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ABSTRACT 
Generative Adversarial Networks (GANs) have shown stupendous power in generating realistic images 
to an extend that human eyes are not capable of recognizing them as synthesized. State-of-the-art GAN 
models are capable of generating realistic and high-quality images, which promise unprecedented 
opportunities for generating design concepts. Yet, the preliminary experiments reported in this paper 
shed light on a fundamental limitation of GANs for generative design: lack of novelty and diversity in 
generated samples. This article conducts a generative design study on a large-scale sneaker dataset based 
on StyleGAN, a state-of-the-art GAN architecture, to advance the understanding of the performance of 
these generative models in generating novel and diverse samples (i.e., sneaker images). The findings 
reveal that although StyleGAN can generate samples with quality and realism, the generated and style-
mixed samples highly resemble the training dataset (i.e., existing sneakers). This article aims to provide 
future research directions and insights for the engineering design community to further realize the 
untapped potentials of GANs for generative design. 
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1 INTRODUCTION
Design is a complex process that requires designers to develop a network connection among their knowl-
edge of different areas to establish and define solutions and pertinent structures for problems not solved
before, or new solutions to problems that have previously been solved in a different way (Dieter et al.,
2009). Exploring the uncharted areas of the design space increases the chances of the success of candi-
date solutions. However, this exploration can be time-consuming and prone to biased and fixated initial
conditions and existing ideas for which we either want to blindly explore the design space uniformly
or optimize it according to the requirements. In either case, computational technologies, more specif-
ically AI methods, seem essential for enabling high-speed search and expansion of the solution space.
Generative design approaches have been proposed to improve design quality and speed by automat-
ing all or parts of the design process using computational power. The advantages of generative design
include efficient solution creation given a specific period of time, reduced costs, better optimized and
accurate solutions, and consistent design instances. Existing generative design approaches fall into five
main categories, namely: shape grammars, L-systems, cellular automata, genetic algorithms, and swarm
intelligence (Singh and Gu, 2012). These approaches generally optimize the design generator through
mathematical functions or physics-based simulators (Shu et al., 2020). For mechanical design purposes,
a powerful generative design tool is Autodesk’s Generative Design workspace with a major focus on
structural optimization by optimizing a cost function to solve mathematically framed design problems
(Buonamici et al., 2020). Yet, there is a lack of studies on data-driven generative design approaches that
optimize the design generator by training it on past product and user feedback data.
AI and more specifically machine learning algorithms are a more general approach and do not necessar-
ily fall into one of the five categories mentioned above. Instead, AI is a means of automating any process.
The strategy behind each of those categories can theoretically be implemented in an AI framework. For
example, a genetic algorithm can be turned into a stochastic AI model. AI-driven generative design
can serve as a transformative assistive tool to augment designers’ ability to create more innovative and
desirable concepts faster due to the efficiency with which it can process vast amounts of product and
user feedback data, learn complex patterns, generate novel concepts, and evaluate them based on data.
The designer can then choose, synthesize, and modify the concepts generated. Deep generative models
have recently been adopted for design automation to improve the performance of designers through co-
creation with AI. Specifically, generative adversarial networks (GANs) (Goodfellow et al., 2014) have
shown tremendous success in a variety of generative design tasks. GANs can generate images from
random noise and do not require detailed information or labels from existing samples to start the gener-
ation. GANs have been applied to engineering design generation, such as generating 3D aircraft models
in native format for complex simulation (Shu et al., 2020), numerous wheel design options optimized
for engineering performance (Oh et al., 2019), and realistic samples from the paired fashion clothing
distribution and providing real samples to pair with arbitrary fashion units for style recommendation
(Yuan and Moghaddam, 2020).
GANs offer a novel generative modeling architecture that enables a new form of learning algorithms
with indirect supervision, where a discriminator network serves as a source of feedback for a genera-
tor network tasked with learning the complex distribution of a training dataset. In the sense of game
theory, GANs can be viewed as a two-person zero-sum game between the generator and the discrim-
inator, where the gains of each competitor exactly equal the loss of the other competitor. The main
focus of GAN models is to generate realistic outputs with the ability to mimic the latent space of the
input dataset. As a result, GANs could potentially be of great use for generative design because of their
ability to produce visually feasible design concepts. However, generative design was initially proposed
to encourage divergent thinking and creativity, as aesthetics and creativity are of great importance in
the field of design (Buonamici et al., 2020). Despite the potential of GANs in creating feasible design
solutions, it is not yet clear how they can enable creativity, since existing GAN architectures inherently
tend to mimic the training dataset with the same statistics without expressing much creativity. The ratio-
nale behind the lack of creativity is that during the training process, the GAN generator is encouraged
to generate samples close to the training data distribution to fool the discriminator in a minimax game,
which inevitably results in limited creativity, especially in terms of diversity and novelty.

634 ICED23

https://doi.org/10.1017/pds.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.64


1.1 Knowledge gaps

In engineering design, creativity is highly valued as one of the most important elements in evaluating
the effects and performance of design tasks. Creativity is often defined as a function of novelty and
usefulness (Shah et al., 2003). Usefulness is correlated and measured with the quality of the design;
therefore, some studies define novelty as a metric of how unusual or unexpected an idea is compared to
other ideas (Shah et al., 2003), and some studies measure the creativity, quantity, quality, and diversity
of the generated designs (Toh et al., 2014). Creativity has been seen as the success mostly; however, it
is hard to assess and enhance design creativity effectively and efficiently because of its intangible and
subjective nature. Currently, a significant amount of research is focused on studying engineering design
tools that address these design aspects. In this article, in addition to the common attributes of creativity,
quality, and novelty, another term diversity is proposed and used to better represent the creativity of
the generative design community (Wang et al., 2021). The authors observed that certain features and
contours of the shoe models were more repetitive than others in the generated samples and that the
coverage of the solution space depends on the density of input samples from a particular area. By
reducing the dimensionality of the design space and preserving the two most contributing features, a 2D
design space is defined in which only some areas are covered by the generated samples. Therefore, this
paper defines diversity as the extent of coverage of the solution space.
This paper proposes GANs as a design concept recommendation system for designers rather than a
means of completely automating the concept generation process. Hence, the goal is to expand the range
of the generated samples, allowing for enrichment of the designer’s ideation as the consumer of the gen-
erated outputs. The objective of a generative design process for early-stage concept generation is not
to generate “market-ready” designs, but rather to provide examples that would stimulate a designer’s
mental faculties, imagination, and creativity. Evidence suggests that more diverse solution spaces can
increase the likelihood of producing a successful design instance. There are two main categories of
methods in the design literature according to which the diversity of a design space can be measured:
subjective rating and genealogical tree approach. As an example of subjective rating of design space
diversity, we can categorize a set of design ideas into various idea pools based on intuitive categories.
Despite being efficient in terms of required time and effort, the results may not be as valid and reliable,
since the inferences are based on the rater’s mental models. However, a genealogical tree adopts deter-
ministic rules derived from design attributes to rate the diversity of a set of design ideas. This set of
approaches is repeatable and relatively more objective; however, their main shortcomings are the lack
of sensitivity and accuracy, since they use the same set of formulae for all types of design problems
(Ahmed, 2019). This paper aims to address two critical knowledge gaps concerning the effectiveness of
state-of-the-art GANs for generative design:

• Lack of diversity. Several recent studies have attempted to improve the diversity of GAN samples.
Shmelkov et al. (2018) proposed an image classification-based evaluation method for GANs that
considers the diversity of the generated outputs. Xu et al. (2018) developed a cross entropy-based
GAN that reinforces diversity in a textual latent space by assigning higher rewards for non-repeated
output. Wu et al. (2019) proposed a GAN-based recommendation system that samples recommen-
dations from a determinantal point process kernel matrix of two learnable components associated
with evaluating the diversity of samples and generating diverse samples. Liu et al. (2021) proposed
a perceptual diversity loss function for GAN models that improves the diversity of the generated
contents. The aforementioned developments aim to expand the diversity of generated outputs using
GANs; however, to the best of our knowledge, no attempts have been made to analyze the extent
of diversity in GANs quantitatively.

• Lack of novelty. One of the most challenging tasks in the design process is to evaluate the novelty
of concepts and, ideally, to distinguish instances with the highest probability of success. In the
design literature, novelty indicates the uniqueness of a design idea compared to other concepts that
fall within the same class of design problems. This uniqueness does not have to be from a particular
aspect (e.g., appearance); instead, it can stem from the otherness of any characteristic within the
concept or the design process. A natural and convenient approach to evaluate the novelty of design
instances is to assess their similarity to the existing concepts. When measured by human judges,
this evaluation occurs by developing mental connections between various knowledge sets to score
dissimilarities, usually resulting in subjective and hard-to-explain decisions. On the contrary, when
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mathematical methods are used for novelty evaluation, predefined rules based on design attributes
are applied, the main drawback being the lack of generalizability (Ahmed, 2019).

1.2 Objectives and outline

A successful GAN-based concept recommendation system should be able to generate a large set of
solutions for the intended design problem (in our case, the exterior form of the sneaker) that are diverse,
novel, and desirable. This paper explores the diversity and novelty of GANs by adopting a state-of-the-
art GAN architecture, StyleGAN2 (Karras et al., 2020), to generate early-stage design concepts based on
a large training dataset of sneakers scraped from multiple online footwear stores. In the development of
a new product like sneakers, the design currently begins with 2D sketches of the side view of the shoe.
Color, material, sole shape, and other attributes are important aspects. Once the appearance direction is
defined, considerations for structure and manufacturing are then determined. That happens later in the
design process. Our analysis right now is focused on the very front-end of the process, which begins
with visualization of concepts. This is not unlike car design, which begins in the design studio with
visual concepts. Once a direction is defined, more detailed conceptual engineering is performed. The
preliminary results reported indicate that although the trained generator can generate realistic images of
sneakers, the generated samples highly resemble existing products (i.e., the training dataset). The conse-
quence of the generator focusing solely on fooling the discriminator by generating samples that resemble
the training dataset is the lack of novelty and diversity, which limits its applicability in generative design.
The contributions of this paper are as follows:
1. We conducted design concept generation and style-mixing experiments and conducted results that

empirically illuminate the aforementioned knowledge gap.
2. We designed an experiment that quantifies the novelty of generated design concepts using the

template matching technique by computing the similarity of generated and training samples. The
results indicate a lack of novelty in the generated dataset.

3. We designed an experiment for diversity evaluation by visualizing the diversity of the output sam-
ples in a 2D design space by applying PCA on the features extracted from the generated images
using VGG16. The results certify the lack of diversity in the generated samples.

4. We also propose several directions for future research and exploration in data-driven generative
design.

The remainder of this paper is organized as follows. Section 2 presents the methods for generating
samples and mixing them to create more diverse results, the Template Matching method that was used
to quantitatively analyze the limitation of GANs in the generation of novel solutions, and the PCA
algorithm that was adopted to illustrate the limitation of GANs in terms of diversity. Section 3 discusses
and analyzes the results, and Section 4 concludes the paper and provides future research directions.

2 METHODS
This section discusses the overall structure of our proposed method to evaluate the creativity of GAN
models by quantifying their diversity and novelty, along with a brief technical overview of the methods
used. To this end, we first trained a StyleGAN2 model on our dataset to generate a set of sneakers and
style-mix them, resulting in 1750 design concepts. The preliminary results of the experiments, presented
in Section 3, demonstrate the lack of diversity and novelty in the generated samples, as the generated
and style-mixed concepts resemble one or a combination of the original dataset. However, we expanded
our evaluation by adopting techniques that detect the existence of new or different features in a design
concept. For the evaluation of diversity, we proposed using PCA on both the original and generated
datasets to better visualize and compare the areas of the design space covered by each dataset. VGG16
was also used to extract higher-level features from the images before applying PCA resulting in a more
informative mapping of the samples by PCA. For novelty evaluation, we adopted template matching
so that each genetic sample is compared with the entire original dataset to find the corresponding most
similar original sample according to a similarity score. Moreover, we calculate the distribution function
of the similarity scores to show that the generated samples take into account the features of the existing
design instances.
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2.1 Preliminary experiments: GAN, StyleGAN2, and style-mixing

This section briefly introduces GANs and StyleGAN (Karras et al., 2020), a state-of-the-art GAN archi-
tecture that can generate highly realistic samples. StyleGAN is used in this paper as a benchmark to
evaluate the limitations of GANs for generative design in terms of diversity and novelty. A standard
GAN architecture comprises two neural networks: a generator G and a discriminator D, which are inter-
actively trained by competing against each other in a minimax game. The generator attempts to produce
realistic samples, while the discriminator attempts to distinguish the fake samples from the real ones.
In the standard GANs model, there is no control over the modes of the data being generated. GANs are
notoriously difficult to train and often unstable due to mode collapse, one of the main problems in the
generative model (Oh et al., 2019). In this way, it is not a good choice to use this approach for gener-
ating realistic designs especially considering the significant developments of GANs, which established
a new state-of-the-art in generated images with high-quality and high-resolution. This work builds on a
cutting-edge GAN architecture for artificial image generation, called StyleGAN2 (Karras et al., 2020).
StyleGAN, created by NVIDIA, produces facial images in high resolution with unprecedented qual-
ity and is capable of synthesizing and mixing non-existent photorealistic images (Karras et al., 2019).
Style-GAN2 is a variation of StyleGAN with minor quality developments such as removed blob-like
artifacts, stabilized high-resolution training, and reduced computational cost. See Karras et al. (2020)
for details of the StyleGAN2 model.

2.2 Evaluating the novelty of GAN samples: template matching

Humans often find themselves drawn to the new, be it different items, unknown environments, or sudden
modifications and unforeseen outcomes. According to Intepat IP, designs can be considered original or
novel when they have not been revealed to the public before. In other words, a design is novel when it
is distinct from any existing designs or a merger of multiple designs.
Template matching, which is a similarity detection technique active primarily in the field of computer
vision, was exploited to quantitatively assess the similarity of the generated images with the original
image set. Template matching is capable of finding similar areas of a template image T (original images
in our case) to the objects specified in a source image S (generated images in our work), sometimes
referred to as the training image. Template matching exploits the sliding-window approach from top to
bottom and from left to right to compare different areas of the template with the source. The compari-
son method depends on the content of the images and the intention (Basulto-Lantsova et al., 2020). The
most commonly used similarity scoring methods for template matching include square difference, cross-
correlation, and cosine coefficient, as well as their normalized versions, which generally have more
accurate results. We tested the normalized version of all three methods and finally selected the normal-
ized cross-correlation because the matched results were slightly more similar. The mechanism behind
this technique is to store similarity scores associated with each area of the image in a two-dimensional
result matrix R to find the highest/lowest value depending on the comparison method. Template match-
ing can be used to find the most similar part or the location of the said area. However, we adopted this
technique to find the image most similar to the source image from an image set. Template matching is a
very simple to implement and computationally efficient method. The matching procedure for one source
image and one template image is as follows:

Algorithm 1 Template matching algorithm to compare GAN-generated and original images.
T← template image (e.g., real images of sneakers)
S← source image (e.g., StyleGAN-generated images of sneakers)
R← two− dimensional matrix of S.width− T.width ∗ S.height− T.height
for i = 1, . . . ,S.width− T.width do

for j = 1, . . . ,S.height− T.height do
Ri,j ← SUMDIFFS(T, I , i, i+ T.width, j , j + T.height)

end for
end for
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2.3 Evaluating the diversity of GAN samples: PCA & VGG16

The diversity of the output samples was evaluated by visualizing two principal components of the
sample features using PCA. The features were extracted using the VGG16 model to provide a more
informative input space for PCA. VGG16 was initially proposed as an image classification and object
detection model that gained 92.7% accuracy on the ImageNet dataset. As a state-of-the-art convolu-
tional neural network (CNN) model, VGG16 is a very powerful model for feature extraction and image
coding. Therefore, we used VGG16 for the task of embedding our dataset before feeding it to PCA.
VGG16 is a 16-layer deep neural network model that contains stacked convolutional layers using the
smallest possible receptive field of 3× 3 that can have a sense of up/down, left/right, and center notions.
An optional linear transformation layer of the input channel can be added to the top of the network in the
form of a 1× 1 convolution filter. Among the 13 convolutional layers, 5 are followed by max-pooling
layers to implement spatial pooling with a pooling window of size 2× 2 and a stride of size 2. The
convolution stride is set to 1, but the padding is specified according to the receptive field to preserve
the spatial resolution. The convolutional layers are then followed by three fully connected layers, with
the first two layers containing 4096 each, and the last one depending on the number of classes. The top-
most output layer is a softmax layer. Layers do not usually contain normalization to avoid high memory
consumption and time complexity, as well as to preserve model performance.
PCA (Abdi and Williams, 2010) is a multivariate statistical technique utilized in this paper to reduce
the dimensionality of high-dimensional data from the intercorrelated feature space. As the dataset on
which we used PCA was a high-dimensional set of dependent features extracted from an image set,
using this method to assess the diversity of generated samples is convenient. PCA is used in this paper
to analyze and interpret complex data by disentangling the most representative features. This task is car-
ried out by computing values of the data table corresponding to a new set of orthogonal variables; thus,
PCA can geometrically be viewed as the projection of the data samples onto the principal components’
space. These variables, which are called principal components, are acquired as a linear combination
of the original variables. The first principal component is computed so that it has the largest possible
variance. The first weight vector, based on which the first principal component is calculated, satis-
fies the following expression: w1 = argmax‖w‖=16i(xi.w)2 = argmax(wTX TXw)/(wTw), where xi is
a row vector of the original data table X , and w is a coefficient vector set to be a unit vector. Equiv-
alently, in a closed format, the first component’s mapping weight vector w1 can be calculated using
the second part of the equation, where w is the eigenvector of the matrix that results in the largest
corresponding eigenvalue. The kth component is obtained under the constraint of being orthogonal to
k − 1 previous components as well as having the kth largest possible variance. Thus, we first subtract
k − 1 previous components from X and then use it as the original matrix in the following equation:
wk = argmax‖w‖=1 (X̂kw)2 = argmax wTX TXw

wTw , where X̂k = X −6k−1
j=1 Xwj wT

j . The number of principal
components calculated depends on the data structure and how much dimension reduction we require.
For diversity evaluation, since we need to compare the areas of the design space that are explored by the
original and generated datasets, a two-dimensional representation of the samples is the most informative
for visual analysis.

3 RESULTS AND DISCUSSIONS
This section elaborates on the implementation of the experiments and the reason for their usage. Then,
the results of the experiment are illustrated and analyzed in detail to validate the initial hypothesis that
the GAN models lack both diversity and novelty.

3.1 Dataset and training

To test and validate the performance of StyleGAN2 in generating realistic and diverse images, a large-
scale dataset was scraped from a major online footwear store to conduct numerical experiments. To
avoid mode collapse and increase the diversity of the dataset, several brands of footwear are included
in the dataset including Adidas, ASICS, Converse, Crocs, Champion, FILA, PUMA, Lactose, New
Balance, Nike, and Reebok. A total of 6745 images were collected and cleaned from an online retail
store where footwear images have only two orthographic perspectives: a side view and a 3/4 view. The
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neural network models were trained in the Pytorch implementation of StyleGAN2 1 and performed on
4 Tesla V100-SXM2 GPUs with PyTorch 1.8 and Python 3.7. Most configurations remain unchanged,
where the dimensionality of the latent code z and w is 512 and the mapping network architecture is
8 fully connected layers. For the style-based generator, leaky ReLU activation was used with α = 0.2,
bilinear filtering in all up/down-sampling layers, and equalized learning rate for all trainable parameters.
Other settings include minibatch standard deviation layer at the end of the discriminator, an exponential
moving average of generator weights, style mixing regularization, and nonsaturating logistic loss with
R1 regularization. The optimizer used is Adam with hyperparameters β1 = 0.5, β2 = 0.9, ε = 10−8,
and minibatch = 64.

3.2 Preliminary results

Figure 1 presents examples of images generated or synthesized by mixing two latent codes at various
scales. The five images in the first left column are generated images from random noise, named source
A, and the set of four images at the top are generated from random noise, named source B. The rest of the
images, called style-mixing images, were generated by copying a specific subset of styles from source
B and taking the rest of the styles from source A. Figure 1.1 shows the images synthesized as a result
of copying the styles corresponding to the coarse spatial resolutions (42-82). The images show high-
level aspects from source B, while finer features resemble those from source A. Figure 1.2 shows the
synthesized sneaker images resulting from copying the styles corresponding to the middle-level spatial
resolutions (162-322), in which on a smaller scale the aspects of the shoes of source B are extracted,
while the overall shape and color of source A are briefly reserved. In Figure 1.3, the higher resolutions
(322-642) are used to extract the styles from source B to mix with source A. Figure 1.4 shows the images
generated by mixing more finer styles (642-10242) from source B with source A.

Figure 1. Examples of images generation and style mixing at various scales.

Four important observations from these examples are as follows. First, the style mixing images in
Figure 1.1 were synthesized with more similarity to source A and few features from source B, indi-
cating that the model copies the styles corresponding to coarse spatial resolutions from source B and
brings high-level aspects such as general sneaker style, overall shape, color, midsole, and orientation
from source A. Second, the mixed-style images in Figures 1.2 and 1.3 preserve the middle style of both
source A and source B, where some features of source A can be observed and some features of source
B are easily recognized in different shoes. Furthermore, with an increase in the style scale of source B
added to source A, the images in Figure 1.3 display more distinct styles of B compared to Figure 1.2.
Third, the synthesized images listed in Figure 1.4 contain a finer style variation from source B, such
as color, outlook patterns, heel counter, midsole, and outsole tread. At the same time, they still remain
small-scale styles of source A and it is prominent that the synthesized sneakers are most style-mixed
and novel. We can see that each subset of styles controls meaningful high-level attributes of the image.
Fourth, it can be visually inspected that both the generated samples and the synthesized samples resem-
ble highly existing shoe models and brands. For example, as shown at the intersection of the third row

1 https://github.com/rosinality/stylegan2-pytorch
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and the last column of Figure 1.4, the sneaker synthesized by mixing the styles of Asics and New Bal-
ance is finally a New Balance. This concurs with the aforementioned limitation of GAN generators to
the training dataset.
Frechet inception distance (FID) is applied to evaluate the quality of the generated images. FID measures
the discrepancy between two sets of images by comparing the distributions of randomly sampled real
images from a training set and the generated images (Heusel et al., 2017). FID values are calculated
for every pair of images. The average value and lower scores have been shown to correlate well with
higher-quality images. In contrast, a higher score indicates a lower-quality image. In the results of
the experiment reported in this article, the FID value decreased from 289.65 to 18.97 after 65,000
training steps and converged. The small FID value of the experiments shows good performance of the
StyleGAN2 model and confirms that the generated samples are realistic and high quality.
GANs generate new sample using random noise vector, meaning one can think although they follow
the input distribution, they may sometimes generate distict and new ideas. However, our quantitative
study by formulating metrics such as novelty and diversity shows that the only case that GANs produce
distinct concepts is when the output is not identifiable as a sneaker. This suggests that in GANs, useful-
ness (in terms of the defined design problem) is against novelty since only one of them can be reached
through the traditional architecture.

3.3 Diversity analysis

In this section, we present the results of diversity analysis using PCA on the generated samples by Style-
GAN2. For this purpose, we produced 50 batches of generated and style-mixed images, each containing
5+ 5 generated images as source A and source B, as well as 5× 5 style-mixedimages generated from
these sources. As a result, we built a set of 1,750 images in total to be evaluated in terms of diversity.
To produce random noise for source instance generation from the latent space to be fed to StyleGAN2
as an input, one numerical element is required to be set as the random seed that prevents redundancy in
the generated set. To further increase the diversity of the output images, we produced 50 sets of 2× 5
random variables that were then fed to the model one set at a time. We adopted a PCA model to assess
the diversity of the outputs by first quantitizing it through calculating the most informative aspects of
the data samples and then, visualizing the most effective features. PCA, however, works better on tab-
ular data format with dependent features of a high-dimensional space compared to the raw image. As
a result, we first extracted higher-level features from the original images and generated them to further
compare the areas of the output space that the two sets cover. For feature extraction, we used the VGG16
model, because of its capability to embed images simply by removing the top output layer. The model
was first trained on the combination of our original and generated dataset to better identify the features
from a design perspective rather than considering general features extracted from broader datasets such
as ImageNet. The VGG16 model was trained on RGB images of size 224× 224 with 3 fully connected
layers at the top of the network, no pooling layers, and softmax activation function.

Figure 2. Principal components extracted from the

original (red) and generated datasets (green).

The extracted features were fed to the PCA
model that was initialized by two principal
components, so that we can visualize and com-
pare the sets in a two-dimensional space. PCA is
a beneficial method for diversity analysis in this
context, as it is capable of compressing the size
of the data while extracting the most important
information, thus enabling structure analysis for
the dataset by simplifying the descriptive fea-
tures. Using PCA, each data sample is mapped
to a point in the new coordinate system that
allows the representation of the pattern of sim-
ilarity of the data samples. The 2D representa-
tion of the mapped data points in Figure 2 with
the red point and the green points representing
the original and generated data sets, respec-
tively, shows that the entire original space was
not explored by the StyleGAN model, resulting
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in design concepts limited to a specific and incomprehensive set of styles. The green dots cover a subset
of the space covered by the red dots, suggesting the limitation of GANs in learning the entire distribu-
tion of the dataset. The scatter plot also suggests that the model is especially inadequate in areas where
there are fewer original samples, demonstrating the dependence of learning a subspace on the presence
of adequate data samples from the subspace.

3.4 Novelty analysis

In this section, details of the experiments and results of the novelty analysis are presented. To investigate
the ability of StyleGAN2 to produce novel solutions, we used the template matching technique. The
analysis was performed on the same set of 1750 generated images as described in the previous section.
The procedure is first to find the most similar design instance from the original dataset to each one
of the generated samples, and then to aggregate the results on a distribution function of similarity to
statistically assess the extent of novelty in the outputs. Template matching is usually used to find the part
of a template image that is most similar to a source image by computing and comparing the confidence
scores of different areas in the template image according to a sliding window. The confidence of a
point in this regard represents the algorithm’s certainty of similarity between the source image and the
template image’s area within the rectangle whose top-left corner is at the said point and whose height
and width are the same as those in the source image. However, we took advantage of its capability to
calculate an overall similarity score for the entire template image to then rank the similarities of each
generated image with all samples in the original dataset. In order for template matching to be aligned
with our purpose, we used the source (i.e., generated) images and the template (i.e., original) images of
the same size, so that all areas contribute the same in the calculation of the confidence score.
Figure 3.1 shows the distribution plot along with the semi-Gaussian function fitted with a mean of
0.8385 and a variance of 0.0075. Statistics show that most samples are very similar to those of a sample
from the original dataset, which proves the theory that GANs are not capable of generating novel design
concepts. However, there are samples with low confidence of similarity that can be due to two main
reasons: 1) some of the generated images are as unrealistic as they cannot inherently be identified as
sneakers; 2) On one hand, template matching treats the same shape with different colors as different
shapes, thus, two sneakers with the exact same style but different colors have a low similarity score. On
the other hand, one of the main changes that style-mixing applies when generating an image is altering
the color. As a result, a considerable number of style-mixed images may not have a high confidence
score despite having a parallel instance in the original dataset. An example of the most similar matches
found for a generated image by iteratively calculating the confidence score on the original dataset is
illustrated in Figure 3.2. It is visually inferable from the images that the generated image resembles
an existing design instance from the original dataset and does not contain any novel features. Further-
more, we calculated the distribution function of the confidence scores for the generated samples to
quantitatively assess the novelty of StyleGAN in an aggregated way.

Figure 3. (1) Distribution function and correlating semi-Gaussian function of the template matching

confidence scores based on the generated-real comparisons. (2) Example of a generated sample and

the most similar real sample from the training dataset.
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4 CONCLUSIONS
This paper expands on StyleGAN2, one of the most cutting-edge variations of GAN to generate visual
design concepts. The StyleGAN2 model has the ability to generate realistic images and then synthesize
the images produced through style mixing to introduce some diversity to the generated samples. By
mapping proportional styles to the source image, the architecture enables intuitive scale-specific mix-
ing operations where coarse, medium, and fine styles can be observed. This approach can potentially
serve designers by helping them in design ideation with multimodal concept generation, aggregation,
and mixing. This chapter contributes to the vast literature on StyleGAN applications by investigating
the challenges and limitations of this deep generative modeling approach in the field of engineering
design. Larger-scale GAN models currently have a strong capability to generate high-quality and high-
resolution images. However, the results of these models are shown to not fully capture the diversity of
the true distribution. This is partly due to limited availability of training data in the engineering design
domain, and more significantly, because of the generator-discriminator architecture and its sole empha-
sis on sample quality and realism. GANs also suffer from the lack of usefulness as it does not have any
guidance to generate concepts that are not from the input distribution and still fulfill the requirements
for a design problem. That is why we should provide guidance for the network to learn other criteria,
so it generates samples out of the distribution that are relevant to the desired product. To this end, our
next steps will include providing the model with guidance for design-specific objectives, for example,
preserving the geometrical balance of the concept, which is an important aspect of usefulness. Future
research should also explore approaches that can improve the resolution of dataset in domains where
data are scarce or difficult to collect. Furthermore, it is necessary to devise new modifications to the
architecture of StyleGAN2 to guide the generator towards generating more diverse and novel samples:
(1) An enhanced mapping model can be developed that can reparameterize the latent generative space
as a mixture model sampled from the chosen Gaussian and learn the parameters of the mixture model to
enrich the model and generate diverse samples, particularly in cases where the dataset is small and lim-
ited. (2) A layer-wise decomposition approach can be devised to identify useful potential control spaces
and allow manipulation of images from high-level properties on either the latent space or the feature
space. The authors also propose to couple GAN-based, visual generative design with user-centered eval-
uation mechanisms (Yuan et al., 2022) for end-to-end design concept generation informed by large-scale
user reviews. The proposed architecture combines the predefined evaluation method with an adversarial
objective function to train the generator and the discriminator. It can measure the quality and diver-
sity of individual generated samples, where each generated sample is updated based on an evolutionary
adversarial training framework. By integrating an evolutionary optimization algorithm to the generative
model where the fitness of the samples generated by the generator is measured by the DMDE model,
the proposed architecture can serve as a comprehensive generative design tool that can not only ensure
realism and quality, but also guarantee the desirability and performance of the generated samples.
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