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True-and-error models violate independence and yet they are

testable

Michael H. Birnbaum∗

Abstract

Birnbaum (2011) criticized tests of transitivity that are based entirely on binary choice proportions. When assump-

tions of independence and stationarity (iid) of choice responses are violated, choice proportions could lead to wrong

conclusions. Birnbaum (2012a) proposed two statistics (correlation and variance of preference reversals) to test iid,

using random permutations to simulate p-values. Cha, Choi, Guo, Regenwetter, and Zwilling (2013) defended methods

based on marginal proportions but conceded that such methods wrongly diagnose hypothetical examples of Birnbaum

(2012a). However, they also claimed that “true and error” models also satisfy independence and also fail in such cases

unless they become untestable. This article presents correct true-and-error models; it shows how these models violate

iid, how they might correctly identify cases that would be misdiagnosed by marginal proportions, and how they can be

tested and rejected. This note also refutes other arguments of Cha et al. (2013), including contentions that other tests

failed to violate iid “with flying colors”, that violations of iid “do not replicate”, that type I errors are not appropriately

estimated by the permutation method, and that independence assumptions are not critical to interpretation of marginal

choice proportions.
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1 Introduction

Although there is much to admire in the approach of

Regenwetter, Dana, and Davis-Stober (2011) for test-

ing transitivity in choice experiments, Birnbaum (2011)

criticized its focus on marginal choice proportions rather

than response patterns. Birnbaum pointed out that when

choice responses are not independent and identically dis-

tributed (iid), any method based strictly on marginal

choice proportions could easily reach wrong substantive

conclusions.

The main problem is that data generated from mixtures

that include intransitive preference patterns can appear to

satisfy transitivity by such methods. Birnbaum (2011)

therefore suggested that one should analyze response pat-

terns or at least, that iid should be tested before drawing

any conclusions about transitivity from marginal choice

proportions. Regenwetter, Dana, Davis-Stober, and Guo

(2011) replied that, when response patterns are to be an-
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alyzed, one must collect more extensive data, and they

stated that they were unaware of statistical tests of iid for

small samples, such as the little study by Tversky (1969),

or the small replication by Regenwetter et al. (2011).

Birnbaum (2012a) proposed two statistics using

Monte Carlo simulation methods (based on Smith and

Batchelder, 2008) to test iid with small samples. One

statistic is the correlation coefficient between preference

reversals and the gap in time between two presentations

of the same choice problems. The other is the variance

of preference reversals between responses to the same

problems in different blocks of trials. These two statis-

tics were designed to detect violations of iid that would

occur if people systematically changed their true prefer-

ences during the study. Reanalysis via these two tests in-

dicated that the data of Regenwetter et al. (2011) violate

the assumptions of iid. Violations of iid might arise from

many different sources, including the possibility that a

true-and-error (TE) model describes responses in choice

tasks.

Cha, Choi, Guo, Regenwetter, and Zwilling (2013)

defended methods analyzing only marginal proportions

but they conceded that those methods wrongly diagnose

hypothetical examples presented by Birnbaum (2012a).

However, they falsely claimed that TE models also as-

sume iid and would therefore also fail to correctly di-

agnose such cases. They next claimed if a TE model

allowed a person to change “true” preferences be-

tween blocks (to violate iid), the model would become

untestable and therefore useless. These statements and
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others in that paper need to be corrected, because TE

models violate iid, they correctly diagnose such hypothet-

ical examples, and yet they are testable.

2 True-and-error models

Cha et al. (2013, p. 67) claimed that the “standard true-

and-error model” satisfies independence. However, I

specifically argued that violations of iid are produced in

TE models within an individual’s data when the same

person changes “true” preferences from block to block

(Birnbaum, 2011, p. 680) and that iid could also be vi-

olated between-persons when different people have dif-

ferent “true” preferences (Birnbaum, 2011, p. 679). The

so-called “standard” true-and-error model presented by

Cha et al. is merely a special case of the TE model in

which there is only a single true preference pattern and

not a mixture. A brief history of these models might be

useful.

The models now called “true and error” trace their de-

velopment to a paper by Lichtenstein and Slovic (1971),

who wished to state a clear null hypothesis in which pref-

erence reversals between two ways of evaluating lotter-

ies could be analyzed. Sarah Lichtenstein developed the

basic concepts from “common sense” (Slovic, 2013 and

Lichtenstein, 2013, April 3, personal communications).

A paper by Conlisk (1989, Appendix I) presented a

very clear statement of a simpler form of their model,

which was used to justify the statistical test of correlated

proportions, which has been the standard test whether or

not choice proportions in two choice problems are sig-

nificantly different. In his version of the model, it was

assumed that all choice problems had the same rate of er-

ror (whereas the earlier model of Lichtenstein & Slovic

[1971] allowed that choice and bidding tasks might have

different rates of error).

Harless and Camerer (1994) applied the assumption of

a single error rate and stated that a more elaborate theory

had not yet been developed. The theory of homogeneous

error rates has sometimes been called the “tremble” the-

ory because it seemed to say that response errors arise

between intention and response, as if the only reason for

pushing the wrong response key was the result of a “trem-

bling hand”. However, that interpretation is not necessary

and might be misleading, because errors more likely arise

earlier in processing (Birnbaum, 2011). A person might

misread the problem, misremember the information, mis-

aggregate the information, misremember the decision, or

push the wrong key, any of which could produce an error.

Some of the rival models of error have been reviewed and

analyzed by Wilcox (2008), Carbone and Hey (2000), and

Loomes and Sugden (1998).

When testing transitivity, the constant-error-rate ver-

sion implies that inequality of different types of intran-

sitive preference patterns could be taken as evidence for

a violation of transitivity (Loomes, Starmer, & Sugden,

1991). Sopher and Gigliotti (1993) disputed this inter-

pretation, however, noting that, if error rates for different

choice problems are not equal, then asymmetry of dif-

ferent types of cycles would not qualify as evidence of

systematic intransitivity. Their approach could, in turn,

be criticized because the model had (in principle) more

parameters than degrees of freedom in the data to which

it would be applied. Perhaps this limitation is why some-

one might claim that these models become untestable.

However, as noted in several recent papers (Birnbaum,

2011, p. 678; Birnbaum & Bahra, 2012a; Birnbaum &

Schmidt, 2008; Birnbaum & LaCroix, 2008), the use of

replications, as proposed by Birnbaum (2004) and im-

proved upon in subsequent papers, provides a way to esti-

mate error rates that may differ for different choice prob-

lems and still leave degrees of freedom to test the model.

In particular, it is assumed that repetitions of the same

choice problem by the same person in the same block of

trials are governed by the same true preferences and differ

only because of error.

In tandem with these theoretical developments, recent

empirical results forced consideration of models that can

violate iid (in contrast to earlier models, which did not

allow violation of iid). Birnbaum and Bahra (2007b) re-

ported cases where individuals perfectly reversed pref-

erences on twenty out of twenty choice problems be-

tween blocks of trials; such cases are extremely unlikely

given the assumption of iid within a person. Instead,

it seems more plausible that individuals changed true

preferences from block to block. Birnbaum and Bahra

(2012b) repeated the experiment with different people

and varied procedures and continued to find perfect re-

versals and other strong evidence against iid. Birnbaum

(2011, 2012a) noted that, if a person changed “true” pref-

erences during a long study, it could create violations of

iid. When iid is violated, marginal choice proportions

might be misleading.

That is the crux of Birnbaum’s (2011) criticism of the

approach of Regenwetter et al. (2011), which was fo-

cused on binary choice proportions. Cha et al. (2013) did

not accurately describe appropriate TE models. I describe

here how one can apply TE models to the investigation

of transitivity, if one is willing to do a more up-to-date

study than that done by Tversky (1969). I will describe

how such a study can be used to test iid, the TE models,

and transitivity.

I dispute other assertions by Cha et al. (2013) concern-

ing algorithms for testing iid via Monte Carlo simulation

in Appendix A; but first, let us consider the simplest TE

model for the simplest case to show that it violates re-

sponse independence, even though the errors are indepen-

dent.
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2.1 One choice problem presented twice

per block

Imagine that one person is asked to respond to many dif-

ferent choice problems, and embedded in each block of,

say, 50 trials (which include many different choice prob-

lems), a given choice problem (between A and B) is pre-

sented twice, separated by many other intervening choice

problems that are termed fillers within each block. Each

block is separated by another task that requires, for exam-

ple, 50 trials of other choice problems, called separators.

This study might be done with a different block of trials

on each of several different days.

The two versions of the same choice problem are de-

noted Choices AB and A′B′. They might differ only in

which button should be pressed in order to respond that

A is preferred to B. The use of repetitions within blocks

adds constraints that make TE models highly testable.

This experimental paradigm is similar to that used by

Birnbaum and Bahra (2012b, Exp. 3). [The design of

Tversky (1969) and the replication by Regenwetter et al.

(2011) did not include repetitions within blocks.]

Table 1 shows a hypothetical matrix of responses,

where “0” indicates that the person chose alternative A

or A′ and “1” indicates a preference for B or B′. Each

row represents a different block of trials, and the two en-

tries within each row represent the responses to the two,

separated presentations of the same choice problem in the

same block. The marginal choice proportions are the col-

umn sums, divided by the number of blocks (20). The

two marginal choice proportions are each 0.6.

Let each response combination in a block (row of Table

1) be called a response pattern. There are four possible

response patterns: 00, 01, 10, and 11. In order to be con-

sistent within a block, the person had to push opposite

buttons on separate trials to indicate preference for A and

A′ (00), or for B and B′ (11).

If response independence held, the probability of each

response pattern would be given by the product of the

marginal probabilities. For these data, the predicted pro-

portion for 11 would be (.6)(.6) = .36, and the predicted

proportion of reversals 01 or 10 would be (.4)(.6) +

(.6)(.4) = 0.48. However, Table 2 shows that the response

patterns do not satisfy independence. Instead, the propor-

tion of 11 was 0.6 (instead of 0.36), and this person was

perfectly consistent within blocks (0% reversals, instead

of 48%), thereby violating response independence.

By either the Fisher exact test on Table 2, or by means

of Birnbaum’s (2012a) test on the variance of preference

reversals between blocks (on Table 1), one can reject re-

sponse independence with p < .0001. In every case where

this person chose A in a block, that same person chose

A′ in the same block, and in every block where the per-

Table 1: A hypothetical table of results to responses by

the same person to the same choice problem presented

twice each in 20 blocks of trials.

Blocks Choice AB Choice A′B′

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 1 1

10 1 1

11 1 1

12 1 1

13 1 1

14 1 1

15 1 1

16 1 1

17 1 1

18 1 1

19 1 1

20 1 1

Marginal choice proportion 0.6 0.6

son chose B, that person chose B′. This person was per-

fectly consistent within blocks but changed preferences

between blocks, resulting in violations of response inde-

pendence.

A second, sequential type of violation of iid is also

apparent in the Table 1. In particular, this person chose

A and A′ on every choice for the first 8 blocks and then

switched to choosing B and B′. Something changed over

trials, resulting in a systematic violation of stationarity

within each column. This type of sequential violation is

detected by Birnbaum’s (2012a) correlation test, which

evaluates the correlation coefficient between the mean

number of preference reversals between rows and the gap

(in blocks) between rows. In this case, the correlation, r

= 0.94, and p < .0001.

These two statistics show that the data in Table 1 sys-

tematically violate the assumptions of independence and

stationarity (a.k.a., iid), but they do not say how or why.

One model that can describe certain violations of inde-

pendence (but not all) is the true-and-error (TE) model.
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Table 2: Data from Table 1 are organized in a cross-

tabulation to evaluate independence. These data violate

independence, because products of marginal proportions

fail to reproduce joint proportions.

Response to Choice A′B′

Response to Choice AB 0 1

0 8 0

1 0 12

2.2 True-and-error model for One Choice

Problem Repeated in Each Block

A TE model can be expressed for this situation as fol-

lows: Suppose that two responses by the same person to

the same choice problem within a block are governed by

the same “true” preferences, except for random error, and

suppose that responses in different blocks might be gov-

erned by different “true” preferences (Birnbaum, 2011;

Birnbaum & Bahra, 2012a).

Suppose that if the person is in the “true state” of pre-

ferring A the error probability is e, which is the probabil-

ity of choosing B when the true preference is A. Assume

that if the person is in the “true state” of preferring B, that

the probability of making an error is also e. Suppose that

the probability of being in the state of truly preferring B is

p. Assume that p and the error rate, e, are stationary (re-

main constant) throughout the study, that errors are mu-

tually independent, and that e < ½.1

Do these iid assumptions concerning p and e mean

that choice responses are independent, as in the so-called

“standard true-and-error model” by Cha et al. (2013)?

No, absolutely not. This TE model violates response in-

dependence, as shown next.

The predicted probabilities of the four response pat-

terns are as follows:

P(00) = p(e)(e) + (1–p)(1–e)(1–e) (1)

P(01) = P(10) = e(1–e) (2)

P(11) = p(1–e)(1–e) + (1–p)(e)(e) (3)

P(11) is the predicted probability in the TE model for

showing the response pattern 11 in a block, p is the prob-

ability of “truly” preferring B and B′, and e is the proba-

bility of a random error. The marginal choice probability

of choosing B in a single AB choice problem is given as

follows: P(1*) = P(10) + P(11) = p(1–e) + (1–p)e, where

1More complex models can also be tested (Birnbaum, 2012b; Birn-

baum & Schmidt, 2012). For example, it is possible to test models in

which error rates depend on a person’s “true” preference state.

P(1*) is the marginal, binary probability of choosing B

over A.

Do Equations 1–3 satisfy response independence?

That is, can we write P(11) = P(1*)P(*1)? No. If p =

.6 and e = 0, for example, this model is perfectly consis-

tent with the data of Table 2 that systematically violate

response independence.

This violation of response independence by the TE

model does not require the error rate to be zero; for ex-

ample, if p = 0.63 and e = 0.11, then P(1*) = P(*1) = 0.6,

so P(1*)P(*1) = 0.36, whereas P(11) = 0.50.

So even though errors are independent of each other,

responses are not predicted to be independent, except in

special cases, such as when p = 1. Put another way: even

though probability of the conjunction of two errors is rep-

resented by the product of their probabilities, the proba-

bility of a conjunction of two responses is not given by the

product of response probabilities, but instead by Equa-

tions 1–3.

Cha et al. (2013, Equation 6) presented a model that

satisfies response independence and called it the “stan-

dard true-and-error” (STE) model. Independence can

hold in special cases of TE, such as when p = 1, but

Expressions 1-3 do not satisfy independence in general

(Birnbaum, 2011). The Cha et al. STE model is not

a standard TE model; instead, it is only a special case

in which there is only one true preference pattern; that

model is not relevant to this debate, as noted by Birnbaum

(2011, p. 680).

Cha et al. (2013, p. 70) next claimed that if a TE

model allowed that people changed true preference be-

tween blocks (to account for violations of iid), the TE

model would become un-testable. That claim is also

false, even in this simplest case of a single choice prob-

lem, as shown next.

Table 3 displays four different hypothetical cross-

tabulations of a repeated choice to show that response in-

dependence and error independence can separately fly or

fail; that is, failure or satisfaction of one neither guaran-

tees nor refutes the other. (Entries in Table 3 sum to 100,

so they can be viewed as percentages, or divided by 100

to facilitate calculations on proportions). Each of these

models (independence and TE) can be tested by a Chi-

Square on the same 2 × 2 array with 1 df, since each

model uses two parameters. Response independence im-

plies that each cell entry can be reconstructed from the

row and column marginal proportions, and TE says that

each entry can be reconstructed from p and e, using Equa-

tions 1-3.

In the two examples in Table 4 that perfectly satisfy

response independence, each entry can be perfectly re-

produced as the products of their marginal choice propor-

tions.
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Table 3: Hypothetical cross-tabulations illustrating that response independence and TE independence can be separately

satisfied or violated by repeated responses to a single choice problem. Both models are satisfied in the example in the

upper left and both are violated in the case in the lower right.

Independence satisfied Independence violated

TE satisfied A′ B′ A′ B′

A 16 24 30 10

B 24 36 10 50

TE violated A′ B′ A′ B′

A 8 32 20 25

B 12 48 5 50

In the two examples of Table 4 that violate response

independence, people are more consistent than expected

(i.e., the entries on the major diagonal are greater than

expected from products of marginal proportions). In the

two cases violating TE, the matrices are not symmetric

(i.e., one type of preference reversal between replications

is more probable than the other).

Treating the hypothetical entries in the tables as ob-

served frequencies, the χ2(1) for cases violating indepen-

dence are 34.0 and 16.5 in the first and second rows, re-

spectively. The χ2(1) for examples violating TE are 9.66

and 22.14, respectively. The critical value of χ2(1) with α

= .01 is 6.63, so each of these would be considered “sig-

nificant”. In the two cases satisfying TE, the parameters

are p = 1 and e = .4 in the case that also satisfies response

independence and p = .63 and e = 0.11 in the case that vi-

olates response independence. Chi-Squares are zero for

models that fit perfectly.2

These four examples refute the claims by Cha et al.

(2013) that the standard TE model implies independence,

and they refute the claim that if TE models violated in-

dependence, they would be rendered un-testable. See

also Birnbaum and Bahra (2012a, pp. 407–408), includ-

ing their example in which the TE model would be re-

jected.

2In order to justify comparing the calculated Chi-Squares with the

Chi-Square distribution to test either response independence or TE in-

dependence, higher order independence assumptions would be made;

namely, each datum in the table entered its cell independently of the

other entries. These higher-order assumptions to justify the significance

test do not assume response independence. It is reasonable to question

in empirical applications whether or not these higher-order assumptions

are satisfied.

2.3 True-and-error model with multiple

subjects and one block each

Now suppose that the data in Table 1 instead represented

results from 20 different participants, each of whom par-

ticipated in only one block (instead of 20 blocks by the

same person). That is, suppose each row of Table 1 rep-

resents responses by a different person, tested separately.

What is the “standard” TE model for that situation? In

that case, Equations 1–3 are the same, but the interpre-

tations of parameters differ. It is again assumed that the

same person in the same block of trials is governed by the

same “true” preferences, but in this case, it is assumed

that different people might have different “true” prefer-

ences. In this case, p represents the proportion of people

who “truly preferred B” in their first (and only) block. In

this case, violation of independence arises because differ-

ent people have different “true” preferences.

To emphasize the distinction between these two cases,

Birnbaum and Bahra (2012a) used the terms iTET (in-

dividual True and Error Theory) and gTET (group True

and Error Theory) to denote cases where violations of iid

arise from an individual changing preferences from block

to block (iTET) and where violations of iid arise from in-

dividual differences in a group of people (gTET), respec-

tively. Both of these cases were discussed in Birnbaum

(2011, p. 679) and Birnbaum (2011, p. 680), respectively.

In the simplest version of gTET, e represents an error

rate that is assumed to be the same for all persons. When

there are different people, however, one might hypothe-

size that different people might have different amounts

of noise in their data, so violations of this assumption

might show up as violations of this model. Indeed, Birn-
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Table 4: Hypothetical data in a test of transitivity for a

single person who receives three choice problems twice

in each of 20 blocks of choice problems, where each of

the six choice trials was separated by many filler trials

and each block of trials was also separated by multiple

separator trials.

Choice Problems

Blocks AB BC CA A′B′ B′C′ C′A′

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 0 0 0 0 0 0

9 1 1 1 1 1 1

10 1 1 1 1 1 1

11 1 1 1 1 1 1

12 1 1 1 1 1 1

13 1 1 1 1 1 1

14 1 1 1 1 1 1

15 1 1 1 1 1 1

16 1 1 1 1 1 1

17 1 1 1 1 1 1

18 1 1 1 1 1 1

19 1 1 1 1 1 1

20 1 1 1 1 1 1

Marginal

choice

proportion

0.6 0.6 0.6 0.6 0.6 0.6

baum and Gutierrez (2007) found evidence that this sim-

ple model could be rejected in favor of a more complex

model in which different people had different error mul-

tipliers.3

In iTET, stability of e means that the individual main-

tains the same error rate throughout the study, which

would be violated in cases where a person becomes better

with practice or where she might become fatigued over

3Birnbaum and Gutierrez (2007) also hypothesized that each person

might have only a single pattern of “true” preferences; however, their

study was not designed to test that conjecture, as this issue is moot in a

gTET study. When it was tested by Birnbaum and Bahra (2007b, 2012a,

2012b), this hypothesis was rejected.

trials. It is important to realize that these theorized vio-

lations of the model can be tested against more general

models that allow the violations of these assumptions.

It is also important to keep in mind that violations of

independence in these two cases, as interpreted by the

iTET and gTET models come from different origins. So

even though the equations are the same, the violations of

independence have different empirical interpretations.

For example, the correlation test proposed by Birn-

baum (2011, 2012a) is really anticipated to be violated

only in the case of iTET, because that statistic is sensitive

to violations of iid that arise from sequential effects; that

is, preference reversals between rows that are related to

the temporal separation between blocks. If that test were

to show significant violations in the gTET paradigm, it

would mean that the order in which people were tested

somehow affected the results, for example, that partici-

pants communicated via some type of ESP that depended

on the sequence in which they were tested. Therefore,

the data of Table 1 are not realistic for the gTET situa-

tion, if the rows represented the order in which different

participants were separately tested. A more realistic ex-

ample for gTET could be created from Table 1 by ran-

domly switching rows, which would create a random se-

quence within each column; however, that resorting of

rows would preserve the same cross-tabulation as in Ta-

ble 2.

At this point, it is also worthy of note that, whereas

the results in Table 2 are perfectly consistent with iTET,

that model does not allow one to predict nor to fit the

sequential information in the data of Table 1. In order

to describe the obvious sequential effects in Table 1, one

would need additional theory, such as that proposed by

Birnbaum (2011, p. 680), and described more fully here

in Appendix B. For example, one might theorize that

the parameters of a decision making model (such as the

TAX model of Birnbaum, 2008) might drift from block

to block as in a random walk.

Although one might propose a TE model in which an

individual randomly and independently samples a pref-

erence pattern in each block of trials, I doubt that such

a model would be an accurate descriptive model, based

on the findings with the correlation tests on data of Birn-

baum and Bahra (2012b) and of Regenwetter et al. (2011)

as analyzed in Birnbaum (2012a).

Thus, while Table 2 would be consistent with a TE

model and would refute iid, the sequential effects in Table

1 would require some additional theory to be described.

In the case of iTET, that theory might involve a model of

risky decision-making in which parameters of the model

change (Birnbaum, 2011); and in the case of gTET, that

extra theory might involve communication among partic-

ipants via ESP or some form of “cheating.”
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Cha et al. (2013, p. 68) made a peculiar argument

about the relation between these two cases as follows:

First, they claimed that iTET models imply indepen-

dence. (They do not.) Second, they argued that, if Birn-

baum and Bahra (2012b) found violations of indepen-

dence within a person (which they did), it would inval-

idate the between-subjects model of Birnbaum and Bahra

(2007a), which it would not. The model in the 2007a

paper was a gTET model that violates iid because of in-

dividual differences. In essence, Cha et al. argued that if

iid is violated in the case of iTET it means that gTET is

rendered “untenable”. That is neither logical nor reason-

able.

One might plausibly argue just the opposite; namely, if

individuals change true preferences from block to block,

it seems likely that people would also differ from each

other. Therefore, evidence of violations of iid in the iTET

case (Birnbaum & Bahra, 2012b) would seem from com-

mon sense to suggest that one should expect to find viola-

tions of iid in the gTET case (Birnbaum & Bahra, 2007a).

But keep in mind that neither iTET nor gTET sat-

isfy iid and there is no a priori connection between the

two. That is, violations of iid in one neither guarantees

nor rules out violations of iid in the other case. For ex-

ample, it is logically possible (if intuitively implausible)

that, although each person might change true preferences

from block to block, all humans might go through such

changes in the same exact sequence.

Empirical results show that neither between-subjects

data of Birnbaum and Bahra (2007a) nor the within sub-

jects data of Birnbaum and Bahra (2007b, 2012a, 2012b)

satisfied independence. Neither the iTET nor gTET mod-

els used in those studies implies independence. Further,

empirical intuition leads one to anticipate that if iid is vi-

olated in the iTET case, one should expect to find vio-

lations in the gTET case. So, the claims by Cha et al.

(2013, p. 68) that violations of iid in Birnbaum and Bahra

(2012b) render the gTET model of Birnbaum and Bahra

(2007a) “not tenable” is not correct.

The violation of response independence is the main is-

sue in this debate, which is that such violations could lead

to wrong conclusions concerning transitivity, if a person

analyzed only marginal choice proportions. The assump-

tion of iid is not merely some statistical nicety that justi-

fies significance tests; violations mean that the interpreta-

tion of marginal proportions can be misleading, as shown

in the next section.

3 Testing independence, TE mod-

els, and transitivity

Transitivity of preference asserts that, if A is preferred to

B and B is preferred to C, then A should be preferred to C.

To test this principle, we need at least three choices. To

test TE models for this case, each of these three choices

can be repeated within each block. So, this new experi-

mental setup is like the previous one, except that within

each block of choice problems, there are three choice

problems that are each repeated within each block; these

six problems are spaced out by multiple fillers, and blocks

are separated as before.

3.1 Three choices repeated twice in each

block

Suppose there are three choice problems: AB, BC, and

CA. Let Choice A′B′ represent a second version of the AB

choice that might require the person to switch buttons in

order to indicate the same preference response. Choices

B′C′ and C′A′ are similarly constructed.

Again, let us start with the paradigm of a single partici-

pant who serves in 20 blocks of trials that include six sep-

arated choice problems: 3 basic choice problems repeated

within blocks, with all choices separated by intervening

fillers, and blocks separated by numerous separators. Hy-

pothetical data are shown in Table 4.

Data are coded so that 000 is the intransitive response

pattern of choosing A over B, B over C, and C over A. The

pattern 111 represents the intransitive cycle of choosing

B over A, C over B, and A over C. The other six response

patterns are transitive.

In Table 4 we see that the participant had perfectly

intransitive response patterns within every single block

of the study. The person began with the intransitive cy-

cle 000 and switched to the opposite intransitive cycle,

111. Weak stochastic transitivity is violated in the binary

choice proportions, because P(B ≻ A) > ½, P(C ≻ B)

> ½ and P(A ≻ C) > ½. Yet the marginal choice propor-

tions (0.6, 0.6, 0.6) are perfectly consistent with a mixture

of linear orders, satisfying the triangle inequality, P(AB)

+ P(BC) + P(CA) ≤ 2. If an investigator analyzed only

marginal choice proportions, the conclusion from the tri-

angle inequality would be that transitivity can be retained.

By examining response patterns, however, it is easy to see

that every individual response pattern was intransitive.

Cha et al. (2013, pp. 66–68) conceded this point, but

they claimed that the TE models would also fail to detect

intransitivity in such cases. However, that claim depends

on their assumption that the TE model satisfies indepen-

dence, which it does not.

The response patterns from Table 4 are cross-tabulated

in Table 5. Table 5 is perfectly consistent with iTET in

this case, which can violate response independence.

Table 5 also shows the response frequencies predicted

from the iid model. The hypothetical data do not satisfy

the predictions of iid at all. Among the predictions of

iid, note that if the marginal choice proportions are each
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Table 5: Analysis of response patterns from hypothetical data of Table 4.

Response

pattern

Observed

ABC

Observed

A′B′C′

Observed

both

Predicted

ABC (iid)

Predicted

both (iid)

000 8 8 8 1.28 .08

001 0 0 0 1.92 .18

010 0 0 0 1.92 .18

011 0 0 0 2.88 .41

100 0 0 0 1.92 .18

101 0 0 0 2.88 .41

110 0 0 0 2.88 .41

111 12 12 12 4.32 .93

Sum 20 20 20 20 2.81

0.6, the total probability that a response pattern will be re-

peated within blocks is only 0.14; so out of 20 trials, the

person is expected to agree in choice pattern only 2.81

times within blocks. In these hypothetical data, however,

the participants were perfectly consistent (20 agreements

= 100%). Do real data show higher self-consistency

than predicted by independence? They do (Birnbaum &

Bahra, 2012a, Footnote 4; Birnbaum & Bahra, 2012b,

Appendix H).

The examples in Birnbaum (2012a), like that in Ta-

ble 5, are cases where the cross-tabulations are perfectly

consistent with TE models and error rates are zero. Per-

haps these perfect features of the examples led Cha et

al. (2013, p. 70) to state that, if TE models are allowed

to violate iid, they always fit perfectly and are therefore

not testable. The next sections show the appropriate TE

models for testing transitivity in the presence of error, and

illustrate cases where the TE model leads to different con-

clusions from those reached by the methods used by Re-

genwetter et al. (2011). Examples where TE models can

be rejected are also presented.

3.2 True-and-error model for Test of Tran-

sitivity

There are 8 possible response patterns for each test with

three choice problems testing transitivity: 000, 001, 010,

011, 100, 101, 110, and 111. In the TE model, the

predicted probability of showing the intransitive pattern,

111, is given as follows:

P(111) = p000(e1)(e2)(e3) + p001(e1)(e2)(1 – e3)

+ p010(e1)(1 – e2)(e3) + p011(e1)(1 – e2)(1 – e3)

+ p100(1 – e1)(e2)(e3) + p101(1 – e1)(e2)(1 – e3)

+ p110(1 – e1)(1 – e2)(e3)

+ p111(1 – e1)(1 – e2)(1 – e3). (4)

P(111) is the theoretical probability of observing the in-

transitive response cycle of 111; p000, p001, p010, p011,

p100, p101, p110, and p111 are the probabilities that the

person has these “true” preference patterns, respectively

(these 8 terms sum to 1); e1, e2, and e3 are the probabili-

ties of error on the AB, BC, and CA choices, respectively.

These error rates are assumed to be mutually indepen-

dent, and each is less than ½.

There are seven other equations like Equation 4 for

the probabilities of the other seven possible response pat-

terns.

Because each choice is presented twice in each block,

there are 64 possible response patterns for all six re-

sponses within each block. If error rates are assumed to

be the same for choice problems A′B′, B′C′, and C′A′

as for choice problems AB, BC, and CA, respectively, the

probability of showing the same pattern, 111, on both ver-

sions in a block is the same as in Equation 4, except each

of the error terms, e or (1 – e) in Equation 4 are squared.

In this way, one can write out 64 expressions for all 64

possible response patterns that can occur in one block.

A hypothetical set of data is shown in Table 6. The

rows show the 8 possible response combinations for the

ABC choices and the columns show the 8 possible re-

sponse patterns for the A′B′C′ choices. Each entry is

the frequency with which each response pattern occurred.

For example, the 17 in the first row and column shows

that on 17 out of 200 blocks, the person showed the in-

transitive pattern, 000, in both versions of the three choice

problems.

The general TE model for this case has 8 parameters

for the 8 “true” probabilities and 3 error rates (one for

each choice problem).4 Because these 8 “true” probabil-

4More general models can also be tested; this version is called the

“general” model here to distinguish it from special cases that assume
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Table 6: Hypothetical data containing error that illustrate

testing independence, TE model, and transitivity. Analy-

ses described in the text show that these data violate in-

dependence, they satisfy TE model, and they violate tran-

sitivity.

Response Pattern in A′B′C′ choices

ABC 000 001 010 011 100 101 110 111 Sum

000 17 3 4 1 6 1 2 2 36

001 3 1 1 1 1 1 0 1 9

010 5 1 0 1 2 1 1 2 13

011 1 1 1 3 1 3 2 11 23

100 6 1 2 1 2 0 1 2 15

101 1 1 1 3 1 2 2 8 19

110 2 0 1 2 1 2 2 6 16

111 1 1 3 11 2 9 6 36 69

Sum 36 9 13 23 16 19 16 68 200

ities sum to 1, they use 7 df, so the model uses 10 df

to account for 64 frequencies of response patterns; the

data have 63 df because they sum to the total number of

blocks. It should be clear that there are many ways for

64 frequencies to occur that are not compatible with a

model with 11 parameters. Two examples will be pre-

sented later.

The transitive TE model is a special case of this gen-

eral TE model in which the two probabilities of intran-

sitive patterns are set to zero, p000 = p111 = 0. If the

error rates are not zero, a set of data can (and typically

would) still show some instances of intransitive response

patterns, even though the “true” probabilities of these pat-

terns are each zero.

One can conduct at least three types of statistical tests.

First, one can test independence. Second, one can test this

general TE model. Third, if the general TE model pro-

vides a reasonable approximation, one can test the special

case of transitivity within that model.5

According to response independence, it should be pos-

sible reproduce the entries in Table 6 from just three num-

bers: the marginal choice proportions, P(AB), P(BC), and

P(CA). These are all 0.6, so the predicted entry for the up-

per left cell of Table 6 (000, 000) would be [1 – P(AB)]2[1

– P(BC)]2[1 – P(CA)]2 = (.4)6 = 0.004. Multiplying by

the total frequency (200), the predicted frequency is 0.82,

far less than the observed value of 17.

For an overall index of fit, one can compute

transitivity.
5An Excel spreadsheet that implements these analyses is available

with this article.

χ2 = Σ(f i – Fi)
2/Fi. Where f i are the observed frequen-

cies and Fi are the corresponding predicted frequencies,

based on independence (or below, predicted from the TE

model). There are 63 df in the data, and we used 3 df to

estimate the three parameters (the marginal choice pro-

portions), so this test of independence has 60 df. In this

case, χ2(60) = 505.4, so the conclusion would be that

these data do not satisfy response independence.6

Next, one can use a function minimizer, such as the

solver in Excel, to estimate best-fit parameters for the

general TE model. Those estimates are p000 = .333, p111 =

.667, p001 = p010 = p011 = p100 = p101 = p110 = 0; e1 = 0.25,

e2 = 0.20, and e3 = 0.15. In this case, 10 df were used to

estimate the parameters, and χ2(53) = 11.5, showing that

the general TE model fits these hypothetical data well.

However, when we fix p000 = p111 = 0, in order to test

the transitive special case, and solve for the best-fit pa-

rameters, we find that the transitive TE model does not fit

these data, χ2(55) = 108.3. The difference, χ2(2) = 108.3

– 11.5 = 96.8, indicates that transitivity is not satisfactory

as a description of these same data.

These calculations show that, in principle, one can es-

timate the models and assess their fit in the 8 × 8 ma-

trix as in Table 6. In practice, however, it might be diffi-

cult or impractical to obtain sufficient data for such a full

analysis. When the data are thinner, one might partition

the data in various ways and still test independence, TE

model, and transitivity, as described next.

3.3 Partitions of the data

In order to test independence to compare the iid models

with TE models, one might partition the data from the 8 ×

8 matrix (as in Table 6) into three, 2 × 2 matrices, in order

to test the models of repetitions, as was done in Tables 2

and 3. For example, one can tabulate the AB choice by

the A′B′ choice. From Table 6, the four frequencies are

44, 37, 37, and 82, for 00, 01, 10, and 11, respectively.

These violate independence by a standard chi-square test,

χ2(1) = 10.8. However, the same values fit the TE model,

χ2(1) = 0.2, with e1 = 0.25. Similarly, the tabulations

for the other two choice problems also violate response

independence, χ2(1) = 20.7 and 40.3, and also satisfy TE

independence, χ2(1) = 0.1, and 0.5, with e2 = 0.2, and e3

= 0.15, respectively. Because these error estimates do not

assume or imply the property of transitivity, they might

be used to constrain solutions to other partitions of the

data that can be used to test transitivity.

6Another index of fit is the G-squared statistic, which arises as a

maximum likelihood, G2 = -2Σln(f i /Fi), which is considered a better

asymptotic approximation to the theoretical distribution. One could also

simulate either of these statistics via Monte Carlo for cases with small

samples.
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Table 7: Hypothetical examples testing transitivity; these examples illustrate use of partitioned data to compensate for

small sample sizes. Marginal choice proportions are the same in all examples. Examples 1-3 violate iid. Example 1

satisfies transitivity, which is violated in Examples 2 or 3. Frequencies under “ABC” represent response patterns to

Choice AB, BC, and CA, so 000 and 111 are intransitive; frequencies under “Both” indicate the same response pattern

repeated within blocks. Example 4 satisfies iid model of Regenwetter et al. (2011), which wrongly concludes that all

four of these examples satisfy transitivity.

Pattern Example 1 Example 2 Example 3 Example 4

ABC Both ABC Both ABC Both ABC Both

000 2 0 27 20 11 7 6 0

001 5 1 4 0 4 0 10 1

010 5 0 4 0 4 0 10 1

011 28 20 5 1 21 14 14 2

100 13 7 4 0 20 13 10 1

101 20 13 5 1 5 0 14 2

110 20 13 5 0 5 1 14 2

111 7 1 46 33 30 20 22 5

Total 100 55 100 55 100 55 100 14

χ2 Indep 335.18 1139.25 408.95 0.52

A useful partition for testing transitivity is to count the

frequencies of the 8 possible response patterns in the AB,

BC, and CA choices and the frequencies of repeating the

same patterns on both ABC and A′B′C′ choices within

blocks. These values can be found in the row sums of

Table 6 and on the major diagonal, respectively. But

these frequencies contain cases in common, so they are

not mutually exclusive. One can construct a mutually ex-

clusive, exhaustive partition by counting the frequency

of showing each pattern on both repetitions of the same

choice problems and the frequency of showing each of

8 response patterns in the ABC choices and not in both

cases. For example, in Table 6, the frequency of showing

the 000 pattern in the ABC choice problems and not in

both forms is 36–17 = 19.

This partition of the data reduces the 64 cells as in Ta-

ble 6 to 16 cells. This partition has the effect of increas-

ing the frequencies in each cell, but reducing the degrees

of freedom in the test. In this partition, we can also test

independence, TE model, and transitivity. The purpose

of the partition is to increase the frequencies within each

cell, in order to meet the assumptions of the Chi-Square

or G-Square statistical tests.

Four examples of hypothetical data are shown in Ta-

ble 7 to illustrate different cases that might be observed

with this type of partition. The numbers have been cho-

sen to sum to 100 so that they could be easily converted

to proportions to facilitate calculations for the models.

All four examples in Table 7 have identical marginal

choice proportions, so any method of analysis that fo-

cused strictly on marginal choice proportions treats these

four examples as identical, but they are quite differ-

ent from each other. The marginal choice proportions,

P(AB), P(BC), and P(CA) are all 0.6, so these examples

all violate weak stochastic transitivity, and all satisfy the

triangle inequality. However, they have different interpre-

tations, as shown below.

These response patterns are listed in terms of the ABC

choice pattern and repeated patterns. To convert to a

mutually exclusive and exhaustive partition, subtract the

“both” frequencies from the ABC frequencies, as de-

scribed above. The Chi-Squares are then computed in the

conventional way comparing observed frequencies with

those predicted by the models.

First, we can test independence, which is the assump-

tion that products of marginal choice proportions cor-

rectly reproduce all 16 cells in this partition of the data.

Three parameters (three marginal choice proportions) are

calculated from the data, leaving 15 – 3 = 12 df for the

test of independence. The critical value of χ2(12) with

α = .01 is 26.22. The last row of Table 6 shows these

χ2 tests; only Example 4 satisfies independence.

Second, we can test the general TE model. The TE

model can also be tested by this partition because there

are 15 df in the data and the model uses 7 df for the

8 “true” probabilities and 3 df for the three error rates

(e1, e2, and e3 for Choices AB, BC, and CA, respectively).
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Table 8: Best-fit solutions of TE models to Example 2 of Table 7. These hypothetical data satisfy the triangle inequality

yet are perfectly intransitive, according to the fit of the TE models. Fixed values are shown in parentheses and

constrained values are shown in brackets. Constrained errors are estimated strictly from preference reversals to the

same choice problem within blocks, using the three, 2 × 2 partitions as in Table 3.

Unconstrained errors Constrained errors

Parameter General Transitive Intransitive General Transitive Intransitive

p000 0.378 (0) 0.378 0.378 (0) 0.375

p001 0.000 0.342 (0) 0.000 0.141 (0)

p010 0.000 0.045 (0) 0.000 0.116 (0)

p011 0.011 0.000 (0) 0.011 0.184 (0)

p100 0.000 0.030 (0) 0.000 0.116 (0)

p101 0.011 0.015 (0) 0.011 0.184 (0)

p110 0.000 0.568 (0) 0.000 0.259 (0)

p111 0.600 (0) 0.622 0.601 (0) 0.625

e1 0.095 0.024 0.112 [0.1] [0.1] [0.1]

e2 0.095 0.024 0.112 [0.1] [0.1] [0.1]

e3 0.103 0.500 0.091 [0.1] [0.1] [0.1]

χ2 1.98 88.48 3.29 2.02 4194.97 3.67

That leaves 5 df to test the model in this partition.7

Third, if the TE model fits, we can test the transitive

model by fixing the values of p000 = p111 = 0, which

means that the solution is restricted to be purely transi-

tive. The difference in fit between the general case where

probabilities of all “true” patterns are free and the transi-

tive special case provides a test of transitivity on 2 df.

Example 1 of Table 7 violates independence [χ2(12)

= 335.18]; however, it satisfies both the TE model and

transitivity. The TE model fit these data with error rates

constrained to match the preference reversals data only,

where e1 = e2 = e3 = 0.1, where p000 = p111 = 0 were

fixed, and where the best-fit solution yielded p001 = 0,

p010 = 0, p011 = 0.325, p100 = 0.125, p101 = 0.25, and p110

= 0.25. This model has χ2 = 2.04, so it should be clear

that there is no room for a significant improvement by

making the model more complex. So this case violates

iid, but satisfies the TE model and transitivity.

However, Example 2 is a very different case from Ex-

ample 1, as shown in Table 8. Six models have been fit to

those data, including the general TE model (all 8 response

patterns allowed), the transitive special case (both intran-

sitive patterns are fixed to zero), and a purely intransitive

model (only intransitive patterns are allowed). Parame-

ters shown in parentheses are fixed, and those shown in

square brackets are constrained.

7We also had opportunities to reject the TE model via the three, 2 ×

2 cross-tabulations of repeated choices.

When the general TE model fits the data, one might

constrain the error rates in this analysis to agree with

values estimated strictly from replications data (from the

three, 2 × 2 cross-tabs). The constrained version provides

greater power for the test of transitivity.

The fact that the TE general model fits either with or

without constrained errors shows that we can retain the

general TE model. The differences in Chi-Squares be-

tween the general model and the transitive special case

are large enough to reject the transitive model either with

or without constrained errors (χ2(2) = 4192.95 and 86.50,

respectively). The purely intransitive special case also

fits these data acceptably because the difference in Chi-

Squares between the general model and purely intransi-

tive model is not significant in either constrained or free

cases.

Table 9 shows the corresponding analyses for Exam-

ple 3. The general TE model is again acceptable with or

without constrained errors. In this case, however, both the

purely transitive model and the purely intransitive model

can be rejected. Therefore, one would conclude that these

data are best represented as a mixture of transitive and in-

transitive response patterns.

Example 4 satisfies independence. In that case, one

could say that the data might be compatible with a mix-

ture of strictly transitive patterns, but one might also say

that the data could have arisen from a mixture that in-

cluded intransitive patterns. In the analyses of Regenwet-

ter et al. (2011), this case would be declared consistent
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Table 9: Fit of TE models to Example 3 of Table 7. These hypothetical data satisfy the triangle inequality but they

contain a mixture of transitive and intransitive response patterns. Neither the purely transitive nor purely intransitive

solutions yields an acceptable fit.

Unconstrained errors Constrained errors

Parameter General Transitive Intransitive General Transitive Intransitive

p000 0.128 (0) 0.406 0.128 (0) 0.476

p001 0.000 0.000 (0) 0.000 0.000 (0)

p010 0.000 0.001 (0) 0.000 0.000 (0)

p011 0.255 0.597 (0) 0.256 0.520 (0)

p100 0.242 0.360 (0) 0.243 0.257 (0)

p101 0.000 0.000 (0) 0.000 0.130 (0)

p110 0.011 0.042 (0) 0.011 0.093 (0)

p111 0.363 (0) 0.594 0.364 (0) 0.524

e1 0.101 0.500 0.493 [0.1] [0.1] [0.1]

e2 0.104 0.107 0.000 [0.1] [0.1] [0.1]

e3 0.090 0.000 0.142 [0.1] [0.1] [0.1]

χ2 1.66 23.32 27.22 1.69 1067.77 1069.16

with transitivity, as would all of these examples. In the

approach of Regenwetter et al. (2011), no statistical test

would be conducted because the model “fits perfectly” in

all of these cases.

Table 10 provides two hypothetical examples showing

that the TE model need not always fit. Marginal choice

proportions in Examples 5 and 6 are the same as in Ex-

amples 1–4 of Table 7. In both cases iid is violated, but

in both cases the general TE model fails. In Example 5,

the response patterns observed are mostly intransitive and

in Example 6 most of the response patterns observed are

transitive.

To understand what went wrong for the TE models in

these examples, recall that errors are assumed to be mutu-

ally independent. Although TE models violate indepen-

dence of responses, they satisfy independence of errors,

and the errors in these examples violate that assumption.

In these examples, the participant was not completely

consistent so errors are not zero; we know that there are

substantial errors because people did not repeat the same

response patterns in both versions very often. But if er-

rors are not zero and are mutually independent, we should

have observed more instances of response patterns 001,

010, 100, 011, 100, 101, and 110 in Example 5, and yet

too few such cases are observed. Instead, whenever a per-

son made an error on one choice problem, they too often

made an error on other choice problems. Example 6 also

violates TE because data violate independence of errors.

Examples 5 and 6 violate iid and violate TE model.

In summary, one can separately test independence, TE,

and transitivity. These examples illustrate how the TE

model can be applied and they refute the claims by Cha

et al. (2013) that TE models must satisfy response inde-

pendence or become vacuous.

Difficulties in the approach of Regenwetter et al.

(2011) are illustrated by these examples. Based on

marginal choice proportions, all of these examples are

the same and all are perfectly consistent with transitiv-

ity. When we examine the data as in Tables 6-10, we

see that some cases systematically violate iid and among

those, some cases systematically violate transitivity and

others satisfy it. When iid assumptions are satisfied, then

marginal choice proportions contain all of the useable in-

formation in the data, but when iid is violated, we need to

examine response patterns to correctly diagnose the sub-

stantive issue of transitivity.

These hypothetical examples illustrate why it is im-

portant to know whether iid assumptions, especially re-

sponse independence, are empirically satisfied in choice

experiments. Birnbaum and Bahra (2007b, 2012b) found

that iid was violated in a series of experiments testing

transitivity. Birnbaum’s (2012a) reanalysis of Regenwet-

ter et al. (2011) also concluded that iid was not satisfied

for those data.

However, Cha et al. (2013) claimed that the findings

from Birnbaum (2012a) were “not replicated within sub-

jects” when other data sets from Regenwetter et al. (2011)

were examined, that the tests proposed have “unknown”

p-values that are significantly different from those ob-

tained by another method of simulation, and that certain
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Table 10: Hypothetical examples violating both response

independence and the TE model with all parameters free.

As in Table 7, these examples have the same marginal

choice proportions (all 0.6).

Example 5 Example 6

Pattern ABC Both ABC Both

000 28 4 1 0

001 4 0 1 0

010 4 0 1 1

011 4 0 37 4

100 4 0 19 4

101 4 0 19 4

110 4 0 19 4

111 48 6 3 1

Total 100 10 100 18

χ2 Indep 156.5 93.1

χ2 TE 84.8 69.8

other tests of “iid” were satisfied “with flying colors” for

the Regenwetter et al. (2011) data. Each of these claims

is refuted in Appendix A, where it is shown that the evi-

dence against iid is significant in all three sets of data re-

viewed by Cha et al., that the p-values estimated by Birn-

baum’s methods are conservative relative to the method

used by Cha et al., and that the tests of “iid” that were not

significant “with flying colors” in Cha et al. do not test

response independence.

3.4 Birnbaum and Bahra data violate iid

Birnbaum and Bahra (2007b, 2012b) also used three de-

signs for each participant in each study; they used 136

participants (in three studies) compared to 18 in Regen-

wetter et al. (2011) and they asked each person to respond

twice to each choice problem in each block (compared

to once per block in Regenwetter et al., 2011). They

also used a greater variety of choice problems that might

be expected to create more interference in memory, and

blocks were properly separated by numerous interven-

ing tasks. Therefore, this 2012b paper with 136 partic-

ipants must be accorded corresponding greater weight in

relation to a study with only 18 participants. As shown

in Birnbaum and Bahra (2012b), evidence against iid in

those studies was extremely strong.

Birnbaum and Bahra (2007b, 2012b) found that a num-

ber of participants completely reversed preferences for

20 out of 20 choice problems between blocks; this pro-

vides a clear refutation of the theory of iid. Because each

block of each design in that study contained 20 exper-

imental choice problems (excluding fillers and separa-

tors), a complete reversal has a probability of ½ to the

20th power, assuming iid, which is less than one in a mil-

lion. There were 18 people out of 136 who showed at

least one such perfect reversal of 20 out of 20 responses

between blocks, and these 18 produced hundreds of in-

stances of such perfect reversals. In fact, one person re-

versed preferences perfectly between 60 choice problems

(all three designs) between blocks (see Table 2 of Birn-

baum & Bahra, 2012b). These and other analyses of those

data show that iid can be rejected.

4 Discussion

In my opinion, the empirical results obtained so far tell us

that any viable approach to analyzing formal properties in

choice data should be able to handle the possibility that

the assumptions of response independence is violated. It

should allow for the possibility that people behave more

consistently than allowed by the simplifying assumptions

of iid. The TE models can handle certain violations of

response independence. These models do not satisfy re-

sponse independence and yet they are testable because

they cannot handle all such violations.

As shown in the examples presented here, TE model

can distinguish and diagnose cases that look identical

to tests defined on marginal choice proportions (such as

weak stochastic transitivity and the triangle inequality).

All of the examples in Tables 6, 7, and 10 have the same

binary choice proportions. However, I think it proper to

conclude that Example 1 of Table 7 satisfies transitivity

and that Examples 2 and 3 in Table 7 violate it. Example

4 satisfies iid and is therefore open to debate, because a

person might have a mixture that is purely transitive or

might have a mixture including intransitive patterns and

still produce such data.

These different conclusions for these different exam-

ples could not be reached by examination of the marginal

choice proportions alone, because they all have the same

marginal proportions. My advice to those testing transi-

tivity or other properties is that they should analyze data

at the level of response patterns rather than at the level of

marginal choice proportions.

4.1 Are criticisms of using marginal pro-

portions dependent on the TE model?

No, these criticisms apply whenever iid is violated, what-

ever the cause. The TE models provide one approach, but

this family is not the only way that violations of iid might

be represented. The criticism of using only marginal
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choice proportions applies to any case in which iid is vio-

lated, whether those violations satisfy a TE model or not.

As shown in Examples 5 and 6 of Table 10, data might

violate iid and also violate the TE model. These exam-

ples, including those in Table 3, show that the assumption

of independence of errors is a testable property of these

models, but it is not the same as response independence.

One could argue that TE models are only approximate

because they allow that a person can change “true” pref-

erences between blocks but not within a block. A more

accurate or more general model might allow that a person

might change “true” preferences at any point during the

study. Such a model would include the iid model used

by Regenwetter et al. (2011) and TE models as special

cases. According to the model used by Regenwetter et

al. (2011), independence is supposed to hold on every

experimental trial, as long as there are three filler trials

separating experimental trials.

4.2 What if TE models are wrong or incom-

plete?

The TE Models are testable and they might be rejected

when appropriate studies have been done. A test of iTET

requires a larger quantity of data from each participant to

conduct a proper analysis, whereas tests of gTET require

a large numbers of participants, each of which might con-

tribute a smaller amount of data. Whereas a number of

experiments in the gTET paradigm have been published,

we do not yet have experimental results comparable to

the hypothetical Table 6 for the iTET case, and one might

reasonably wish for even more data than described in that

example.

Although TE models can allow different error rates

in different choice problems, and although more general

versions can be tested in which different people might

have different amounts of noise in their data, even these

more general TE models do not provide any fundamental

explanation for the sources of the errors.

Nor do TE models proposed so far provide an expla-

nation for the kinds of sequential effects that might arise

from a process such as described by Birnbaum (2011), in

which the parameters of a model of risky decision mak-

ing change systematically from trial to trial, as elaborated

in Appendix B. Therefore, although TE models provide a

testable framework within which issues of independence

and transitivity can be explored, they do not provide spe-

cific or satisfying answers to important deeper questions.

Appendix B shows how sequential models might account

for violations of iid including response independence as

well as violations detected by the correlation test of Birn-

baum (2011, 2012a). These models allow that parameters

representing probability weighting or risk aversion might

fluctuate from block to block, but they do not identify the

causes of changing parameter values.

But it is important to realize that even if TE models are

wrong, as in Examples 5 and 6 of Table 9, or if they are

approximate, incomplete or even misguided, criticism of

TE models does not mitigate the problems of assuming

iid as a basis for testing transitivity. The key problem

is that when iid is violated, analysis of marginal choice

proportions can easily lead to wrong conclusions.

4.3 Are assumptions of iid only used to jus-

tify statistical tests?

It might be argued that because the assumptions of iid

are used to justify statistical tests, that this is their only

role in the approach of Regenwetter et al. (2011). That is

not true: in fact, it is the assumption of iid that justifies

analysis of marginal choice proportions. As shown in the

examples of Table 6 and 7, when iid is violated, marginal

choice proportions might satisfy the triangle inequality

despite systematic violations of transitivity within blocks,

revealed in the response patterns.

The statistical issue (that violations of iid affect the p-

value of a significance test) is far less important, in my

opinion, than the danger of drawing wrong descriptive,

substantive conclusions concerning a theoretical property

(such as transitivity) from marginal choice proportions.

Indeed, when the triangle inequalities are satisfied, as

they are in all of the examples analyzed here, the Regen-

wetter et al. (2010, 2011) approach conducts no statistical

test at all, because the model is said in all of such cases

to fit “perfectly”. For example, in Table 7 the triangle in-

equality can be “perfectly” satisfied in a case in which a

different, deeper analysis (Table 8) would refute any mix-

ture of transitive patterns in favor of a mixture of purely

intransitive patterns.

There is another distinction that might be helpful to

eliminate some confusion in this dispute. The random

preference model used by Regenwetter et al. (2011) al-

lows any set of preference patterns to be in the “mind” of

the participant. These hypothesized preference patterns

can violate independence. Indeed, in the linear order, no

intransitive patterns are allowed, so it might seem that this

model violates a type of independence in the postulated

mental set.

However, on each trial, the Regenwetter et al. (2011)

model assumes that the choice response can be repre-

sented as the result of an independent, random sample

from the collection of mental preference patterns. Be-

cause that “random preference” sampling is random, it

means that overt responses will satisfy independence,

even when the theoretical preference patterns in the hy-

pothesized collection (in the mind) violate independence.
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Regenwetter et al. (2011) have pointed out that it is

not possible to recover the distribution of true preference

patterns from the choice responses of a person, because

the assumed independence of responses means that overt

responses do not permit recovery of the distribution of

preference patterns in the mind of the participant.

The assumption of response independence thus justi-

fies analysis of marginal choice proportions, while it also

makes it impossible to identify the distribution of the-

orized preference patterns. When iid is assumed, one

might, in principle, reject transitivity in this approach, but

one cannot recover the distribution of “true” response pat-

terns in this model nor can one definitively rule out mix-

tures containing intransitive response patterns when the

marginal means satisfy transitivity. As shown here, when

iid is violated, satisfaction of the triangle inequality can

co-exist with systematic violations of transitivity.

The statistical tests used here to illustrate analyses in

the TE model also make independence assumptions, but

these do not assume nor imply response independence.

Obviously, these higher order assumptions might be em-

pirically wrong. But if and when the model is appropri-

ate, it can be used to estimate the distribution of “true”

response patterns.

4.4 The details are in the data

The question of how much detail should be analyzed in

data arises in all research problems. The analyses of

the various partitions of the data here should clarify that

whenever data are aggregated, information can be lost.

This debate can be viewed as a debate of how much use-

ful information is contained in data and how much detail

should be represented by a model.

For example, there are 20 × 6 = 120 Values in Table

4. In a larger experiment, there might be a hundred rows.

Such a table of data might be summarized by 3 binary

choice proportions, by 6 column proportions, by 3, 2 × 2

cross-tabulations of repeated responses, by 8 proportions

of showing each response pattern involving three choice

problems, by 8 × 2 proportions showing each response

pattern on the ABC choice (but not both) and in both ver-

sions, by the 8 × 8 cross-tabulation of the eight response

patterns in the ABC × A′B′C′ repetitions, or at the level

of the original data.

When response independence is violated, as appears to

be the case for all three sets of data in Regenwetter et al.

(2011) as well as the series of studies in Birnbaum and

Bahra (2012b), it means that marginal choice proportions

do not tell the whole story. As shown here, response inde-

pendence and error independence are different properties,

but both properties can be tested, and I think it would be

a true error not to test them both.
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Appendix A: Additional data, simu-

lations, and reanalyses

Other Data of Regenwetter et al. (2011)

Birnbaum (2012a) analyzed only that part of the study of

Regenwetter et al. (2011) that replicated Tversky’s (1969)

study, called “Cash 1.” Cha et al. (2013) claimed that

when two other sets of data from that study, “Cash 2”

and “Noncash”, which used different stimuli, are exam-

ined, Birnbaum’s tests were “not replicated within sub-

jects” and when other statistics were computed, that iid

was satisfied “with flying colors”. However, when I re-

viewed all three sets of data, I do not concur with their

conclusions.

According to iid, there should be no correlation be-

tween the number of preference reversals between two

blocks and the separation between blocks. If observed

correlation coefficients differ from zero, we expect half

to be positive and half negative, if iid holds. Birnbaum

(2012a) previously reported that 15 of 18 participants had

positive correlations in Cash 1, that the median correla-

tion was 0.58, and that the mean correlation was signifi-

cantly greater than zero by a conventional t-test.

When these correlations are calculated for Cash 2 and

Noncash conditions, 12 and 15 of the 18 correlation co-

efficients are greater than zero, respectively; the median

correlation coefficients were 0.39 and 0.63, respectively.

Mean correlations were significantly greater than zero by

t-tests in both Cash 2 and Noncash (t(17) = 3.21 and 5.00,

respectively). Across all three sets of data, 42 of 54 cor-

relation coefficients (3 data sets by 18 participants) are

greater than zero, which is significantly more than half

(binomial p = .00003). The overall median correlation

was 0.51, which seems substantial.

I conclude that adding Cash 2 and Noncash datasets

makes the case against iid even stronger than it was with-

out them, even when conventional statistics are applied.

The evidence against iid was indeed “replicated” in a

“within subjects design” if these terms are interpreted as

finding a significant test statistic with new stimuli in tests

with the same participants.

Simulated p-values

Cha et al. (2013, Table 5, left side) presented the results

of 108 statistical tests of iid for the Regenwetter et al.

(2011) data. They used Birnbaum’s (2012a) R-program

to simulate two statistical tests for each of 18 participants

in three sets of data with 10,000 random simulations per

data set.

Separating the tests by data sets, there were 9, 11, and 9

“significant” violations (p < 0.05) in Cash 1, Cash 2, and

Noncash conditions, respectively. For the correlation test

alone, 5 out of 18 were significant in each of the three

conditions. The binomial probability to observe five or

more significant results out of 18 with p = .05 is .0015,

so each condition provides significant refutations of iid

taken alone.

Similarly, there were 4, 6, and 4 who violated the vari-

ance test in the three conditions. The binomial probability

to observe 4 or more with p = .05 is .011, so iid can be
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rejected separately in all three conditions for this test as

well. Thus, all six tests are significant: 3 data sets by 2

tests per data set.

Given the lack of power—there are only 18 participants

who responded to each choice only 20 times—these find-

ings seem strong evidence against iid. Summing across

participants, data sets, and tests, Cha et al. reported that

29 of 108 tests were “significant” with p < .05, using

Birnbaum’s algorithm.

Suppose we adopted the following extra-conservative

standard: Suppose we required the simulated p-value to

be .02 or less in order to conclude it is actually “signifi-

cant” at .05. According to Table 5 of Cha et al, there are

25 such values. According to the binomial distribution

with n = 108 and p = .05, the probability to observe 25

or more “significant” tests, if the null hypothesis is true,

is less than one in a billion. So, despite using a doubly

conservative procedure to evaluate the significance tests,

these data say we should reject the hypothesis that these

participants are a random sample of people who satisfy

iid beyond all conventional significance levels.

The claim that the tests “Do not replicate”

Although the data show overwhelming evidence to refute

iid in all three sets of data with the same participants,

Cha et al. (2013, pp. 62–64) made a very unusual argu-

ment, claiming that the statistical tests “do not replicate

within participant” (p. 55). They do not spell out their

logic clearly because strong evidence against iid was ob-

tained in the same group of people in all three subsets of

data, which I would interpret to say that the significant

violations of iid were indeed “replicated” when the same

participants were tested with different stimuli.

It might be argued that if a person had nonsignificant

violations, we should conclude that this same person ac-

tually satisfies iid that if a person has nonsignificant vi-

olations of iid with one set of stimuli that this same in-

dividual should never show a significant violation of iid

with any other stimuli. But that requires us to infer that

a nonsignificant result means that the null hypothesis is

true and it requires us to generalize this null hypothesis

from one set of stimuli to all other stimuli. Or it might

be argued that if a test is significant for one person with

one set of stimuli, then it should also be significant in any

new test with new stimuli. But that argument would also

be specious.

If either of these principles is intended to justify the

statement that the results “did not replicate,” I find these

arguments unreasonable. Recall that Regenwetter et al.

(2011b) argued that it would take very large samples to

test iid, and Birnbaum’s (2012a) tests were devised to ad-

dress the need to test iid in small samples. With such

small samples (low power), it seems best not to expect ev-

ery test to be significant even if the null hypothesis were

false for all persons and all sets of stimuli.

Only 5 of 18 participants of Regenwetter et al. (2011)

did not show at least one “significant” violation of iid, ac-

cording to Table 5 of Cha et al. (2013). Does that mean

that those five nonsignificant cases actually satisfy iid? I

do not think so. Nor do I think we should conclude that

there are no individual differences with respect to violat-

ing iid. I suspect that iid is false for all participants, but I

think we should withhold judgment until there are better

data before deciding whether iid is violated for all per-

sons or just for some of them.

Comparing methods for simulation of p-

levels

To investigate Birnbaum’s (2012a) suggested statistical

tests of iid, Cha et al. (2013, pp. 59–62) conducted 3,000

simulations for three of their participants. They used a

computer program to simulate data, based on the assump-

tion that the estimated parameters for each person were

the population values. Their simulations were created via

a program that is expected (but not guaranteed) to pro-

duce the same marginal proportions and expected (but

not guaranteed) to satisfy iid. For each of these 3,000

simulations, they then used Birnbaum’s (2012a) program

to create 10,000 simulated permutations of the simulated

data. They reported that the percentage of Type I errors in

their simulated data (which they called the “actual”) were

close to the values simulated by Birnbaum’s (2012a) two

tests, although they found some small differences, includ-

ing some statistically significant ones, where Birnbaum’s

tests were conservative relative to theirs.

Examining their findings, I conclude that these two

methods for simulating Type I errors are fairly close in

agreement, despite some small differences. For example,

Table 4 of Cha et al. (2013) shows that what they call

“actual” (more accurately, simulated) percentages ranged

from .7% to 1.4% for 3,000 samples at the “nominal”

1% level (as simulated by Birnbaum’s methods). “Ac-

tual” (simulated from 3,000 samples) data showed 4.2%

to 5.6% violations corresponding to Birnbaum’s nominal

(simulation) at 5%. Their results showed that the two

methods for simulating p-levels are highly correlated and

in fairly close agreement, despite small differences such

as one might expect when comparing these two, slightly

different methods for simulating data using pseudo ran-

dom numbers generated by computer programs.

New simulations

Although they argued (implicitly) that they had a good

method for simulating data, Cha et al. (2013) did not sim-

ulate Type I errors for all of the data. Instead, they used
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their method only to compare the estimates of p-values by

two procedures for a few cases. Their method samples in-

dependently from binomials whereas Birnbaum’s method

used random permutations, as in Smith and Batchelder

(2008).

In order to simulate data by the method used by Cha

et al. (2013), find the line in Birnbaum’s (2012a) code as

follows:

for (jj in 1:nchoices) {xperm[,jj] <-

x[sample(nreps,nreps),jj]} }

and change it to the following:

for (jj in 1:nchoices) {xperm[,jj]

<- x[sample(nreps,nreps, replace =

TRUE),jj]} }

No other changes to the program are necessary. With this

revision, each datum is randomly drawn from a binomial

population with probability equal to the marginal choice

proportion in the original data, but each new sample need

not have the same marginal choice proportions as in the

original data.

Out of 108 simulations (18 subjects × 3 data sets × 2

tests), each based on 10,000 computer generated samples,

I found that 29 simulated Type I errors had p < .05 by

either simulation method; two new cases became “signif-

icant” and two other cases that were “significant” by the

permutation method dropped to non-significant. How-

ever, the estimated p-values were smaller in 78 cases for

the sampling method and smaller in 22 cases for the per-

mutation method, with 8 cases the same. Thus, the per-

mutation method used by Smith and Batchelder (2008,

p. 731) and implemented by Birnbaum (2012a) is con-

servative relative to the method that allows the marginal

proportions to vary across samples.

A reason that Birnbaum’s simulations look “conserva-

tive” compared to those of Cha et al. (2013), is apparently

that the method used by those authors allows simulated

proportions not to match the proportions in the original

data, which means that it is possible to have samples for

a “variable” with all 0s or all 1s in a column; in those sam-

ples, that so-called “variable” becomes a constant, which

will be independent of all other variables and show no

sequential effects. That allows iid to fit such simulated

samples better than it would with the permutation algo-

rithm, so the original data appear more rare (improbable)

in comparison. Personally, I prefer the more conserva-

tive, permutation method (which constrains the marginal

proportions to match those in the original data); however,

for these data, these two methods do not produce any ma-

terial difference to the conclusions.

Combining all three datasets

The tests applied separately to each design are designed

to assess whether or not the assumption of iid is satisfied

Table 11: Simulations of combined data from Regenwet-

ter et al. (2011). Each data array is 20 × 30, Repetitions

by Choice Problems. Mean = average number of prefer-

ence reversals between blocks, var = variance of prefer-

ence reversals; r = correlation between mean number of

preference reversals and difference in trial blocks; pV and

pr = estimated p-values for variance and correlation tests,

respectively, based on 10,000 simulations.

Case mean var pV r pr

1 9.70 10.03 0.39 0.88 0.00

2 4.75 8.70 0.00 0.91 0.00

3 2.04 1.44 0.62 0.67 0.18

4 5.44 6.53 0.00 0.33 0.50

5 3.48 10.36 0.00 − 0.24 0.72

6 7.24 9.77 0.00 0.91 0.00

7 4.96 8.14 0.00 0.94 0.00

8 3.87 5.04 0.00 0.93 0.00

9 10.71 11.56 0.40 0.92 0.00

10 2.78 4.27 0.01 0.50 0.46

11 1.43 1.16 0.42 0.02 0.98

12 8.89 9.17 0.22 0.48 0.21

13 11.78 14.22 0.03 0.76 0.00

14 0.47 0.34 0.52 0.61 0.40

15 6.79 8.62 0.00 0.62 0.08

16 4.55 7.02 0.00 0.89 0.00

17 8.64 8.07 0.62 0.70 0.03

18 9.20 8.86 0.55 0.55 0.13

for trials that are separated by three intervening trials, as

theorized by Regenwetter et al. (2011).

Cha et al. (2013, p. 64) reasoned that, if iid assump-

tions were false, iid would be more likely to fail if all of

the choice problems were analyzed together. To check

this possibility, I combined all three designs, producing a

20 (Reps) × 30 (Choice problems) array for each person.

When these are analyzed using the Monte Carlo method

sampling procedure, 10 and 9 participants had significant

violations of iid at the 0.05 level for the variance and cor-

relation tests, respectively, and only 5 participants did not

have at least one significant violation. The median corre-

lation between preference reversals and distance between

blocks increased to 0.68, and all correlation coefficients

except one (out of 18) were positive. The results are

shown in Table 11. Similar results were obtained with the

more conservative, permutation method, with the same 5

individuals lacking a significant violation.
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The tests that “passed with flying colors” do

not test independence

Cha et al. (2013, p. 59) performed statistical tests on each

column of data separately, which failed to show statisti-

cal significance “with flying colors”. These tests do not

assess response independence, and so these tests do not

address the main issue of this debate, which is that the as-

sumption of response independence could lead to wrong

conclusions in a test of transitivity, as in Tables 6, 7, and

10. Violations of stationarity can produce violations of

response independence (Birnbaum, 2012a, p. 104), how-

ever, which would be the main reason to test stationarity

in this debate.

To understand why separate tests of each choice prob-

lem (each column) are not relevant to the issue of re-

sponse independence, consider a debate between two re-

searchers concerning whether X and Y are or are not pos-

itively correlated. Researcher 1 computes the correlation

coefficient and finds that it is significant and positive; in-

deed, a scatterplot of data shows that as X increases, the

conditional mean of Y given X also increases systemat-

ically. Researcher 2 then examines the distribution of X

and the distribution of Y separately (but not the joint dis-

tribution), and declares that tests of iid were satisfied.

It should be fairly obvious that one cannot analyze in-

dependence of columns by analyzing each column sepa-

rately. Clearly, Cha et al. (2013) must not have meant to

say that iid was satisfied (based on finding a null hypoth-

esis “with flying colors” for each column separately), be-

cause that would be like a person examining X and Y sep-

arately and saying they are “independent,” without actu-

ally computing a correlation coefficient or examining the

scatterplot of X and Y. Appendix C describes how the vi-

olation of response independence creates covariance that

results in greater variance of preference reversals than al-

lowed by iid in Birnbaum’s (2012a) tests.

Appendix B: Stochastic process TE

models

As noted in Birnbaum (2011, 2012a), results with the

correlation test indicate that there are fewer preference

reversals between two blocks of trials that occur closer

together in time than between two blocks that are farther

apart in time. This suggests that people are not randomly

and independently choosing a true pattern of responses in

each block of trials but instead that the true patterns in

successive blocks are more similar. Birnbaum (2011, p.

680-681) suggested that such results might be compati-

ble with a process model in which there are systematic

changes of the parameters of a model of risky decision-

making, such as the TAX model (Birnbaum, 2008). Such

Figure 1: Let A = ($100, 0.5; $0), B = ($92, 0.58; $0),

and C = ($84, 0.66; $0). Four “true” preference patterns

for Choices AB, BC, and CA can occur in the TAX model,

as the parameter, γ, varies from 0.65 to 0.50, where the

other parameters are fixed to conventional values: 110,

100, 101, and 001. In the absence of error, the number of

preference reversals between these patterns varies from

0, when the person retains the same true preferences, to 3

out of 3, when this person’s γ changes from 0.65 to 0.5.

γ = .65 γ = .60 γ = .55 γ = .50Parameter:

C≻B≻A B≻C≻A B≻A≻C A≻B≻C Preferences:

110 100 101 001Pattern:

Reversals: 1

2 2

1

3

1

a systematic drift in the value of a parameter might result

from a deterministic process or from a stochastic process

in which the value of a parameter at time t is likely to

persist at time t + 1.

To illustrate one such process model, consider two-

branch gambles of the form G = (x, p; y), representing

a gamble with a probability of p to win $x and otherwise

win $y, where x > y ≥ 0. Suppose there are three gambles

as follows: A = (100, .50; 0), B = (92, .58; 0) and C = (84,

.66; 0). Suppose that a person’s choices are governed by

the following TAX model for such gambles:

U(G) =
au(x) + bu(y)

a + b
(5)

where a = pγ(1–δ/3) and b = (1–p) γ + pγ δ /3, and U(G)

is the utility of the gamble. For American undergraduates

with cash prizes ranging from $0 to $150, it has been

found that one can approximate modal choices with u(x)

= x, δ = 1, and with γ between 0 and 1. Assume that

a person chooses gamble G over gamble F if and only

if U(G) > U(F); models satisfying this assumption are

transitive.

Figure 1 illustrates the four true preference patterns

possible for plausible values of γ. In the case of the

gTET model, one might assume that there are four dif-

ferent types of participants, with different values of γ. In

the case of iTET, we assume that one individual might

have different values of γt in different blocks of trials,

where γt represents the parameter value in block t. The

number of preference reversals, in the absence of error,

between each pair of true preference patterns is shown

in Figure 1; note that the number of reversals depends
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Figure 2: A random walk model on the four states of Fig-

ure 1. This model has two parameters: p and q are the

probabilities to move to the state to the right or left be-

tween two blocks of trials, respectively. This model has

fewer parameters than the general TE model that allows

all eight possible true response patterns. Given the start-

ing state, one can calculate the probabilities of being in

each of the four states in a block, for a given number of

trial blocks. This model also makes testable predictions

for the probabilities of response patterns on one block,

conditioned on responses in the previous block, as well

as other testable implications.

110 100 101 001

(γ = .65) (γ = .60) (γ = .55) (γ = .50)

Preference

pattern

1–p–q

1–p
p

q

1–q

1–p–q

p

q

p

q

on the difference between the values of γ. So, it should

be clear that there are many deterministic (or stochastic)

processes in which γt would (likely) persist from block

to block; that is, that γt + 1 would be equal to or similar to

γt. Such models can imply a positive correlation between

preference reversals and the gap between the blocks.8

For example, Figure 2 illustrates one such stochastic

process model in which there are just four true preference

patterns, and probabilities of transitions between states

from block t to block t + 1 are the same for all values of

t, governed by just two parameters. These probabilities

represent increasing or decreasing the value of γt in the

range from .65 to .50, by increments of .05. If p and

q are both small, it means that the same true response

pattern would likely persist for one or more blocks, since

the probability to stay at the same value of γt is 1–p–q for

the intermediate values of γt, and is even greater for the

extreme values of γt.

In the model of Figure 2, it is not possible to switch

from 001 to 100 without crossing via intermediate pat-

terns. A rival stochastic process would represent the val-

ues of γt+1 as a diffusion process in which the proba-

bility distribution of γt+1 is specified as a function of

the value of γt. A beta distribution with two parameters

might be used for this purpose, with the mode fixed as the

value of γt, which again means that the most likely tran-

sition between two successive blocks is to remain in the

same state, but the parameter might change by variable

8The same four “true” response patterns in Figure 1 are also com-

patible with expected utility theory, which is a special case of the TAX

model in which γ = 1 and δ = 0, if u(x) = xβ t, where βt = the exponent of

the utility function in block t. This model, however, can not account for

systematic violations of coalescing and dominance (Birnbaum, 2008),

so it could be tested by means of other choices in the same block besides

those among A, B, and C.

Figure 3: If a person followed a lexicographic semiorder

PH model, in which probabilities are first compared, and

if their absolute difference exceeds ∆P, decides based on

probability and if not, decides based on the prizes, then

that person might have true preference patterns 110, 000,

or 001, depending on the value of ∆P. If the person

switched to the HP model, a lexicographic semiorder in

which the highest consequences are compared first, then

the intransitive cycle, 111, is possible as well as the same

two transitive patterns. It is possible to define a stochas-

tic process model that describes transitions among these

states, analogous to Figure 2.

PH: .08 < Δ
P
 < .16

HP: $8 < Δ
$
 < $16

PH: Δ
P
 < .08

HP: Δ
$
 > $16

PH: Δ
P
 > .16

HP: Δ
$
 < $8

A≻B≻C 

A

C B

C≻B≻A 

001110

000

111

A

C B 12

21

amounts in the range from 0 to 1. Such a model could

allow transitions from any state to any other state.

In Figures 1 and 2, the only true states are transitive.

Figure 3 illustrates a similar analysis of true response pat-

terns for two lexicographic semiorder (LS) models that

can handle intransitive true response patterns. In the PH

LS model, a person compares two gambles of the form,

G = (x, g; 0) and F = (y, f ; 0) by first comparing their

probabilities (P) to win the higher prize (H); if the abso-

lute difference, |g – f | ≥ ∆P, where ∆P is the threshold

parameter of probability, then the gamble with the higher

probability to win is chosen; if not, choose the gamble

with the better H. This model can produce transitive pref-

erences for a given set of stimuli, A ≻ B ≻ C or C ≻ B ≻

A, or it could produce the “clockwise” intransitive cycle

illustrated in Figure 3 for A, B, and C, when 0.08 < ∆P <

0.16.

However, if a person switched to the HP LS model,

that person could show the “counterclockwise” intransi-

tive cycle illustrated in Figure 3. In HP, the highest cash

prizes are examined first and the difference, |x – y|, com-

pared to a cash difference threshold, ∆$.

The number of preference reversals between the true

response patterns (in the absence of error) are shown

along the curves; the number of reversals is greatest when

comparing 110 versus 001 or 000 versus 111, which re-
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quire larger changes in parameter values or a switch be-

tween HP and PH. Thus, by assuming that parameter val-

ues likely persist for several blocks, or that switching

from HP to PH is less likely than a change in parameter

value, such an intransitive model could imply violations

of iid revealed by a positive correlation between prefer-

ence reversals and the gap between blocks.

Appendix C: Violations of indepen-

dence affect variance

Birnbaum’s (2012a) approach detects violations of re-

sponse independence. Let x(i, j) = response to Choice

Problem j in Block i. Suppose, as in Table 1, that x(i, j)

= 1 if the participant reported preference for the second

alternative and 0 otherwise. Each choice problem might

have a different probability, pj, that can be estimated from

the column marginal proportion, x(*, j). If iid were true,

each column of data represents an iid sample from a bi-

nomial with probability pj. The mean of Choice Problem

(Column) j is expected to be pj and the variance of Choice

j is pj (1 – pj). Note that the variance of a binomial is al-

ways less than its mean because 0 < pj (1 – pj) < pj.

Now, define a matrix of preference reversals between

Blocks i and k, as follows:

z(i, k, j) = 1 if x(i, j) 6= x(k, j) and z(i, k, j) = 0 otherwise.

If iid is satisfied, the entries in z will have expected val-

ues of µj = 2pj (1 – pj) with column variances σj
2. Note

that this expression is independent of blocks, as long as

the response in Block i is assumed independent of that in

Block k; therefore, it should be the same for any choice

of i and k, no matter how far apart or close together they

are. This implies that there should be no correlation be-

tween the probability of a preference reversal and the gap

between i and k.

Next, compute the sum of preference reversals between

Blocks i and k as follows: Z(i, k) = Σz(i, k, j), where the

summation is across Choices, j. If iid is satisfied in z, the

mean of Z will be the sum of the column means, and the

variance of Z will be the sum of the column variances,

Σσj
2. However, if independence of the columns of z is

violated, then the variance of Z will be the sum of the

variances plus the sum of all covariance terms, which im-

plies that the variance of the sum might not equal the sum

of the variances, as it would under the assumption of in-

dependence. For example, in Table 11, all of the signifi-

cant cases in the variance test have variances greater than

their means.

By combining across columns (choice problems),

Birnbaum’s (2012a) variance test will be significant when

iid is violated, such that preference reversals for differ-

ent choice problems have positive covariances with each

other. This approach is, I think, appropriately conserva-

tive in that it uses random permutations of the data to sim-

ulate the distribution of variances of preference reversals

under the null hypothesis of iid, rather than using asymp-

totic results for the sampling distribution of a variance

to small samples. Nor does it use Monte Carlo simula-

tions that allow marginal means to vary across samples,

which is less conservative, but does not make any mate-

rial difference in this case. However, aggregation of pref-

erence reversals across choice problems (columns) pro-

vides a statistic that is more diagnostic of response inde-

pendence than any possible analysis done on each choice

problem (column) separately. In particular, the variance

of a sum will be relatively large when the terms aggre-

gated are positively correlated compared to the variance

of a sum when the variables are independent.
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