section. Let F' be the class of afibre and D the tautological
class. ThenKx ~ —3D+ (a+b—2)F,s0that0< (-Ky).C =3b—a—b+2.
Thusa =b = —1ora =0b=0.Inthefirst case —K ~ 3D + 4F and |D + F|
has no base locus, and in the second — K ~ 3D + 2F and | D| has no base locus.
In each case Bs| — K| is empty. O

THEOREM 3.4 Assumethat Bs| — K x| is non—empty. Then either

(1) X = S x P!, where S isa del Pezzo surface of degree 1 or
(2) X 2 Bl¢Y,whereY — P(1,1,1,2,3) as a hypersurface of degree 6 and
C =Y N (1) N (1) isasmooth elliptic curve.

Proof. By Theorem 3.2 ageneric member F of |H| = | — Kx| isK3-like, and
|H| cuts out a complete linear system |D| onit. Clearly Bs|D| = BS|H| ® K as
subschemesof X ® K, sothat by Proposition 2.2 either F' embedsinP(1,1, 1, 2, 3)
asa(2,6) completeintersection or Bs|H| is, asascheme, acopy I of PL.

In the first case X then embedsin P = P(1,1,1,1,2,3) asa (2,6) complete
intersection. Since | — Kx| = |Ox(1)| has base points, X must pass through the
singular locus of P, which contradicts the smoothness of X. So the first case is
impossible.

So consider the second case, and put f: V' = Blpr X — X with exceptional
divisor E. Let ¢: V — Y be the Stein factorization of the morphism defined by
| — Ky|. Since on F there is a pencil of genus one curves C with C. H = 1,
the strict transforms of these curves are collapsed by ¢, so that Y isasurface (by
Lemma 3.1) and the induced morphism £ — Y isbirational.

Next, | claim that ¢ = 4. For this, some intersection numbers are required. We
have (H — E)® = 0, so that H3 + 2 = 4degT. Since by definition A3 = 2¢ — 2,
it followsthat ¢ = 2degI'. Also, H|r ~ ' + g A, where A is a genus one curve,
sothat H.T' = g — 2. Thisprovesthe claim.

Notethat (H — E)?>.E = H>.E — 2H . E? + E® = 3degl’ — 2 = 4, so that
Y =Y isasurface of degree 4 in P°.

Suppose now that the map £ — Y is not an isomorphism. Then it contracts a
negative section X on £ and Y is a quartic cone. Since —Ky ~ ¢*O(1), we get
—Ky ~ F1+ -+ F4, where F; isthe inverseimage of aline. Then H hasindex
4, while H.T' = 2. Hence E — Y isan isomorphism.
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LetY — P! be the map corresponding to E — T'; then the composite V' — P*
factors through X, say viaamorphism: X — P! of which I is a section. Since
X is Fano, thereis an extremal ray R on X whose associated contraction contr
does not factor through . Then contr; cannot contract a divisor to apoint, and so
isof type £y or D or C.

Let ¥ be anegative section on Y and m afibre of themap Y — PL. Put Z =
frd*X and D = f.¢p*m. Let ¢ be an extremal curve of minimal degree spanning
R. Then D .¢ > 0, since contri does not factor through ¢, and 1 < H ./ < 3,
e.g. from the classification of extremal rays. If H.¢ = 3, then contrp makes X
a P2-bundle over P1, which contradicts Lemma 3.3. So H ./ < 2. There are two
cases to consider:

(@ F =2TF,. ThenH ~ Z+3D.If Z.¢ < 0, then Risof type F; and Z is
the divisor contracted by contrg; then Z ./ = —1and Kx ./ = —1, whichis
absurd. S0 Z .7 > 0, sothat —Kx .¢ > 3, which isimpossible. So this case
cannot happen.

(b) E =2 Fp. Then H ~ Z + 2D; sinceboth Z and D movein their linear equiva-
lenceclasses,wehave Z ./ > 0and D ./ > 0.HenceZ ./ =0and D ./ =1,
and contr ; makes X alP'-bundle over asmooth surface S, say. By considering
both X — Sand+: X — P!, itiseasy toseethat X = S x PL; since X
isFanoand Bs|— K x| isnot empty, it followsthat S isdel Pezzo of degreel1. O

Convention. Henceforth X will denoteaFano 3-fold (of Picard number p(X) =
p) on which | — K| has no base points, and so defines a morphism¢: X — Y
where Y — P91, We shall also assumethat X is of index 1; Megyesi has shown
that if not, then X is classified exactly asin characteristic zero.

4. Themorphism defined by | — K|

PROPOSITION 4.1 If ¢ is not birational, then deg¢ = 2 and Y is a 3-fold of
minimal degree g — 1 in P9*L, This occurs if and only if one of the following
conditions holds:

(i) g = 2, Y = P® and X isthe double cover of P? branchedin a sextic.
(i) ¢ = 3, Y isaquadric and X isthe double cover of Y branched in a quartic
section.
(iii) ¢ > 4and Y isaP?-bundle over PL. Moreover, p > 2 and thereis a morphism
X — P! whosefibresare del Pezzo surfaces of degree 2.

Proof. Exactly asin char. zero. O

PROPOSITION 4.2 If ¢ isbirational, thenit isanisomorphismonto itsimage and
theimage is projectively normal.
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Proof. Thisisproved exactly asin characteristic zero, using Noether’s theorem
on canonical curves. O

PROPOSITION 4.3 If | — K| isvery ample, then there are four possibilities:

(i) ¢ = 3and X isaquartic 3-fold in P#;
(i) ¢ = 4 and X isa quadro-cubic complete intersection in P®;
(iii) g > 5, theintersection Y of the quadrics containing X isa P3-bundle over P*
and the induced map X — P! exhibits a pencil of cubic surfaceson X;
(iv) g > 5and X isanintersection of quadrics.

Proof. Just asin characteristic zero. O

COROLLARY 44 1f p(X) = 1and g > 5, then | — K| is very ample and the
anti—canonical model of X is cut out by quadrics. O

5. Coveringsby lines

In this section X is Fano of index one and is anti-canonically embedded in P9+1
as an intersection of quadrics.

We shall show that if p £ 2, then X is not covered by lines. Thisis crucial for
making multiple projection from a general point. In characteristic zero thisis easy,
but in general there can betoo many lines. For exampl e, the Fermat quartic 3-fold X
in characteristic 3 has such acovering; if P isageneral point on X, then thetangent
spaceto X at P meets X with multiplicity 3, and then projecting this intersection
from P shows that that are lines on X through P. This behaviour turns out to be
closely related to the fact that the embedding of X in P* is not Lefschetz. Recall
that ageneral pencil of hyperplane sectionsin aL efschetz embedding is L efschetz,
in the sense that the singular members have just one singular point, a node, and the
general member is smooth. A point P is Lefschetz if thereis a hyperplane section
that is smooth away from P and has anode at P. If the characteristic is odd (or
zero) or the dimension is even, then the embedding is L efschetz and some member
of every Lefschetz pencil issingular if and only if ageneral point (or if some point)
is Lefschetz [SGA 7]. Since we are dealing with 3-folds, characteristic 2 be more
delicate and is discussed in Section 7.

PROPOSITION 5.1 Fix P € X,andleto: X = Blp X — X betheblow-up with
exceptional divisor £ = P2, Let L C |Og(2)| be the system of conics cut out by
| — K| = | — Kx — 2P|. Then the base points of L correspond to the lineson X
through P, and there are four possibilities:

() L hasasmooth member (in which case P is a Lefschetz point);
(il) L hasafixedline, or is empty (when thereisa planein X through P);
(i) L hasa unigue base point (in which case thereis a uniquelinein X through
P);
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(iv) p = 2and L isthe set of all doublelinesin E.

Proof. Thisis an elementary and well known consequence of X being cut out by
guadrics. O

THEOREM 5.2 (1) If p # 2, then the embedding is Lefschetz and in a general
pencil some member is singular.

(2) If p = 2, then either a general pointis Lefschetzor X isawild conic bundle
over asurfaceor L isthe set of doublelinesin E.

Proof. Assumethat the result is false; then either (ii) or (iii) of 5.1 holds.

If (ii) holds, then as P moveson X we get a 1-dimensiona family { M }cr of
planeson X . Let £ bealinein one of these planes M; then (— K x) . £ = 1, so that
(Nayx -€)m = —2, by adjunction. But this contradicts the fact that M moves.

If (iii) holds, let T' be an irreducible projective surface in the Hilbert scheme of
lineson X, p: L — T theuniversal family and 7 : L — X thecanonical projection.
If T is chosen appropriately, then 7 is dominant and generically one-to-one (so
either birational or purely inseparable).

Suppose that 7 is not finite; then there is an irreducible curve I C L such that
m([") isapoint @, say. Then p(I') cannot be a point, and so it is acurve A, say.
Put ¥ = p~1(A). Then n(X) is a cone with vertex (. Since X is smooth at @,
7(X) isthe cone C' over an irreducible plane curve C. Since X is an intersection
of quadrics, C' isaconic. Let £ C C be agenerator. Since (—Kx .¢) =1, weget
C.¢ = —1, by adjunction. This contradictsthefact that £ movesin a 2-dimensional
family on X.

Hence  is finite and purely inseparable. After iterating the Frobenius, we get
morphisms X — L") — T(") for somen > 0. Then the morphism X — 7'()
exhibits the lines parametrized by 7" as spanning an extremal ray, say R. But then
the classification of extremal rays showsthat contr; makes X awild conic bundle.
This can only happenif p = 2. O

THEOREM 5.3 Assumethat p # 2. Then X is not covered by lines.

Proof. Take aLefschetz pencil { S} on X and let S be a geometric generic
member. Each S; isbirationally K3, and so cannot carry apencil of smooth rational
curves, so that if X carries a 2-dimensional family of lines, then every S; has a
non-zero but finite number of lines. Fix aprime £ #£ p, and let = be the classin
H2(S,Q (1)) of alineon H.

If z is not monodromy invariant, then by [SGA 7], there is a vanishing cycle
§ € H?(S,Q (1)) such that 2.5 # 0. Let o denote the reflection in 4, so that
o(x) # x. Sinceo(x) istheimage of x under some Galois conjugation, o(z) isa
lineon H. Hencez.o(x) = 0or 1. Thisgivesz . (z + (d.z)d) = O or 1, so that
(z.6)> =2o0r3.Butz.6 € Q, which by quadratic reciprocity is impossible if
¢ =5o0r 19. Thusevery linein S is monodromy invariant.

So supposethat I C S isaGalois-invariant line. We shall show that [ is defined
over K = k(n), wheren isthegeneric point of 7'. For this, we canreplace K beany
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separable extension of itself. In particular, we can assume that S, has a K -point.
Put £ = Og(l) and G = Gal(K/K). So L € (PicS)“. Now the localy finite
group schemePic S, isétale over K, sothat £ isdefined over the separable closure
K% of K.Now H2(G, (K%*)) = 0, by Tsen’s Theorem, so that the Hochschild—
Serre spectral sequence gives an isomorphism Pic S, — (Pic S, ® K)“. Hence
thereisaline bundle £ on S, suchthat £ = £ ® K. A nonzero section of £ then
defines a K -rational divisor D such that [ = D ® K. Then the Zariski closure
of D in the threefold maps to a subvariety L of X such that L meets a general
hyperplanein aline. But then L is a plane, so that X is covered by planes. Then
Nix =2 0O(n), withn > 0, and —Kx |1, = O(1). However, this contradicts the
adjunction formula. O

Remark. If p = 2, then there are Fano 3-folds that are wild conic bundles (i.e.,
conic bundles all of whose fibres are double lines), and these are covered by lines.

We shall sharpen these results when p(X') = 1, but to do this we shall need a
version of Grauert—Riemenschneider vanishing.

6. Grauert—Riemenschneider vanishing

Inthissectionwe shall provean ad hoc version of G.—R. vanishingwhichisenough,
for example, to make double projection from a point to work.

PROPOSITION 6.1 Supposethat V' isa smooth threefold, that | D| = | — Ky/| has
no base points and that the Sein factorization ¢: V' — Y of the morphism defined
by | D| isbirational. Assume also that H*(V, Oy/) = Ofor i > 0.

ThenY has Gorenstein singularities, wy = ¢*wy and R'¢, Oy = 0for i > 0.

Proof. We have D ~ ¢*H for some ample H. Since ¢ is birational, it is clear
that Wy = ¢*wy.

Let S be the generic member of | D| defined over the function field K of |D|.
Since | D| has no base points, S is a regular scheme, and is clearly K3-like. By
abuse of notation, we shall not distinguish between V andV @ K.

Consider the exact sequence

0— Ovy((n—1)D) = Oy(nD) = Og(nD) — 0.

Now H(S, Os(nD)) = Oforall n € 7,by Proposition 2.1 (the vanishing theorem
for K3 surfaces with RDPs), so that H(V, Oy ((n — 1)D)) — H(V, Oy (nD))
for al n € 7. Since HY(Oy) = 0, it follows that H(V, Oy (nD)) = 0 for all
n > 0. Also, H%(S,0g(nD)) = Ofor al n < 0, sothat HY(V,O((n — 1)D)) —
HY(V,0(nD)) for al n < 0. Hence H*(V, O(nD)) = 0 for al n, and then by
Serre duality H?(V, O(nD)) = Ofor all n.

ThereisalLeray spectral sequence

Y = H(Y, (R'$.0v) ® Oy (nH)) = H*9(V, Oy (nD)).
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Take n > 0; then E5? = 0 for al p > 0, by Serre vanishing. It follows that
HO(Y,(R19.0v)® Oy (nH)) = HI(V,0y (nD)) for al ¢, sothat R1¢,0Oy = 0
forq > 0.

Sincewy = ¢*wy, it follows that R%wy, = 0for ¢ > 0 and ¢,wy = wy, and
now Kempf’s proof [KKMS] that in char. zero rationa singularities are Cohen-
Macaulay goes through to give the result. O

Remark We shall use this result when V' is the blow-up of an embedded Fano
3-fold along either aline or a conic or a point lying on no line.

7. Thecasep(X) =1

In Sections 7-10 we assume that p(X) = 1, in addition to the hypotheses of
Section 5. Thisenablesusto get the answersto the questions of projective geometry
that must be solved to give the birational classification.

THEOREM 7.1 If p # 5, then X is not covered by lines.

Proof. Assumethat X is covered by lines. By Theorem 5.2(2) a general point
of X is Lefschetz, so that every member S of a general pencil of hyperplane
sections of X has at most finitely many singularities, all of which are nodes. So .S
is birationally K3, and so cannot carry a pencil of lines. Hence every hyperplane
section of X contains a line. Let S be a general such section, and [ alinein S
(sothat in particular [ isagenera lineon X). Sincep = 1, X isnot awild conic
bundle, and so the proof of Proposition 5.2 shows that a general point on/ lies on
another linein X, so that thereis an irreducible surface > C X swept out by lines
through {.

Put [Hl| = |— Kx|andleto: V = Bl; X — X bethe blow-up. Note that by
construction, a general member S of | H — | | is smooth, so that if S isits strict
transformon V, then S — S is an isomorphism.

A general member of |H — | = | — Ky| meets X set-theoretically in aunion of
lines (asiseasy to see), including /; besides!, theselinesare digjoint, since X iscut
out by quadrics. Also, | H — I| definesabirational morphisms: V. — W « P91,
with Stein factorization ¢: V' — Y, say. By cutting down to a curve section and
using Noether’s theorem in the usua well known way, we show that W = Y. Say
C = ¢(X); then a general hyperplane section of W cuts C' transversely and has
nodes there, since by Proposition 6.1 R'¢, Oy = 0for i > 0 and for a geometric
generic point = € C thefibre ¢—1(z) is, asaset, acopy of PL. Then ¢ isaminimal
resolution near z. Note also that the transform £ of  is, over a neighbourhood of
x, the whole exceptional locus of ¢.

Then by Artin’s result, that the ideal sheaf defining the fundamental cycle of
arational surface singularity is generated by the maximal ideal of the singularity,
Zc . Oy = I over aneighbourhood of z. Thus if S’ is ageneral section of Y,

with ¢~ 1($") = S, then S N X is a reduced sum of lines. So if S = o(S), then
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S.X=ml+1l1+---+1,,wherem > landls,...,[, arelineson S distinct
from [ that meet [ and are digjoint from each other. Note that since C' is embedded
in P91, the Galois group of k(P(9—1V) permutes the points of C'N S’ transitively,
sothatly,...,[, are Galois conjugate.

Since Pic X = Z[—K],we have ¥ ~ dH for some d € N. Computing inter-
section numbers on the K3 surface S givesd = —2m +nandd = m — 2.
Hence

d?. deg X = —2m? — 2n+ 2m .n = 4d® + 6d.

Sincedeg X > 8andiseven,wegetd = 1and deg X = 10 (i.e. ¢ = 6). Hence
if L is any other line on S that meets [, we have 1 = L. H |s= L.X |s=
L.(3l+> ;) > 3,sothat {l1,...,1,} isthecomplete set of linesin S that meet {.

Note that any monodromy invariant configuration on S supports a very ample
divisor, since p(X) = 1, and so is connected. So [ is conjugate to some (and hence
al) of the ;. Henceif T'V is the dual graph of the configuration T" formed by the
lines on S, then the Galois group acts transitively on the vertices of T'V. So from
the values of m and n, it follows that every vertex meets just 7 others. Moreover,
since 3] + Y I; is a hyperplane section, every line except I, 11, . .., l7 meets just
one of the I;. So I'V has no squares or triangles and is of diameter 2. It follows
easily that 'V has 50 vertices. Moreover, I'V is regular of valency 7 (for this and
other definitions, see BCN], p. 434). Since any 2 adjacent (resp. non-adjacent) ver-
tices have O (resp. 1) common neighbours, I'V is strongly regular with parameters
(v, k, A\, 1) = (50,7,0,1). Then by [loc. cit., Theorem 1.3.1, p. 8] the eigenvalues
of the adjacency matrix M (which is defined with zeroes down the diagonal, so
that the intersection matrix A isgivenby A = M — 2I) has eigenvalues 7,2, —3
with respectivemultiplicities 1, 28, 21. Hence A haseigenvalues5, 0, — with multi-
plicities 1,28, 21. Hence rank A = 22, so that S is supersingular, and al eigen-
values of A are £5. Since on any supersingular surface the intersection pairing
on the Néron-Severi group is unimodular away from p, and there is no even
unimodular Z-lattice of rank 22 and signature (1, 21), we have p = 5, contrary
to assumption. O

Remark. (i) Thepropertiesof I'V described above characterizeit astheHoffman-
Sngleton graph HS [BCN, p. 391]. The obvious question is whether there is a
K3 surface S (necessarily supersingular in characteristic 5) containing an HS
configuration of lines. However, this cannot occur, since [loc. cit.] HS contains 5
digoint 5-cycles, and the existence of this on a K3 surface S is impossible, since
for example c2(S) = 24. Moreover, the lattice L generated by the verticesof H S,
whereeach vertex has self-intersection —2, turns out to havediscriminant —5, while
on any supersingular K3 surface in char. p the Néron—Severi group has discri-
minant —p?”, where ¢ is the Artin invariant. Hence NS(S) cannot be embedded
inL.
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However, the double cover S of P2 branched in the Fermat sextic C' contains a
copy of Aut(H S), namely a split extension of G = PSU3(Fx5) by (7), where 7 is
the involution of G' given by Frobg,, [loc. cit.].

(if) Asalready noted, the Fermat quartic 3-fold in characteristic 3 isaFanowith
p = r = 1whichiscovered by lines. Another exampleisthe double cover in char.
5 of P2 branched in the Fermat sextic. | do not know whether there are any other
examples, although of course the genus could be at most 5.

NOTATION. Henceforth X will be a Fano 3-fold with p = 1 that is embedded in
P9+l by |H| = | — Kx| and cut out by quadrics. P will denote ageneral point on
X, so that in particular P liesonnoline, and o : X = Blp X — X will bethe
blow-up at P, with exceptional divisor E. We denote the Stein factorization of the
morphism +: X — Y defined by the linear system |H| = | — K ¢| (that is, the
double projection from P) by ¢: X — X1. Sometimes we shall abuse the notation
by also regarding ¢ asarational map on X .

COROLLARY 7.2 (1) |H| has no base points and ¢ collapses just the strict
transforms of the curves of degree d with multiplicity 2d at P.

(2) Assumethat g > 6. Then either Y isof minimal degreein P93 or X; — Y
isan isomor phism.

(3) If g > 6, then a general member of | — K | is K3, maybe with nodes.

Proof. For (1) there is nothing to do and (2)/is an immediate consequence of
Noether's theorem on canonical curves. For (3) it is enough to exclude 5.1(iv).
Suppose that this does happen. Then Y is hormal and deg ¢ < 2, while ¢ induces
amorphism from FE that is of degree 4. Thisisimpossible. O

LEMMA 7.3 Supposethat g > 6. Then the natural map
p: HYX,0(-K3)) —» H(E, Op(~K5))

has maximal rank. In particular, E is embedded as a \eronese surfaceif g > 8.
Proof. Suppose that p is neither injective nor surjective. Then |H — E| is not
empty; let D denote ageneral member of it. Wehave D = G + rE withr > O and
G reduced and irreducible. N
Let F' denote a general member of |H|; thisis a K3 surface, maybe nodal, by
Corollary 7.2(3). There is an exact commutative diagram

H°(03(H)) — H%Op(H)) — HY(03(D))

H%(Op(H) — H(Opnp(H)) — HY(Op(H)) — 0
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(cf.[R 1, p. 29)). It followsthat p issurjectiveif H*(Or(—D|r)) = 0. For this,
it will sufficeto show that D|; is numerically connected.
There are three cases to consider.

(8) Assumethat G is not contracted by ¢.

Then F'|¢ movesin abig linear system with no base points, so that for general
FwehaveF .G = p™A,where A isreduced andirreducible. Sincedeg ¢ < 2,
it followsthat p™ = 1. Definel’ = F. E;then D|p = A+ rL.

Now suppose that D|p = Cy + C, with C; > 0. We can then assume
that C1 = A+ al’ and C2 = (r — a)T. Since (D|r).T" = 2, we see that
C1.Co=(r—a)(A.T —2a) = (r—a)(2r+2— 2a) > 0, sothat D|g is
numerically connected.

(b) Assume that G is contracted by ¢ and that g # 7. Then there is an equality
(H—2E)?.(H — (3+7)E) =0,sothat H® = 4(3+r). Now H3 # 12, s0
that ~ > 1. Then H3 > 16, so that dimker p > 2. Then G movesin a pencil,
while ¢ is generically finite, so that we can choose G not to be contracted.

(c) Assume that G is contracted and that g = 7. Since G is contracted, it can-
not move, and so dm|H — E| = 0. Then |[7*H — 2E| cuts out a base
point free linear system of dimension 3 on the Veronese surface E. Since
(m*H — 2E).E .G = 6 and the image of G is irreducible, we get a contra-
diction to the fact that the singular locus of the image of E under ¢ (whichis
the image of the Veronese surface in P° under projection from a disjoint line)
isthe union of three lines, so reducible. O

COROLLARY 7.4 (1) If g > 8, thentheonly curvescontracted by ¢ arethe conics
through P.

(2) If g = 7, then in addition ¢ contracts the quartic curves (maybe reducible)
that aresingular at P.

(3) If g = 6, then also ¢ contractsthe unique sextic rational curvethatistriple
at P.

Proof. Thisisaconsequenceof the projectivegeometry of the Veronese surface.
For example, if ¢ = 7, then the Veronese surface E is mapped by a4-dimensional
linear system, and such a system either is very ample or maps a conic 2-to-1 onto
aline. O

PROPOSITION 7.5 If g > 6, then ¢ contracts at most finitely many curves.

Proof. If not, then ¢ collapses a divisor D that meets E. Since no curvein E
is contractible, theimage of D isacurve, say W. Strictly Henselize at the generic
point of W thenwe get an RDP, sothat Iy, . O = O(—2), where Z = 3" n; D;
is the fundamental cycle, by Artin's theorem. But D is irreducible, so that the
D; are Galois conjugate. Then the n; are equal. Since a fundamental cycle is not
multiple, Z = D.
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Now return to the global context and let C' denote the fibre of ¢ over ageometric
generic point of W. Then the properties of fundamental cycles show that D .C =
-2.

Write D ~ z(-Kg3) — yE, where z,y are integers. Pushing down to X
shows that z > 0O, while the immobility of D shows that y > 0. Recall that
E.C > 0and(—K3).C = 0,whilethe contraction showsthat (—K ;:)2. D = 0.

Since (-K3)® = 29 —10and (-K;)*>.E = 4, weget 0 = (—K;)*.D =
ac(—Kg)3 — 4y, sothat (9 —5)z — 2y = 0.

Thusy(E . C) = 2. Now consider the various possibilities separately.

(1) E.C = 2. Then the Veronese surface E is mapped to a singular quartic
surface F1. Then by Lemma 7.3, either ¢ = 7 and E is singular along a line or
g = 6 and E7 issingular aong three concurrent lines. Since D isirreducible, it is
mapped to one of theselines. Thenageneral member of | — K | cuts D inascheme

that is the fundamental cycle of an RDP, so that (— K ;) .D? = —2. However,

2_ .2 3 2 2 2
(—KXV)D =z (—Kg) —ny(—Kj(V) Bty (—Kg).E,

so that
—2 = 2%(2g — 10) — 8zy — 24/

Substituting y = (g — 5)/2 gives
4=1%(g-5)(9 - 1),

which is absurd.
(2) E.C = 1. Since E meets every component of C, C' is reduced and irre-
ducible. Asin (1), ageneral member of | — K| cuts D in a number of copies of

C;since D . E isaplanecurveof degreey, it followsthat (—K ;) . D ~ yC. Then

—4y = (-K5) .D? = z2(2g — 10) — 8zy — 24/
Substituting y = 2 and (g — 5)z = 2y gives an immediate contradiction. ad

COROLLARY 7.6 If g > 6, then there are at most finitely many conics through
a general point P of X and at most finitely many quartic curves singular at P
(including reducible curves). O

8. Projection from a conic

In this section too we assume that —K x generates Pic X and that X is an inter-
section of quadrics. We shall assume also that X is covered by conics, so that if C
isageneral conicon X and P isageneral point on C, then it isagenera point on
X.Leto: X* =Ble X — X bethe blow-up along C' with exceptional divisor F'.
Put H* = —K x~; then |H*| has no base points. Welet ¢: X* — X4 bethe Stein
factorization of the morphism defined by | H*|.
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LEMMA 8.1 (1) The normal bundle N¢ x is O(a) ® O(—a), wherea = 0,1 or
2.

(2) ¢ collapses only the conics meeting C' twice, the lines meeting C' and, if
a = 2, the negative section of F'.

Proof. (1) Since Kx . C' = -2, it followsthat N¢/x = O(a) ® O(—a). Then
F = T, and |H*| cuts out a linear system on F' with no base points. Also,
H*|p ~ D+ 2¢, where D isthetautological classand ¢ isafibre. Supposethat I'
isanegative section (uniqueif ¢ # 0) in F'; then D .T' = —q, sothat —a + 2 > 0.

(2) Supposethat B C X isanirreducible curve collapsed by¢ and that B # C.
Then B U C iscontained in acopy of P2. Since X iscut out by quadrics, it follows
that B isasdescribed. It remains to consider curvesin F' collapsed by ¢; itis clear
that the only oneisT’, and then only if a = 2. O

PROPOSITION 8.2 If g > 7, then ¢ collapses only finitely many curves.
Proof. Assume that ¢ collapses a divisor D. We have D ~ z(—Kx+) — yF
where z, y are positive integers. Since (—K y+)?. D = 0, weget 2y = (g — 4)z.
Supposethat ¢(D) isapoint. Then D?. (—K x~) = 0, so that

22(2g — 8) — 8xy — 2y° = 0.

Substituting 2y = (g — 4)x gives a contradiction.

So ¢(D) is a curve. Since the general 1-dimensional fibre of ¢ is the strict
transform I" of a conic meeting C twice, it follows that 7'.I' = 2 and an argu-
ment involving fundamental cycles shows that D.I' = —2. Then y = 1, so that
(9 —4)x = 1, contradictingg > 7. O

Remark. In fact the same result holdsif g = 6. For thisit is necessary to prove
that the homomorphism H(Ox«(—Kx-)) — H°(Op(—Kx-)) has maxima
rank.

9. Rational Gorenstein singularitiesand flops

In characteristic zero it is known that given arational Gorenstein 3-fold singularity
(Y, P), either it isadouble point of a hypersurface or ageneric section through P
iselliptic, in which case the canonical divisor class Ky pulls back to the canonical
classof Blp Y. Asaconsequence, if Y has a small resolution, then Y is a double
point. Here we prove analogous results in characteristic p.

PROPOSITION 9.1 (1) Suppose that Y is a normal projective Gorenstein 3-fold
having a resolution f : Y — Y such that frwg = wy. Fix a very ample linear
system |H| and a point P on Y. Let K denote the function field of the system
|H — P|. Let S denote the generic member of |H — P| and S its strict transform
onY. Then S isanormal projective K-scheme on which P iseither regular or an
RDP or elliptic, in the sensethat mg pws C (fiws)p-

(2) If f issmall, then all singular points of Y are double points.
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Proof. By Abhyankar’s theorem already quoted, we can blow up Y to get a
smooth model Y* on which the ideal sheaf mp . Oy is Cartier. Then we can
assumethat Y* =Y, so that S movesin alinear system with no base points, and
soisaregular projective K -scheme. Now the proofs of (1) and (2) arejust asgiven
by Reid; for the sake of convenience, a sketch follows.

Wehave S ~ f*S — E, where E isthe effective Cartier divisor with ideal sheaf
mpOy,and K & f*Ky + Z, where Z iseffectivein aneighbourhood of f~YPp).
Let g: S — S be the induced morphism. Then Kz ~ ¢*Ks + (Z — E)|5, by
the adjunction formula, so that in aneighbourhood of f~1(P) thereisaninclusion
Oz(9"Ks — Elg) — O5(K53). Thentaking g, gives(1).

For (2), we appeal to (1) and the fact that if (S, P) is an elliptic Gorenstein
surface singularity of multiplicity at least 3, then Bl S is the canonical model of
the minimal resolution, sothat if h: Y1 — Y istheblow-up at P, then Y7 isnormal
and Gorenstein, and Ky, ~ h* Ky, so that the components of the exceptional locus
are divisorswith zero discrepancy. However, if thereisasmall resolution, then any
exceptional divisor has strictly positive discrepancy. ad

In our applications, Y will bethe anti-canonical model of X (thatis, ¢: X — Y
will bethe Stein factorization of the morphism defined by the base—point—freelinear
system | — K;[), where: X — X is the blow-up along either a general point
or, assuming that X is covered by conics, agenera conic. We know now that ¢ is
small.

PROPOSITION 9.2 For all singular points @ of Y there is an involution ¢ of
(Y, Q)" that induces —1 on its local class group.

Proof. We use Kollar's argument, slightly extended to include characteristic 2.
First, henselize at Q. Thereis afinite morphism f: (Y, Q)" — (A3,0)" of degree
2. If f isinseparable, then p = 2 and for any divisor class D € Pic U (where
U is a punctured neighbourhood of @ in Y*), we have 2D = f*f.D, so that
2D isprincipa. Thus the local class group is 2-elementary, and we can take . =
identity. If f is separable, then it is Galois; let . be the covering involution. Then
D+ D = f*f,D,whichisprincipal, sothat .*D ~ —D. O

COROLLARY 9.3 (1) X hasasmooth flop X *.

(2) If E isthe exceptional divisor on X andT isaflopping curve, then E.I" > 0.

(3) If E is the exceptional divisor on X and E its strict transformon X+,
then (E*)3 < E3, with equality if and only if X isisomorphic to X, whichin
turn happensif and only if X is Fano.

Proof. (1) For this, we just use Kollar's argument [K2].

(2) If X isapoint blow-up, then the flopping curves do not lie in £, but do
meet it. If X isaconic blow-up, then £ + (-K ;) = n*(—Kx). By Lemma8.1,
™ (—Kx).T' > 0for any flopping curve I", and the result follows.
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(3) We follow an argument of Mori’s. By (2), the class m(£ + n(—K3))

is very ample relative to f : X — Y for suitable m and n. Then there exist
Bi, By, Bs € [mn(—K )| and A1, Az, Az € |m(E + n(—K5))| such that the B;
are digoint from the flopping locus I' and the A; are disjoint from each other near
I. Then B;.F.D = B;*. F*. D" for al divisors F, D on X, so that m3(E® —
(E1)3) = A1.Ay. A3 — A]. AJ. A}. Since E® — (E*)3 is supported on the
flopping locus, it follows that

m3(E% — (E1)3) = (A1.A2. A3)r — (AT AS. At
= (AT AS. AD)p+.

Since A7 . A isanon-zero cycle supported on I'*, unless A; is digoint from I

(inwhich case T isempty), andsince D . A = —D* . A+ for all divisors D on X
and components A of I, we are done. O

10. Wild fibrations

A conic bundle f : X — B iswild if every fibre is a double line. A del Pezzo
fibration iswild if the geometric generic fibreiswild, in the sensethat H(0) # 0.

If f: X — Bisawild conic bundle, then thereis no discriminant curve and so
no analogue of the formula—4K 5 ~ f.(—Kx)?+ A. Infact it isunclear a priori
whether B need be rational if X is Fano, or even whether it might be of general
type. The next result disposes of this intriguing possibility.

PROPOSITION 10.1 If X isFanoand f: X — B isawild conic bundle, then
B =P?or P! x P

Proof. Since H'(Ox) = 0for i > 0, the Leray spectral sequence shows that
H'(Op) = 0fori > 0. Since Pic X is torsion-free so is Pic B, and then the
classification of surfaces shows that either B isrational or Kod(B) > 1. Assume
that B is irrational, and fix an ample divisor class D on B. Then D.Kg > 0.
Take an irreducible element S of | — K| (it is clear from Section 3 and 4 that
such an S exists). If V' isthe normalization of the Stein factorization Sy of S then
Ky < 0and V — B isapurely inseparable double cover. Let V — B — V(1)
be the corresponding factorization of the geometric Frobenius, we can regard
g: B — vV asthe quotient by afoliation O(A) — Tp. Then f*c (VD) ~
2A+ (c1(B) — A) ~ A— Kp,sothat D.(A — Kg) > 0. Hence the foliation
O(A) — Tp isindependent of the choice of S, so that V' isindependent of S. In
fact, if S isany member of | — K|, then it has a unique component S” dominating
B, and this argument shows that the normalization of S’ isindependent of S. This
is clearly impossible, and hence B isrational.

Suppose now that thereisasmooth rational curve E on B with E? = —d < —1.
Put W = f~Y(E), with induced morphism h: W — E, and let ¢ denote a
scheme-theoretic fibre of . If W is not reduced, then since H . ¢ = 2 it follows
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that W = 2U and U is a PX-bundle over E, say with fibre f = ¢req. Since
Nu/x - f = 0, the adjunction formula gives K . f = —1, which is impossible.
Hence W is reduced. N

Let v: W — W be the normalization; then there is a factorization W —
E(-Y — E of hv through the geometric Frobenius; since v* H is ample and cuts
out O(1) on the geometric generic fibre f of W — E(-1 | it follows that W isa
PL-bundle over E-. Let C C W be the curve defined by the conductor ideal;
then

wi, = view © O(=C) = v* O(~H) ® v*h*O(~d),

sothat —K5 ~ v*H +C + 2df. Since f.v*H = 1, it followsthat f.C =1,
sothat C = D + Y r;f;, where D is a section and the f; are fibres. Then
0=D?+D.Kj; +D.v"H +2d + X r;. Since v*H is ample, we see that
2> 2d+ Y r;, whichisimpossibleif d > 0. O

PROPOSITION 10.2 Suppose that X is a normal Gorenstein 3-fold and that f :
X — U is a projective morphism to a smooth quasi—projective curve whose
geometric generic fibre X, is a del Pezzo surface. Then one of the following
statementsistrue.

(1) X, istame (that is, x(Ox,) = 1).
(2) p=2and (wx,)? = 1or 2.

Proof. Notefirst that X isavariety, by Bertini’s theorem.

We shall assume that U is affine and that wy; is trivial, and we shall shrink U
tacitly and arbitrarily whenever this may be convenient.

Assume that X iswild. Put D = —Kx. Then HY(Ox(—D)) # 0. Pick a
non-zero class 7 € HY(Ox (—D)), and pick the least integer n > 1 such that the
image of 7 in HY(Ox (—p™D)) under the n’th Frobeniusis zero. Then thereis a
finite and purely inseparable morphism p: Y — X, whereY isavariety (since X
isnormal) with Gorenstein singularities, since p islocally an a,»-bundlein the flat
topology. Moreover, wy = p*Ox(Kx — (p" —1)D) = p*Ox (—p"D) and p, Oy
has a filtration whose graded pieces are Ox, Ox (D),...,Ox((p"™ — 1)D) [E].
(Notethat the construction of Y given by Ekedahl is not unique, giventhat X fails
to be complete. However, the ambiguity in the construction is entirely accounted
for by the existence of non-constant global functionson X'; sinceall such functions
pull back from U, we can avoid al difficulties by shrinking U.)

Letv: Y — Y bethe normaization, so that Ky ~ v Ky — A, where A

is the codimension 1 part of the subscheme defined by the conductor ideal. Put
p=pov:Y — X, and let Y50, 25U be the Stein factorization. Note
that F;. : U, — U is the r'th geometric Frobenius, where 0 < r < n. Let ¢
be a geometric generic point of U, and s = F.(t). Since Y is normal, the fibre
Y, = V, say, is a variety, by Bertini’s theorem, that is Cohen-Macaulay and has
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hypersurface singularitiesin codimension 1. Put I = (5*D)|y, andletw: V — V
be the minimal resolution. Then —Ky =p"m" L+ A+ Z, where A, Z >0, Z is

contracted by 7 and A isthe strict transform of the curve defined by the conductor
ideal. Hence Al = 0if A =0.

CLAIM If A # 0, thenp = 2and (wyx,)? = 1. R
it Proof of claim. If V = P2, then thisis obvious. So assumethat V' # P?; then
thereisaruling V' — C, where C' isacurveof genusg, say. Let F' beafibre. Then

2=(-Ky).F=p"(n"L).F + (A+Z).F,

sothat p" = 2and A + Z isvertical. Now V has asection o with o2 < g; suppose
first that o is not contracted by 7, sothat 0. 7*L > Oand o . (A + Z) > 0. Then
2—g>(-Ky).0 > p".1+0,s0that g = 0and 0® = 0. However, if V # Ko,
then there exists o with 02 < 0; hence V = Fo. Then A + Z = 0.

If o iscontracted, thenit formspart of the exceptional locusof an RDP, sinceitis
not containedin A+ Z; hencec? = —2.Theno isdigointfrom A+ 7, sothat there
isavertical curve C not containedin A + ZwithC' . (A+Z) > 0.1f C.7*L =0,
then C2 < —2, sincetheresolutionisminimal. Then0 > —K‘~/.C = (K—I—Z).O,
whichisabsurd. If C.7*L > 0, then1 > — K. C' > (A + Z).C,whichisalso
absurd. Hence the claim is established.

Hence we may assumethat Y is normal. Note that then Y; isavariety and isa
Cartier divisor on Y, and so has Gorenstein singularities. Let o : Y; — X, bethe
induced morphism; dego = p"™~". Thefiltration above shows that

pt—1
P'x(Oy,) = Y x(Ox,(iD)) = D*(p" + L)p"(p" — 1)/6+ p"x(Ox,).
=0
By the adjunction formula, wy, = p*Ox(—p"D)|y, = 0c*Ox,(—p"D), SO
that Y; is a del Pezzo surface whose index is divisible by p™. Then from Reid's
classification [R 2, 1.1] p" < 3.
Supposethat p™ = 3. Then (wy,)? = dego . p?*(wx,)? = p**~"(D|x,)?. Since
Y; isdel Pezzo and wy, isdivisible by 3, Reid’s classification shows that Y; = P2,
sothatr =n = 1and (D|yx,)? = 1. Also,

X(Oy;) = (D|x,)?.4.2/6+ x(Ox,),

which is absurd.

Suppose that p™ = 2. Then Y; is del Pezzo and wy;, is divisible by 2, so that
Y; is normal, from Reid’s classification, and is a quadric (maybe a cone). Then
8 = 25"(D|y,)? sothat (D|x,)? = 2. Also,

2'x(0y,) = (D|x,)%32.1/6 + 2'x(Ox,),
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sothat x(Ox,) = 0and (wy,)? = (D|x,)?=2"=1lor2. O

COROLLARY 10.3 Supposethat f: X — U isasin 10.2. Assume that thereisa
multiple fibre. Then p = 2, all fibres have multiplicity at most 2 and K% .= 2for
a general fibre X;.

Proof. Supposethat F' = mL isamultiple fibre. Then for a geometric gener-
ic fibre Fy, m divides x(Op,), so that F; is wild. Then p = 2, by 10.2. Also,
mK%.L=K%.F,=1or2,by10.2 sothatrn = 2and K2 . F;, = 2. O

PROPOSITION 10.4 Suppose that f : X — B isthe contraction of an extremal
ray on a smooth 3-fold and that dim B = 1. Then K)z(t < 9for any fibre X;.
Proof. Suppose that ¢ is a geometric generic point of B, and put X; = S. By
10.2 and 10.3 we can assumethat S is tame and that there are no multiple fibres.
If S is normal, then either it has only RDPs or it is the cone over an elliptic
curve. Inthefirst case K2 < 9, and in the second K3 < 3since S isadivisor ona
smooth 3-fold. N N
Supposethen that S isnot normal andthat S — S isthe normalization. Then S,
polarized by —Ks, is either IP? or arational cone or arational scroll or aVeronese
surface, and S — S is a projection mapping a conic C to aline L. Since S has
unibranched singularities, the map C — L must be one-to—one on geometric
points. Hence either p # 2 and C is a double line or p = 2, C' is smooth and
C — L isthe Frobenius. Hence if p # 2, then either S is aplane and C' adouble
line or S isarational cone and C is a double generator. In the first case K2 = 1
and in the second S is the cone over acuspidal rational curve.
If p = 2and C issmooth, then either

€)] S isaplaneand C aconic, or

(b) S isaVeronese surface and C' aconic, or

(c) S isaquadric cone, or

(d) S is arationa scroll F, ., with & < 2. In cases (a)—c) K2 < 4, whilein
case (d) either ¢« = O and & = 1 (when S is a quadric, so that K2 =2 or
there are two classes in Pic S that are invariant under monodromy. This last
possibility, however, contradicts the fact that the contraction of an extremal
ray has relative Picard number equal to 1. O

11. Thebirational classification when p = 1
In this section X will denote a Fano 3-fold withp = =1andg > 6.
LEMMA 11.1 Suppose that X T is the flop of either Blp X or (assuming that X

is covered by conics) Bl¢ X, that f: X+ — B isthe contraction of an extremal
ray and that dim B = 1. Then f has no multiple fibres.
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Proof. According to the results of Section 10 we can assume that there is a
double fibre, say F = 2L, and that (H+)2. L = 1, where H+ = —K . Let
E* denote the strict transform of the exceptional divisor. Then we can write
L ~zHT —yE* for someintegersz, y. Since (H+)3 = 2g — 2s, where s = 50r
4,and (HT)?. ET = 4, we get

1= (H")2.L=xz(29 — 2s) — 4y,

which is absurd. g

THEOREM 11.2 X iscovered by conics, g < 12and g # 11.

Proof. This exactly follows Takeuchi’s argument [T]. What he doesisto carry
out a detailed analysis involving the calculation of intersection numbers and the
consideration of extremal rays on the flop X+ of a point blow-up. This provesin
particular that X has an extremal ray whose contraction is not a morphism to
X. This carries over to characteristic p given the results of Section 10 and 11.1
concerning conic bundlesand del Pezzo fibrations. The only other differenceisthat
to prove that g # 11, we must show that the flop X ™ of the blow-up at a general
point is not awild conic bundle.

So assumethat g = 11; by Takeuchi’ sargument thereisaconic bundle structure
h: Xt — S, which we assume wild, where S is a surface with p(S) = 1. By
Proposition 10.1 S = P?. Let L denote the pull-back to X+ of aline on S and
ET the dtrict transform on X of the exceptional divisor on X. Let A denote a
fibre of h, with itsreduced structure, andput H* = —Ky+.ThenL = HT — E*
(Takeuchi) sothat Et. A = 1. Hence ET — S is purely inseparable. According
to Takeuchi X does contain at least one flopping curve ¢, since the number e
defined by the equation (E+)2 = E% — e = 1 — e isnon-zero; by the construction
of the flop, E*.¢ < 0, so that E* contains ¢ and the normalization of E* has
Picard number at least 2. Then E* — S is not finite, so that E* contains at least
one of the curves A. However, K x+|g+ ~ 2E" |+ andsoiseven; thus HT. A is
even, whilewe know that . A = 1. O

Remark. In characteristic zero Takeuchi proves the existence of lineson X in
the course of considering an extremal ray on theflop of Bl X, where C' isaconic.
In characteristic p this breaks down; even though the enumerative arguments show
that there is a flopping curve on Bl X, this curve could be the negative curve on
the exceptional divisor if NC/X isof type (2, —2). If C' isgenericin characteristic
zero then its normal bundleis (0, 0), of course.

COROLLARY 11.3 Thehirational structure of X isjust as given by Takeuchi and
Mori. That is, via point blow-up (resp. conic blow-up) and flop, the possibilities
for the various values of ¢ are given as follows:
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Point blow-up:

g = 12: X7 isthe blow-up of P2 along a smooth rational curveI" of degree 6 that
lies on a cubic surface.

g = 10: Xt isa pencil of sextic del Pezzo surfaces over P*.

g = 9: X isthe blow-up of another Fano of genus 9 along a point.

g = 8 X isthe blow-up of a cubic threefold along a smooth rational curve of
degree4.

g = 7. X" isthe blow-up of another Fano of genus 7 along a point.

Conic blow-up:
g = 12: Xt isthe blow-up of Q2 along a sextic rational curve.
g = 10: Xt isa conic bundle over P?, which is either wild in characteristic 2 or
has a quartic discriminant locus.
g =9: Xt isapencil of sextic del Pezzo surfaces over P2.
g = 8. X" isthe blow-up of another Fano of genus 8 along a smooth conic.
g = 7: X7 isthe blow-up of Q2 along a curve of degree 10 and genus 7.
Proof. Exactly asthat of Mori and Takeuchi. O

COROLLARY 11.4 X isrational if either g =70r g > 9.

Proof. By Corollary 11.3 and the results of Section 10, it is enough to show
that if f: Xt — Plisapencil of sextic del Pezzo surfaces, all of whose fibres L
have x(©0) = 1 and are reduced and irreducible, then X * isrational.

Suppose first that the geometric generic fibre L is not normal. Let Z — L be
the normalization. Since the singularities of L are unibranched and lie on a smooth
3-fold, Reid’s classification [R] showsthat Z — L is the projection of arational
scroll F from a point () coplanar with aconic D on T, theimage ¢ of D on L isa
lineand D — ¢ isinseparable (so that p = 2). Then the scheme-theoretic generic
fibre X defined over K = k(P?) containsa K -rational line m (recall that X ¢ is
embedded in P®); projecting X ;- from m exhibits X ;© birationally as a P*-bundle
over P, sothat X * isrational.

So we can assume that L is normal. Then it has only RDPs.

Suppose that ¢ = 10 and X T is the flop of a point blow-up Blp X. Let B+
denote the strict transform of the exceptional divisor. Any irreducible flopping
curve T is the transform of a conic through P, so that T'. Et = —1. Since
0=T.(—Kx+)=T.(E" + L),itfollwsthat L.T" = 1, so that T is a section of
f.Thatis, X} hasa K-point; projecting from this showsthat X ;- is K-birational
to a quintic del Pezzo surface, which is well known to be rational over K (see
[S-B] for ashort and easy proof).

Supposethat ¢ = 9 and that X * is the flop of a conic blow-up Bl¢- X. If there
isanirreducible flopping curve T that is the transform of a conic meeting C' in one
point, then we see as above that T" is a section of f, so that again X * is rational.
Otherwise Ny x = (2, —2) and the only flopping curve T' is the transform of the
negative section on the exceptional divisor E. Then ET.T' = —2,sothat L. = 2.
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Assume first that I' — P! is separable. Suppose that Xt is smooth. Then the
complement of the lineson X;;- isatorsor 73 under atorus 7" defined over K, and
thereisaGaloisextension L/ K suchthat 71 ® x L istrivial. Since K isaC1 field,
HYL/K,Ti(L)) = 0[S, p.170], so that 7} istrivia. Then X ;> hasa K-point and
is K-rational.

If X ;! issingular, then either it hasadouble point () defined over K or it hastwo
conjugate points Q1, Q; of type A;. In the first case projection from @ maps X ;-
to a quartic surface S in P°. Geometrically, there are three possibilities for S, and
ineach case S carriesapencil, defined over K, of lines. Hence X /- is K -birational
to PL x Z, where Z isaconic over K. By Tsen'stheorem Z, and so X 7;, is then
K-rational.

In the second case the line m joining Q1, Q2 liesin X ;- and is defined over K.
Projecting from m maps X ;: to a cubic surface in P4, which contains a pencil of
lines defined over K. Then X} is again seen to be rational via Tsen’s theorem.

So assumethat I' — P! isinseparable. Then p = 2. Assumefirst that T' passes
through a smooth point of L. Put Yx = Blr,. X ;. Then Yk isaquartic del Pezzo
surface containing a K-rational line m, the exceptional divisor. Since Yy is an
intersection of two quadrics, projecting Yy from m showsthat Yy is K-rational,
and so X isrational.

If instead " passes through an RDP of L, then X ;- has a K-rational double
point Q. We have already seen that X ;! is K -rational in this case. O

12. Liftability and lines

Of course if H?(©x) = 0 then X is liftable to characteristic zero. However,
h?2(©) = hY(Q% ® O(-H)), where H = —K; this would vanish if X were
liftable even modul o p?, by Deligneand I llusi€’ sproof of Kodaira—Akizuki—-Nakano
vanishing. Without some assumption of liftability, however, the well known use of
the Cartier operator and the spectral sequences of hypercohomology yields only
that H?(©) is at most 1-dimensional, even if the groups H' (¥ ® O(—pH)) are
assumed to vanishfori + 5 < 2.

PROPOSITION 12.1 Assumethat X * isa smooth projective 3-fold containing an
anticanonical K3 surface S, that H*(€}.., ) is generated by algebraic classes (that
is, generated by the first Chern classes of divisors) and that for every non-zero
primititive class D € Pic X, the restriction of D to S is also non-zero and
primitive.

Then H?(© +) = 0.

Proof. The hypotheses imply that the natural map H1(Q% ) — HY(Q}) is
injective. Since H O(Qg) = 0[R—S], taking cohomology of the exact sequence

0— Q% (logS)(—S) = Q%+ — QL =0

https://doi.org/10.1023/A:1000158618674 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000158618674

FANO THREEFOLDSIN POSITIVE CHARACTERISTIC 263

shows that H1(Q2% . (log S)(—S)) = 0. Then H?(© y+(—logS)) = 0, by Serre
duality. Then the cohomology of

0— Ox+(—logS) = Ox+ - 05— 0,

with the Rudakov—Shafarevich theorem, gives the result. O

We shall say that H1(QY,) isalgebraic if it is generated by algebraic classes.

LEMMA 12.2 If X,Y are birational smooth projective 3-folds, then H1(Q}.) is
algebraic if and only if H(Q1) is so. In particular, H(Q},) isalgebraic if X is
rational. N

Proof. By Abhyankar’'s theorem aready quoted, there is a sequence X — X
of blow-ups with smooth centres such that the induced birational map X — Y is
amorphism. If H1(QY) is agebraic, then so is Hl(Q}), and the Leray spectral

sequence showsthat sois H1(07). 0

PROPOSITION 12.3 Suppose that X is Fano, of index 1 and Picard number 1.
Then HY(92) is generated by algebraic classes.

Proof. By Corollaries11.3 and 11.4 X iseither rational or birational to a cubic
3-fold. The result now follows from Lemma 12.2 O

COROLLARY 12.4 Any Fano 3-fold X of Picard number 1 can be lifted to char-
acteristic zero.

Proof. If » > 2, then this has been done by Megyesi (unpublished). If Bs| —
K| # 0, then this follows from Theorem 3.4. If Bs| — K| = () and | — K| is not
very ample, then X is a divisor in a P3-bundle over P! if X is trigonal and is a
divisor in aline bundle over either P2 or a quadric 3-fold or a P?-bundle over P;
in these cases the liftability is immediate.

Assume then that | — K| is very ample. If ¢ < 5, then X is a complete
intersection in projective space. If g = 6 then its anticanonical ring is Gorenstein
of codimension 3, and so defined by Pfaffians. Then X is alinear section of the
Grassmannian G(2,5). So suppose that ¢ > 7. By Proposition 12.1 it suffices to
show that — K x restricts to a primitive class on a general K3 section S. Suppose
that it does not; then 29 — 2 = 2dp? for some integer d. The resulting possibilities
are

(1) g=10,p=3andd = 1 and
2g=9p=2andd =2.

In case (1), consider the flop X+ of a point blow-up. Let ET be the strict
transform of the exceptiona divisor and S* the strict transform of a general
element of |[H*| = | — Kx+|. Then H*|g+ ~ 3G — 2E™" |4+ for some divisor
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class G on S*. We know that —K y+ ~ E* + L, where L is a fibre of a del
Pezzo fibration, so that L|g+ is divisible by 3. Then h%(O+ (L)) = 2, while
h°(Og+ (L)) > 4. Then the cohomology of an appropriate exact sequence gives
R (Ox+ (=St + L)) > 2. However, Oy + (—ST + L) = O+ (—E1), and taking
the cohomology of

0— Ox+(—E+) - Ox+ > O+ =0

gives acontradiction, since H1(Ox+) = 0.

In case (2), consider the flop X of a conic blow-up, and let E*, ST, H* be
asin(1). Then H*|g+ ~ 2G — E*|g+ for somedivisor classG on S, while X *
has a sextic del Pezzo fibration with fibre L suchthat H+ ~ E* + L. Then L| g+
isdivisible by 2, and now the same argument asin (1) can be used. O

COROLLARY 12.5 X containsaline.
Proof. Lines exist in characteristic zero, and so arise in characteristic p by
specialization. O
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