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Abstract

The notion of strong system equivalence, which was defined and studied in Anderson,
Coppel and Cullen [1], is here given a module-theoretic characterization and a dynamical
interpretation.

1. Introduction

The present work is intended to elucidate further the notions of system equiva-
lence at infinity and strong system equivalence, which were defined and studied in
[1]. It will be shown that they can be given module-theoretic characterizations
completely analogous to the module-theoretic characterization of ordinary system
equivalence. An interpretation in terms of differential equations will also be
given.

Let K be an arbitrary field and let K{s) be the field of rational functions with
coefficients from K. Any rational function r(s) in K(s) can be uniquely expressed
in the form

r(s) = q(s) + a(s),

where q(s) is a polynomial and a(s) is a strictly causal rational function. If we
write o(s) = irr(s) then the linear operator m is a projection: IT2 = v. Moreover

irpmr = irpr
for any rational function r and any polynomial p, since 7rp(I — ir)r = 0. Simi-
larly

— ir)r = {I — m)pr
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224 W. A. Coppel and D. J. Cullen 12] 

for any rational function r and any causal rational function p. These definitions 
and relations extend at once from scalar to matrix functions. 

The following two lemmas may be known, but we were unable to provide a 
reference for them in the form we require. They will play no direct role in our 
work, but serve to interpret it in Section 4. 

Consider the homogeneous system of linear differential equations 

r(z))í = o, (1) 

where D = d/dt and T(s) is a non-singular n X n matrix of polynomials with 
constant (complex) coefficients. We wish to characterize the solutions of (1) in the 
frequency domain. 

LEMMA 1. The Laplace transforms of the solutions £(t) of (1) are precisely those 
strictly causal rational functions x(s) for which T(s)x(s) is a polynomial vector. 

They form a (complex) vector space of dimension = deg det T(s). 

PROOF. There exists a bipolynomial matrix U(s) such that T(s) = T(s)U(s) is 
in Hermite canonical form. That is, 

tjk = 0 ify" < k, ijj is monic, S(ijk) < S(ijj) if j > k. 

Moreover T(s) is uniquely determined by these requirements, and hence U(s) is 
also. 

If x(s) is the Laplace transform of a solution of the transformed system of 
differential equations 

T(D)i(t) = 0, (2) 

then 

hi(s)^i(s) =Pi(s) 

) * l ( * ) + inlis)*!^) + ••• + tnn(s)xn(s) = Pn(s), 

where Pj(s) is an arbitrary polynomial of lower degree than tjj(s) (j: = 1,...,«), 
which is determined by the initial conditions. Conversely, any such x(s) is the 
Laplace transform of a solution of (2). It follows that Lemma 1 holds for the 
system (2). Thus the solutions of (2) are exponential polynomials. 

The solutions of (1) are given by = U(D)i(t), where | ( / ) is an arbitrary 
solution of (2), and thus are also exponential polynomials. Hence the Laplace 
transform x(s) of the solution of (1) is a strictly causal rational function. 
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Moreover, x(s) = U(s)x(s) + q(s), where q(s) is a polynomial vector de-
termined by the initial conditions, and hence

T(s)x(s)=T(s)x(s) + T(s)q(s)

is a polynomial vector.
Conversely, if x(s) is a strictly causal rational function such that r (^)x( j) isa

polynomial vector then x(s) is the Laplace transform of an exponential poly-
nomial £(f). Hence f = U~l(D)£(t) is also an exponential polynomial and its
Laplace transform x(s) is a strictly causal rational function. Since

x(s)=U-\s)x(s)+q(s),

where q(s) is a polynomial vector,

T(s)x(s)=T(s)x(s) + T(s)q(s)

is also a polynomial vector. Consequently f(f) is a solution of (2) and | ( 0 =

U(D)i(t) is a solution of (1). In this way the validity of Lemma 1 for (2) implies
its validity also for (1).

Since we are interested in the behaviour of linear systems at infinity we must
consider also the (pure) impulsive, or distributional, solutions of (1). An examina-
tion of the discussion in Verghese [4, pages 93-95] yields the following counter-
part to Lemma 1.

LEMMA 2. The Laplace transforms of the impulsive solutions ^(t) of (1) are
precisely those polynomial functions xx(s) which are the polynomial parts of rational
vectors r(s) for which T(s)r(s) is strictly causal.

They form a vector space of dimension = degdet 71" \ where in the notation o/[l],
[T+, TQ, 71] is the Smith-McMillan form at infinity ofT.

It follows that all ordinary and impulsive solutions of (1) form a vector space of
dimension equal to the McMillan degree 8(T), since 5(det T) - S(det 71) =
S(det T+) = 8(T). In the notation introduced at the beginning of this section, the
set of Laplace transforms of ordinary solutions of (1) is irT~l(s)(I ~ T ) C " ( J ) ,

and the set of Laplace transforms of impulsive solutions of equation (1) is

2. System equivalence at infinity

Let

R = w + VT~lU, (3)

be a polynomial realization of the p X m rational matrix R. We recall from [1]
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that with this realization there is associated the extended system matrix

Q =

-T U 0
V W -If

0 /_ 0

Moreover
(A\

where

0
0

and the realizations (3) and (4) are strongly system equivalent. These definitions
of Q, SS, and "^will be retained throughout the present paper.

We show first that Proposition 1 of [1] can be stated in an apparently stronger
form.

PROPOSITION 1. Two polynomial realizations

R= W+ VT'lU= W+ (5)

of a rational matrix R, with extended system matrices Q and Q, are system
equivalent at infinity if and only if there exist causal matrices^, J/~, 3C, 9'such that

| has a causal right inverse, [QT] has a causal left inverse, and

9C ?][ o <e o
JT
0 / (6)

PROOF. By Proposition 1 of [1] it is sufficient to show that if there exist causal
matrices^, Jf, 3C, ^with these properties then there exist causal matrices^, Jf,
%', ^with the same properties and such that, in addition, the common value of
both sides of (6) is causal.

Let

Q-1 =Sr'1^, Q'1 = "f~ST~x

be irreducible causal realizations. By hypothesis there exist causal matrices !F, 9
such that

M&+ Q<$= I.

Thus Q&is causal, and hence 9= V~ @foT some causal matrix 9. It follows that
J( and ^"are left coprime. Similarly JT&VLA $~arz right coprime. But J( Q = Q J/~
implies

https://doi.org/10.1017/S0334270000004872 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004872


15] Strong system equivalence (II) 227

or i\[jr o j [r o J l o

=3e', say,

Moreover both these realizations are irreducible, and consequently they are
system equivalent. Thus there exist causal matrices X, if', if, -STsuch that

In particular

and

Put

, Jf, SC, #are causal and

jt -G
o oJL o iY

where the common value of both sides is causal. Moreover [Jt Q] has a causal
right inverse, since

M &+ Qig + JTSf) = / ,

and similarly [£\ has a causal left inverse.
Proposition 2 of [1] can also be stated in an apparently stronger form: the

realizations (5) are system equivalent at infinity if and only if there exist causal
matrices Jt, JT, 9C, <&such that

(i) 3C

I
0

0
-Q

0
38

0

0
9
I

0
-Q

(iii)
o -

I * -

7 0
0 -Q &

0 * 0

is causal for some causal & if and only if

$ = §J(for some causal §,

is causal for some causal 3tf if and only if

JT= Jftffor some causal &.
The strengthening lies in the fact that 9C and 9 in (i) are not required to be

divisible by J( and Jf. The result follows without difficulty from the preceding
Proposition 1, and the proof is omitted.

Again let 7? be a p X m rational matrix with the polynomial realization (3). If
the corresponding extended system matrix Q is of size / X /, the vector space
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will be called the state-space at infinity of the realization (3). For any x e 9Cm and
any causal rational function p set

p • x = ( / - v)px. (7)

Then XK becomes a module over the ring of causal functions, since the product is
obviously linear in both factors and for any causal a

a (p • x) = ( / - IT)O(I — 7T)PJC

= (/ - ir)apx
= (op) x.

Suppose now that we have two polynomial realizations (5) of the rational
matrix R. Let Q, Q be the corresponding extended system matrices and SC^, SC^
the corresponding state-spaces at infinity. We are going to obtain a characteriza-
tion of all module homomorphisms from 3CW into #0O.

PROPOSITION 2. For any causal matrix Jfsuch thatJt — QJVQ'1 is causal, the
map

is a homomorphism of the causal module fM into the causal module Stx. Moreover
any homomorphism fx: St^ -> Stx can be defined in this way.

The map fm: Xm -* St^ is surjective if and only if \Jt Q] has a causal right
inverse, and injective if and only if\^\ has a causal left inverse.

PROOF. If JC = ( / - w)g"1p, where p is strictly causal, then

where p = JSf p is also strictly causal. Thus/^ maps 9CX into St^. Moreover it is a
homomorphism, since for any causal a

fja • x) = (I - ir)jtT(J - v)ax

= o-fjx).

Conversely, let fM be any homomorphism of #"„ into Stm. If ex,...,e, are the
columns of the / X / unit matrix, then

for some causal vector nk (k = 1,...,/). Let Jfbe the / X / causal matrix with
columns hx,. ..,ht. then, since/^ is a homomorphism,

/ « ( ( / - *)Q-1p) = (I-v)Q-1JrP (8)
for any strictly causal vector p.
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Let

be irreducible causal realizations. Since the homomorphism /„ maps zero into
zero, by taking p = s~l 3"in (8) we see that Q~xJT9~\s. causal. Hence

for some causal Jf. Since ̂ "and ^are right coprime, there exist causal &, & such
that

If we put^T = JT- 3~& then >*= g~ l^ Q is causal, since

On the other hand, since Q~X3T& is causal, it follows from (8) that for any strictly
causal vector p

Hence for any x

Suppose there exist causal^", ^such that
JfS^+ Q&= I.

If x = (/ — ir)Q~l p, where p is strictly causal, then

5 = ( / - ^

= (l-m)JTx,
where x = ( / — m)Q'1^rp. Thus the map/^: ^ -» SCX is surjective.

Conversely, if the map fx is surjective there exists a causal matrix J^such that

That is, Q'1 =JTQ-l&+ ^for some causal 9. Hence [^# g] has a causal right
inverse.

Suppose there exist causal # , #such that

If ( / — m}J/~x = 0, where x = (/ — •n)Q~1p for some strictly causal p, then
(/ — "7T)JY'Q~1P = 0. T h u s ^ Q ' V is strictly causal. Since # p is strictly causal, it
follows that Q~lp is strictly causal and hence x = 0. Thus the map/^, is injective.
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Conversely, if the map fx is injective then J/Q lp strictly causal for some
strictly causal p implies that Q'lp is strictly causal. Let

be an irreducible causal realization. Then if we take p = s~xX\\. follows that
J5f= Q -1Jf is causal. Since 34? and Jfare right coprime, there exist causal .#, # such
that

Then

and hence [gf] has a causal left inverse. This completes the proof.
We can now obtain without difficulty a module-theoretic characterization of

system equivalence at infinity.

PROPOSITION 3. Let

R= W+ = W+ Vf~xU (5)

be polynomial realizations of the p X m rational matrix R. Let Q, Q be the
corresponding extended system matrices and 2EX, $x the corresponding state-spaces
at infinity.

Then the realizations (5) are system equivalent at infinity if and only there exists a
module isomorphism fx: 3CX -»tit^ such that the following diagram commutes.

(i-w)K'(s)

Figure 1. System-equivalence at infinity.

PROOF. Suppose first that the realizations (5) are system equivalent at infinity.
Then there exist causal matrices^, Jf, 3C, S'such that \M Q] has a causal right
inverse, [gf] has a causal left inverse, and

Jt 0] \-Q &
3C I\\ <g 0

(6)
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Since ^VandJif = QJf Q~x are causal, the map/^Cx) = ( / - IT)^V x defines an
isomorphism of SCX with S'g0, by Proposition 2. Moreover if x = (/ - "n)Q~xp,
where p is strictly causal, then

since # i s constant and 3C p strictly causal. Thus the right half of the diagram
commutes.

Again, for any strictly causal p, if x = (/ — ir)Q~x98 p then

since Wp is strictly causal. Thus the left half of the diagram commutes.
Conversely, suppose there exists an isomorphism fx which makes the diagram

in Figure 1 commute. U^VandJif = Q^VQ'1 are the causal matrices associated
with fx by Proposition 2, then \J( Q] has a causal right inverse and \£] has a
causal left inverse. The previous argument that the right and left halves of the
diagram commute can be reversed to show that the matrices

and

<&=

are causal. Since

R =

if follows that (6) holds. Thus the realizations (5) are system equivalent at infinity.
Controllability and observability at infinity can also be interpreted in terms of

the preceding diagram.

PROPOSITION 4. Let R be a p X m rational matrix with the polynomial realization

R= w+ VT-lU (3)

and let Q be the corresponding extended system matrix. Then the realization (3) is
controllable at infinity if and only if the map

(l-«)Q-1a:irK'»{s)-*arao

is surjective, and it is observable at infinity if and only if the map

is injective.
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PROOF. The given realization is strongly system equivalent to the realization
R = % Q~XS6. Consequently, by Proposition 4 of [1], it is controllable at infinity if
and only if the matrix

-Q 38 0
# 0 - /

j ' l I L A I ^ U l 1 1 £ ^ X X L 1 1 1 y ^ ^ X 4 ^ ^ ^ * i \ ^ ^ ^ ^ A A^^A i . ^ ^ ^ ^ X X f 1 l l ^ i ^ ^ X l l V I I

that

QS?+ 3B<3= I.

If this is the case then, for any strictly causal p,

Thus the map Q~l&8: TrKm{s) -» 5"^ is surjective. This argument can be reversed.
Similarly the realization (3) is observable at infinity if and only if there exist

causal matrices^", #such that

If this is the case then by multiplying on the right by Q'lp, we see that
( / — -n)^Q~lp = 0 iov some strictly causal p implies ( / — ir)Q'lp = 0. Thus the
map c€: SCX -* ( / — ir)Kp(s) is injective. Again the argument can be reversed.

3. Strong system equivalence

The characterization of system equivalence at infinity given by Proposition 3 is
completely analogous to the module-theoretic characterization of ordinary system
equivalence given in [3] and [2]. In fact let R be a p X m rational matrix with the
polynomial realization (3), and let Q be the corresponding extended system
matrix. Since the realization (3) is strongly system equivalent to the realization

R =

we can express everything in terms of the latter. The vector space

is the state-space of the realization. Moreover, ^"becomes a module over the ring
of polynomials if, for any x e ^"and any polynomial p, we define

p • x = <n{px).
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[11] Strong system equivalence (II) 233

The realizations (5) are system equivalent if and only if there exists a module
isomorphism/: 3C-* #such that the following diagram commutes:

(l--n)Km(s) irKp(s)

Figure 2. System equivalence.

Furthermore, the realization (3) is controllable if and only if the map

•nQ-l@: (I - n)Km(s) -* SC

is surjective, and it is observable if and only if the map

is injective. It will be observed that the results for behaviour at infinity are
obtained by simply replacing the state space by the state space at infinity and
interchanging IT and I — IT.

These results can be combined to give a module-theoretic characterization of
strong system equivalence. For any rational matrix S and rational vector r let
denote the linear map

15]: r -» mS(l - ir)r + ( / - -n^Smr.

The /f-vector space

will be called the strong state-space of the realization (3). It is the (vector space)
direct sum of the state-space and the state-space at infinity. The realizations (5)
are strongly system equivalent if and only if there exists a linear map fs: %s ~* 2ts

which maps ^"isomorphically onto ?t, and S~x isomorphically onto $x, and which
makes the following diagram commute:

K>(s)

Figure 3. Strong system equivalence.
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The realization (3) is strongly controllable if and only if the map

[Q-W]: Km(s)-+ST,

is surjective, and strongly observable if and only if the map

<*:£,-* K"{s)

IS ilijcCiiVc.

More conceptual proofs of Theorems 1 and 2 of [1] can be based on these
results.

4. Dynamical interpretation

In this section we consider the interpretation of the preceding results in the
time domain, when the underlying field K is the field C of complex numbers.
Since this is simply a matter of taking inverse Laplace transforms, we will usually
just state the result.

We are now given a polynomial system of differential equations

T(D)x=U(D)u, y = V(D)x + W(D)u, (9)

and we are interested in its distributional solutions. Furthermore we choose to
restrict attention to distributions of the form

z(t) = t(t)H(t) + co8{t) + Cl8V(t) + ••• + ch8<V(t),

where £(t) is an exponential polynomial, H(t) is Heaviside's unit step function, ck

is a constant and 5 W is the k-th derivative of the delta function. We can write

z(t)=((t)H(t)+p(D)8(t),

where p(s) = cQ + cxs + • • •+ chs
h is a polynomial. We will call zK(t) =

p(D)8(t) the impulsive part of z(t). Given two such distributions z and z, we will
say that z is quasi-equal to z, and write z = z, if z and z have the same impulsive
part.

The distributional derivative of z(t) has the same form, in fact

Dz(t) = (Di(t))H(t)+[t(0) + Dp(D)]8(t).
Convolution products also have the same form; in particular, for any complex
number X,

ex'H(t)* p(D)8(t) = rex'H{t) + q(D)8(t),
where q(s) = [p(s) — p(X)]/(s — \) is the quotient and r = p(\) the remainder
in the division of p(s) by s - X. The Laplace transform of z(t) is
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where | ( i ) is the classical Laplace transform of £(*)• Moreover, for an arbitrary
polynomial q(s) the Laplace transform of q(D)z(t) is q(s)z(s).

LEMMA 3. For any impulsive input u(t) = q(D)8(t), where q(s) G Cm[s], the
polynomial system (9) has a unique distributional solution of the form

where p(s) e C°[s]. Moreover l-(t) is a solution of the homogeneous equation

PROOF. Suppose we are given a solution of (9). If x(t) = £(t)H(t) + p(D)8(t),
then on taking Laplace transforms we obtain

= U(s)q(s).

Thus | ( s ) and p(s) are the strictly causal and polynomial parts of the rational
vector T~l(s)U(s)q(s). This shows that x(t) is uniquely determined and, by
Lemma 1, that £(/) is a solution of (1). Then y(t) = V(D)x(t) + W(D)u(t) is
also uniquely determined.

Conversely, we obtain a solution of (9) if we define £(,s) and p(s) in this way
and take £(f) t o be the inverse Laplace transform of £(.?).

In the situation of Lemma 3 we will say that the solution £(t) of the
homogeneous equation (1) is the regular part of the solution of (9) with the
impulsive input u(t).

With this terminology the results stated in the first part of Section 3 admit the
following dynamical interpretation. By Lemma 1, the state-space #"is the set of
Laplace transforms of all solutions of the equation

Q(D)lu) = 0,

that is,

w = 0, T(D)x = 0, y=V{D)x.

We recall also that controllability means that the map irQ~\s)38: Cm[s]
surjective, and observability means that the map <€: ST-* 7rCp(s) is injective. We
conclude that the polynomial system (9) is controllable if every solution of the
homogeneous equation (1) is the regular part of the solution of (9) for some
impulsive input u(t). It is observable if £ = 0 is the only solution of (1) for which
V{D)i = 0.

Furthermore, the polynomial system (9) is system equivalent to the polynomial
system

t{D)x = 0(D)u, y = V(D)x + W{D)u, (10)
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if the transfer matrices are the same, i.e.

W{s) + V(s)T-1(s)U(s) = W(s) + V(s)f-1(s)U(s),

and there exists a one-to-one linear map q>: £(f) -» | ( / ) of all solutions of the
homogeneous equation (1) onto all solutions of the homogeneous equation

•ft n\i — c\

such that
(i)
(ii)
(iii) if | ( 0 is the regular part of the solution of (9) with some impulsive input

M ( 0 , then 9 £(0 is the regular part of the solution of (10) with the same input.
Indeed (i), in conjunction with the linearity of q>, says that the map/in Figure 2

is a homomorphism, while (ii) and (iii) say that the right and left halves of this
diagram commute.

We consider next the corresponding results for behaviour at infinity. A
distribution (x, u, y) will be said to be a quasi-solution of the polynomial system
(9) if

that is,

u = 0, T(D)x = U(D)u, y= V(D)x + W(D)u.

The impulsive part (xM,0, yx) of a quasi-solution will be called an impulsive
solution. We draw attention to the fact that in general ym is not uniquely
determined by xx.

If (x, u, y) is a quasi-solution of (9), then so also is the convolution product
exp(\t)H(t)*(x, u, y), for any complex number \. It follows that if (x^O, yx)
is an impulsive solution of (9), then so also is the impulsive part &x(xoo, 0, yK) of
exp(\t)H(t)*(xo0,Q,ya0).

By Lemma 2, the state-space at infinity S^x is the set of Laplace transforms of
all impulsive solutions of (9). Hence the results of Section 2 admit the following
dynamical interpretation. The polynomial system (9) is controllable at infinity if
every impulsive solution of (9) is the impulsive part of a solution (and not merely
of a quasi-solution). It is observable at infinity if it has no nontrivial impulsive
solution (xm, 0, yx) withyx = 0.

The polynomial system (9) is system equivalent at infinity to the polynomial
system (10) if the transfer matrices are the same and there exists a one-to-one
linear map <£: (xK,0, ym) -* (£^,0, yx) of all impulsive solutions of (9) onto all
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11 s 1 Strong system equivalence (II) 237

impulsive solutions of (10) such that
O, yx)] for all A e C,

(iii) if (x M ,0 , >'o0) is the impulsive part of the solution of (9) with input u(t),
then ip(xx,O, yx) is the impulsive part of the solution of (10) with the same
input.

These results follow in the same way as the previous ones. The parallel between
ordinary system equivalence and system equivalence at infinity could have been
made more complete, but this would have concealed the simplifications which are
present in the ordinary case.
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