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LINEAR RELATIONS BETWEEN

FOURIER COEFFICIENTS OF

SPECIAL SIEGEL MODULAR FORMS

WINFRIED KOHNEN

Abstract. In this paper we give certain linear relations between the Fourier
coefficients of Siegel modular forms that are obtained from Ikeda lifts.

§1. Introduction

Let n and k be positive integers with n ≡ k (mod 2). In [5], T. Ikeda

constructed a lifting map which associates to a cuspidal Hecke eigenform f

of weight 2k with respect to Γ1 := SL2(Z) a cuspidal Hecke eigenform F of

weight k + n with respect to the Siegel modular group Γ2n := Sp2n(Z) ⊂
GL4n(Z) of genus 2n. By Ikeda’s construction, the Fourier coefficients of F

are given in terms of (essentially) squarefree Fourier coefficients of modular

forms of half-integral weight and products of special values of modified local

singular series polynomials.

The existence of this lifting, in terms of a relation between associated

zeta functions, was previously conjectured by Duke-Imamoglu and indepen-

dently by Ibukiyama, in a somewhat different form.

If n = 1, the lift comes down to the classical Saito-Kurokawa lift.

In [10], we gave a linear version of Ikeda’s lifting map, as a linear map

from half-integral weight modular forms to Siegel modular forms of genus

2n. If n = 1, one recovers a formula given by Eichler-Zagier [4] for the

Fourier coefficients of the Saito-Kurokawa lifting in terms of the Fourier

coefficients of half-integral weight modular forms.

In the classical case n = 1, as is well-known the space generated by

the lifted forms F has a nice description in terms of certain linear relations

between Fourier coefficients (“Maass space”), cf. e.g. [4, sect. 6, formula

(9)].
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Let T be a positive definite, half-integral, symmetric matrix of size 2n

and denote by DT := (−1)n det(2T ) its discriminant. The aim of this paper

is to show that also in the case n > 1 there exist linear relations of a similar

kind between certain of the Fourier coefficients a(T ) of F , for all F , at

least if n 6≡ 2 (mod 4). Indeed, this follows from the linear description

of Ikeda’s lifting map in terms of the coefficients c(m) (m ∈ N) of half-

integral weight modular forms given in [10], together with the fact the c(m)

often can already be recovered from the a(T ) for very special T . However,

contrary to the case n = 1 it is hard to imagine that for general n > 1

these relations can be used to give a linear characterization of the space

generated by the F .

In Section 3, we state Ikeda’s lifting result and the linear version of it

given in [10] in detail, after having recalled several preliminaries in Section

2. In Section 4 we explicitly state the linear relations addressed above in

the case n ≡ 1 (mod 4) and give a detailled proof. Section 5 contains

some remarks in the other cases n 6≡ 1 (mod 4).

Acknowledgements. The author would like to thank the referee for
a very useful suggestion.

§2. Preliminaries

We will recall several facts about local singular series polynomials. As

references, the reader may consult [1,6,7]. We will also recall the definition

of a certain number-theoretic function which enters into the formulas for

the Ikeda lifting given in [10].

Let T ∈ Mm(Q) be a rational, symmetric, non-degenerate, half-integral

matrix of size m.

If m is even, we denote by

DT := (−1)
m
2 det(2T )

the discriminant of T . Then DT ≡ 0, 1 (mod 4) and we write DT =

DT,0f
2
T with DT,0 the corresponding fundamental discriminant and fT ∈ N.

Let us fix a prime p. Recall that one defines the local singular series of

T at p by

bp(T ; s) :=
∑

R

νp(R)−sep(tr(TR)) (s ∈ C)

where R runs over all symmetric (m,m)-matrices with entries in Qp/Zp and

νp(R) is a power of p equal to the product of denominators of elementary
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divisors of R. Furthermore, for x ∈ Qp we have put ep(x) := e2πix′

where

x′ denotes the fractional part of x.

As is well-known, bp(T ; s) is a product of two polynomials in p−s with

coefficients in Z. More precisely, one has

bp(T ; s) = γp(T ; p−s)Fp(T ; p−s)

where

γp(T ;X) :=







(1 − X)(1 − (
DT,0

p )pm/2X)−1 ∏m/2
j=1 (1 − p2jX2), if m is even

(1 − X)
∏(m−1)/2

j=1 (1 − p2jX2), if m is odd

and Fp(T ;X) ∈ Z[X] has constant term 1.

In the following we will suppose that m = 2n is even. A fundamental

result of Katsurada [6] then states that the Laurent polynomial

(1) F̃p(T ;X) := X−ordp fT Fp(T ; p−n−1/2X)

is symmetric, i.e.

F̃p(T ;X) = F̃p(T ;X−1).

(There is also a corresponding functional equation if T is of odd size, but

we won’t need it. For the functional equation cf. also [2].)

If p does not divide fT , then Fp(T ;X) = F̃p(T ;X) = 1.

Denote by V = (F2n
p , q) the quadratic space over Fp where q is the

quadratic form obtained from the quadratic form x 7→ T [x] (x ∈ Z2n
p ) by

reducing modulo p. (For matrices A and B of appropriate sizes over a

commutative ring we put A[B] := BtAB as usual.)

Let R(V ) be the radical of V , put sp := dimR(V ) and denote by W

an orthogonal complementary subspace of R(V ).

According to [7], one defines a polynomial by

Hn,p(T ;X)

:=



















1 if sp = 0
∏[

sp−1

2
]

j=1 (1 − p2j−1X2) if sp > 0, sp odd

(1 + λp(T ) p
sp−1

2 X)
∏[

sp−1

2
]

j=1 (1 − p2j−1X2) if sp > 0, sp even,

where for sp even we have put

λp(T ) :=

{

1 if W is a hyperbolic subspace or sp = 2n
−1 otherwise.
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For µ ∈ Z, µ ≥ 0 define ρT (pµ) by

∑

µ≥0

ρT (pµ)Xµ :=

{

(1 − X2)Hn,p(T ;X), if p|fT

1, otherwise.

We extend the function ρT multiplicatively to the whole of N by defin-

ing
∑

a≥1

ρT (a)a−s :=
∏

p|fT

((1 − p−2s)Hn,p(T ; p−s)).

It follows from the definitions that
√

a ρT (a) is an integer.

Finally, let

D(T ) := GL2n(Z)\{G ∈ M2n(Z) ∩ GL2n(Q) |T [G−1] half-integral }

where GL2n(Z) operates by left-multiplication. Then D(T ) is finite as is

easy to see. For a ∈ N with a|fT put

(2) φ(a;T ) :=
√

a
∑

d2|a

∑

G∈D(T ),|det(G)|=d

ρT [G−1](
a

d2
).

Note that on the right hand side of (2) we have a
d2 |fT [G−1] and that φ(a;T ) ∈

Z for all a.

§3. Lifting maps

Let f be a normalized cuspidal Hecke eigenform of even integral weight

2k with respect to Γ1. For a prime p, let λ(p) and αp be the p-th Fourier

coefficient and the Satake p-parameter of f , respectively. Thus

1 − λ(p)X + p2k−1X2 = (1 − pk−1/2αpX)(1 − pk−1/2α−1
p X).

Note that αp is determined only up to inversion.

Let

g =
∑

m≥1,(−1)km≡0,1 (mod 4)

c(m)e2πimz (z ∈ H = upper half-plane)

be a cuspidal Hecke eigenform of weight k + 1
2 and level 4 contained in the

“plus” space which corresponds to f under the Shimura correspondence

[9,12].
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Let n ∈ N with n ≡ k (mod 2). For T a positive definite, symmetric,

half-integral matrix of size 2n define

(3) af (T ) := c(|DT,0|) f
k−1/2
T

∏

p|fT

F̃p(T ;αp)

where we have used the notation explained in Section 2. Note that for n

and k of the same parity (−1)kDT,0 > 0.

Theorem [5]. The function

F (Z) :=
∑

T>0

af (T )e2πi tr (TZ)

(Z ∈ H2n = Siegel upper half -space of genus 2n),

where T runs over all positive definite, symmetric, half-integral matrices of

size 2n, is a cuspidal Siegel-Hecke eigenform of weight k +n with respect to

Γ2n.

Theorem [10]. With the notation of Section 2, one has

(4) af (T ) =
∑

a|fT

ak−1φ(a;T )c(
|DT |
a2

).

§4. Linear relations

We keep all notations of the preceding sections.

If T1 and T2 are quadratic matrices over a commutative ring, we write

T1 ⊕ T2 for the diagonal block matrix

(

T1 0
0 T2

)

.

Let n ∈ N with n ≡ 1 (mod 4). Let T0 be a positive definite, integral,

even, symmetric, unimodular matrix of size 2n − 2. (Note that 2n − 2 ≡ 0

(mod 8); for example, one can take for T0 the matrix of n−1
4 copies of the

standard E8-lattice.)

For m ∈ N with m ≡ 0, 3 (mod 4), let Tm be any positive defi-

nite, half-integral, symmetric (2,2)-matrix of discriminant −m whose as-

sociated quadratic form represents the number 1. Note that for given m

all such forms are equivalent; for Tm one can take for example

( m
4 0
0 1

)

or
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( m+1
4 1/2

1/2 1

)

according as m ≡ 0 (mod 4) or m ≡ 3 (mod 4), respec-

tively.

Theorem. Let n, k ∈ N with n ≡ k (mod 2). Suppose that n ≡ 1

(mod 4). Let f be a normalized cuspidal Hecke eigenform of weight 2k

with respect to Γ1. Then with the above notation, for each positive definite,

symmetric, half-integral matrix T of size 2n the Fourier coefficients of the

Ikeda lift F of f given by (3) satisfy the linear relation

af (T ) =
∑

a|fT

ak−1φ(a;T ) af (T|DT |/a2 ⊕ 1

2
T0).

Proof. Note that by our assumption DT < 0. In view of (4), it is
sufficient to prove that

(5) af (Tm ⊕ 1

2
T0) = c(m)

for all m ∈ N with m ≡ 0, 3 (mod 4).
We first claim that

(6) F̃p(T ⊕ 1

2
T0;X) = F̃p(T ;X)

for any rational, symmetric, non-degenerate, half-integral matrix T and all
p, where for our purposes it is sufficient to prove (6) only for T of even
rank, say 2r.

Indeed, for fixed p let L and U be the lattices over Zp corresponding to
T and 1

2T0, respectively. Then U is an even unimodular hyperbolic lattice.
The set Dp(T ) (defined in the same way as D(T ) in Section 3, but with
Z replaced by Zp) can be identified with the set of isomorphism classes of
Zp-integral lattices L̃ ⊂ L⊗Qp containing L, and as is well-known the map
from Dp(T ) to Dp(T ⊕ 1

2T0) induced by L̃ 7→ L̃ ⊕ U is a bijection. In fact,
the surjectivity is a consequence of Propos. 5.2.2 in [8] and the injectivity
follows from Lemma 5.3.1 in [8] (cf. also [11; 82:15, 92:3 and 93.14a]).

On the other hand, by [7, Thm. 2] (compare also [9, Propos. 1]) one
has the identity

F̃p(T ;X) =

X−ordp fT
∑

G∈Dp(T )

X2ordp |detG| · (1 − (
DT ,0

p
)p−

1

2 X) · Hr,p(T [G−1];X).
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Hence (6) follows.
From (6), in particular we obtain that

F̃p(Tm ⊕ 1

2
T0;X) = F̃p(Tm;X).

Thus by (3), the proof of (5) is reduced to the case n = 1, i.e. to showing
that

(7) af (Tm) = c(m)

for all m. This, however, is the situation of the Maass space and (7), of
course, is well-known (cf. [4; 5, sect. 16; 9, sect. 6]). Note that (6) also
follows easily from certain recursion formulas for the local singular series
polynomials given in [6], cf. in particular [6; Thm. 2.6 (1), proof of Thm.
4.1 and p. 418].

§5. Complements

Suppose that n ≡ 0 (mod 4) and let T0 now be a positive definite,

integral, even, symmetric, unimodular matrix of size 2n− 8. Then one can

show in a similar way as above that

af (Sm ⊕ 1

2
T0) = c(m) (m ≡ 0, 1 (mod 4))

where

2Sm =



























2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 0 0 0 m

2



























if m ≡ 0 (mod 4) and

2Sm =



























2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 m+3

2


























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if m ≡ 1 (mod 4), respectively. We leave the details to the reader.

Note that the lattice attached to 2S4 is just the E8-lattice and that

the matrices Sm are simple analogues in the case of rank 8 of the special

matrices

( m′

4 0
0 1

)

etc. (m′ ≡ 0, 3 (mod 4)) of Section 4.

Thus from (4) we again obtain certain linear relations among the Fourier

coefficients af (T ).

To proceed in the general case in a similar way, for each m ∈ N with

(−1)nm ≡ 0, 1 (mod 4) one would like to find a positive definite, symmet-

ric, half-integral matrix Rm of size 2n which satisfies the following condition:

i) if m ≡ 0 (mod 4), then

Rm ∼ (−1)n−1up

(

(−1)n−1m/4 0
0 1

)

⊕
(

0 1/2
1/2 0

)⊕(n−1)

with some up ∈ Z∗
p for all primes p;

ii) if (−1)nm ≡ 1 (mod 4), then

Rm ∼ (−1)n−1up

(

((−1)n−1m + 1)/4 1/2
1/2 1

)

⊕
(

0 1/2
1/2 0

)⊕(n−1)

with some up ∈ Z∗
p for all primes p. Here ∼ means equivalence over Zp.

One can construct such an Rm at least unless n ≡ 2 (mod 4) and m

is a perfect square. Indeed, denote by ( , )p the Hilbert symbol relative to

Qp. Clearly the Hasse invariant of the quadratic form Qm,p over Zp defined

by the right-hand side of i) resp. ii) is equal to

cp(Qm,p) = (−1,−1)n(n−1)/2
p (up, (−1)nm)p

=

{

(up, (−1)nm)p, if p > 2
(−1)n(n−1)/2(up, (−1)nm)p if p = 2.

Suppose that m is not a square. Then we can choose a prime ` such

that ord` m is odd and u` ∈ Z∗
` such that

(u`, (−1)nm)` = (−1)n(n−1)/2.

We put up = 1 for p 6= `. Then cp(Qm,p) = 1 for almost all p and

∏

p

cp(Qm,p) = 1.
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Hence the existence of Rm follows from [3; chap. 6, Thm. 1.3 and chap. 9,

Thm. 1.2].

Similarly, if m is a square and n is odd, then we can find u2 ∈ Z∗
2 such

that

(u2,−1)2 = (−1)(n−1)/2

and put up = 1 for p > 2. Finally, if m is a square and n ≡ 0 (mod 4), we

put up = 1 for all p.
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