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Abstract. Let 4 be a noetherian local ring, x a non-unit element of 4, B= A/(x).
Let E be the Koszul complex associated to an arbitrary set of generators of the ideal
(x) of 4. Assume that H,(FE) is a free B-module. Then A4 is Gorenstein if and only if
B is also.
1991 Mathematics Subject Classification. 13H10, 13D03.

Introduction. Let 4 be a noctherian local (commutative with unit) ring, 7 an
ideal of 4, and B = A/I. Let E be the Koszul complex associated with a set of gen-
erators of the ideal /. Assume that H|(F) is a free B-module, and that
Hy(E)/H(E)* = 0 (both properties are independent of the choice of the set of gen-
erators of 7). Then André proves in [1] that 4 is a complete intersection if and only if
B is a complete intersection.

In this paper we consider the analogous question for the Gorenstein property,
and we answer it for principal ideals as follows.

THEOREM. Let (A, m, k) be a noetherian local ring, x € m, B= A/(x). Let E be
the Koszul complex associated with a set of generators of the ideal (x) of A. Assume
that H|(E) is a free B-module. Then A is Gorenstein if and only if B is.

In fact, in the notation of [3], we prove that under the above hypotheses the
homomorphism 4 — B is quasi-Gorenstein and has Gorenstein dimension 0 or 1,
according as x is a zero-divisor or not. In particular, denoting the Gorenstein
dimension by G-dim, we obtain, using [3],

. _ | G-dimp(M) if xis a zero-divisor
G-dim,((M) = { G-dimg(M) +1 if x is a non-zero-divisor
for any B-module of finite type M. In the case when x is a non-zero-divisor and
G-dimg(M) < oo, this equality was obtained in [2, (4.32)].

Proof. If x is a non-zero-divisor, then the result is well known: by [7] we have,
for any B-module M,

Ext’ (M, A) = Ext}; (M, B). ()

From this isomorphism with M = k we deduce that 4 is Gorenstein if and only if B
is (moreover, from the same isomorphism with M = B, we deduce from [2,
(3.14), (4.13(a), (1)<=(iv))] that the Gorenstein dimension of the A-module B is 1,
and from [3, (7.5)], using again (%) with M =k, we deduce that 4 — B is quasi-
Gorenstein).
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So assume that x is a zero-divisor. The property of H|(E) being free does not
depend on the choice of the set of generators of the ideal (x), so we can assume that
E is the Koszul complex associated with the element x. Then H{(E) = (0: x) # 0.
Now the theorem follows from the two following propositions.

PROPOSITION 1. Let (A, m, k) be a noetherian local ring, x € m, B= A/(x).
Assume that x is a zero-divisor. Then (0 : x) is a free B-module if and only if there
exists a € A such that (0 : x) = (a) and (0 : a) = (x).

Proof. Assume (0 : x) is B-free. First we use an argument from [4] to show that
(0: x) is, as a B-module, free of rank 1. We study separately the cases when the
Krull dimension of 4 is 0 or 1.

If dim(4) =0, A4 is artinian and so the lengths of the 4-modules in the exact
sequence

0—>(A4/x)'=0:x) > A4—>(x)—>0
are finite, where n = rankg(0 : x). We have
L(4) = L((A/(x))") + L((x)) = n(L(4) — L(x))) + L((x))

and, since L(A4) > L((x)) (x is not a unit), we obtain n = 1.

If dim(A4) = 1 and x is contained in some minimal prime ideal of 4, localizing at
that prime ideal reduces the problem to the case when dim(A4) = 0. If x is not contained
in any minimal prime ideal of A4, then 4/(x) is artinian, and so 4/(x) and (0 : x) =
(A4/(x))" are A/(x)-modules of finite length. So by [5, Definition A.2] we can define
ea(x, A) = L(4/(x)) — L((0:x)) = L(4/(x)) — L((4/(x))") = L(4/(x)) — nL((4/(x))),
and from [5, Lemma A.2.7], under our hypothesis we deduce that e4(x, A) > 0.
Therefore n = 1.

In the general case (dim(A4) arbitrary), by the Krull principal ideal theorem [6], x
is contained in a prime ideal of height at most 1. Localizing at that prime ideal we
are in the case dim(4) < 1 already studied.

So (0:x) is a free B-module of rank 1, and so a principal ideal of A, say
(0:x)=(a), ae A. It is clear that (x) C (0:(0: x)) = (0 : a). Therefore we have a
commutative diagram of exact rows

0>x) > A—>B=0:x)=(a)—>0
! [ |

0—>0:a)—> 4 - (a) > 0

where B=(0:x)=(a) is the isomorphism taking 1 into a. We deduce that
(x)=(0: a).

The converse follows from a similar diagram

0—>(x) > 4 — B—>0
| Il A

0> 0:a)> A -5 (@)= 0

where A is the homomorphism taking 1 into a.
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PROPOSITION 2. Let (A, m, k) be a noetherian local ring, x,a € m such that
(0:x)=(a) and (0 : a) = (x), and let B= A/(x). Then we have
(1) G-dimy(B) = 0;
(i1) the homomorphism A — B is quasi-Gorenstein;
(iii) A is Gorenstein if and only if B is.

Proof. First we show that Ext?,(B, 4) = 0 for ¢ > 0. From the cohomology long
exact sequences associated with the exact sequences of 4-modules

0>B=0:x)>A>(x)—0 ()
0= ((x)—>A4—>B—0 (IT)

we see that it suffices to show that Exth(B, A)y=0forg=1,2.
The homomorphism ¢ in the cohomology long exact sequence associated with

(ID
0 — Homy(B, A) — Homy(A4, A) - Hom,((x), 4) — Ext!,(B, 4) — 0

can be identified with the homomorphism A4 3 (0:(0:x)) = (x), and so it is surjec-
tive; thus ExtL(B, A)=0.

From the (continuation of) the same cohomology exact sequence we obtain
Ext’(B, A) = Ext!,((x), 4). Similarly, from the cohomology long exact sequence
associated with (I)

0 — Hom((x), 4) — Homy(A4, 4) % Hom((0 : x), A) = (@) — Ext',((x), 4) — 0.

we obtain that Extli((x), A) = 0. Therefore Ext? (B, 4) = 0 for ¢ > 0.
Now, in the change of rings spectral sequence

EN? = Extiy(k, Ext’(B, 4)) = Ext’;"(k, A),
we have Ext/(B, 4) = 0 for ¢ > 0, and so
Ext’,(k, A) = Extly(k, Hom 4(B, A)) = Extly(k, B),

since we have A-module isomorphisms Hom 4(B, 4) = (0 : x) = B.

This shows that 4 is Gorenstein if and only if B is. From the exact sequence
A3 A4 — B— 0, we see that we can take an Auslander-Bridger dual D(B) iso-
morphic to B, so by [2, (3.8) (a)<=(b)] we deduce that G-dim,4(B) = 0. Finally,
from the isomorphism Ext’,(k, 4) = Extj(k, B) and [3, (7.5)], we deduce that 4 — B
is quasi-Gorenstein.

COROLLARY. Let (A, m, k) be a noetherian local ring, x an element of mi which is
not a zero-divisor or such that (0: x) = (a) and (0 : a) = (x) for some a € A. Let
B = A/(x) and let M be a finite B-module. Then

G-dimg(M) if xis a zero-divisor,
G-dimg(M)+ 1 if x is a non- zero-divisor.

G-dim (M) = {
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Proof. We have shown that 4 — B is quasi-Gorenstein, so that the result fol-
lows from [3, (7.11)]
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