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Abstract

Political scientists commonly use Grambsch and Therneau’s (1994, Biometrika 81, 515–526) ubiquitous
Schoenfeld-based test to diagnose proportional hazard violations in Cox duration models. However, some
statistical packages have changed how they implement the test’s calculation.The traditional implementation
makes a simplifying assumption about the test’s variance–covariance matrix, while the newer implemen-
tation does not. Recent work suggests the test’s performance differs, depending on its implementation.
I use Monte Carlo simulations to more thoroughly investigate whether the test’s implementation affects
its performance. Surprisingly, I find the newer implementation performs very poorly with correlated
covariates, with a false positive rate far above 5%. By contrast, the traditional implementation has no
such issues in the same situations. This shocking finding raises new, complex questions for researchers
moving forward. It appears to suggest, for now, researchers should favor the traditional implementation
in situations where its simplifying assumption is likely met, but researchers must also be mindful that this
implementation’s false positive rate can be high in misspecified models.
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1. Introduction

Political scientists typically use Grambsch and Therneau’s (1994; Therneau and Grambsch 2000)
Schoenfeld residual-based test to assess the Cox duration model’s proportional hazards (PH) assump-
tion.This assumption states that a covariate x’s effect is multiplicative on the baseline hazard, h0(t). One
way proportionality can occur is if x’s effect is unconditional on t, a subject’s time at risk of experiencing
some event. If x’s effect is conditional on t, it is no longer proportional, as its effect is “time-varying.”
Failing to account for a covariate’s time-varying effect (TVE) produces inefficient estimates, at best,
and bias in all the covariates’ point estimates, at worst (Box-Steffensmeier and Zorn 2001; Keele 2008,
6). Detecting PH violations, then, is a priority for political scientists, given our general interest in
explanation and, therefore, accurate estimates of covariates’ effects. R’s survival::cox.zph, Stata’s
estat phtest, and Python’s lifelines.check_assumptions all currently use Grambsch
andTherneau’s Schoenfeld-based test (hereafter, “PH test”).

Like any specification-related test, the PH test’s ability to correctly diagnose PH violations depends
on several factors. Examples include the TVE’s magnitude, the presence of misspecified covariate
functional forms, omitted covariates, covariate measurement error, the number of failures, and sample
size (Therneau and Grambsch 2000, sec. 6.6); covariate measurement level (Austin 2018); unmodeled
heterogeneity (Balan and Putter 2019); choice of g(t), the function of t on which the covariate’s effect is
presumed to be conditioned (Park andHendry 2015); the nature of the PH violation, and the percentage
©The Author(s), 2023. Published by Cambridge University Press on behalf of the Society for Political Methodology.
This is anOpenAccess article, distributed under the terms of theCreativeCommonsAttribution licence (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
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of right-censored (RC) observations (Ng’andu 1997). Each of these affects either the PH test’s statistical
size or power, impacting the frequency with which we obtain false positives (size) or true positives
(power), thereby affecting the test’s performance.

New factors affecting the PH test’s performance have recently come to light. Metzger (2023c) shows
how the PH test is calculated also impacts the test’s performance. Traditionally, Stata, Python, and R
(< survival 3.0-10) all compute the PH test using an approximation, which makes certain simpli-
fying assumptions to expedite computation (Metzger 2023c, Appx. A). By contrast, R (≥ survival
3.0-10) now computes the PH test in full, using the actual calculation (AC), without any simplifying
assumptions.1 Metzger’s (2023c) simulations suggest surprising performance differences between the
approximated and actual calculations, with the latter outperforming the former. However, Metzger
examines a limited number of scenarios to address her main issues of concern, pertaining to model
misspecification via incorrect covariate functional forms among uncorrelated covariates, and leaves
more extensive investigations of the calculations’ performance differences to future work.

This article uses Monte Carlo simulations to more thoroughly investigate whether the PH test’s
approximated and actual calculations perform similarly, in general. My simulations show that they do
not, but in unexpected ways. Congruent withMetzger (2023c), I find that the AC generally outperforms
the approximated calculation when the covariates are uncorrelated, regardless of the amount of right
censoring (RC), the way in which RC is induced, the sample size, the PH-violator’s time-varying-
to-main-effect ratio, or the non-PH-violating covariate’s magnitude or dispersion. In these instances,
the AC is well sized and well powered, whereas the approximation is also well sized but can be
underpowered.

However, in a surprising turn of events, the approximation outperforms the AC considerably when
the covariates are correlated, even moderately so (∣Corr(x1,x2)∣ = 0.35). The AC continues to be well
powered, but produces an increasingly large amount of false positives as the correlation’s absolute value
increases—sometimes as high as 100% of a simulation run’s draws. By contrast, the approximation’s
behavior effectively remains the same as the no-correlation scenario: well sized or very near to it, but
sometimes underpowered. These findings have weighty implications because they point to a complex
set of trade-offs we were previously unaware of: using an appropriately sized test (the approximation,
for the scenarios I check here), while knowing the approximation can also have many false positives
in misspecified models (Metzger 2023c), among other potential complications. False positives would
lead researchers to include PH violation corrections, likely in the form of a time interaction. Including
unnecessary interaction terms results in inefficiency, which can threaten our ability to make accurate
inferences (Supplementary Appendix E).

My findings are also weighty because political science applications frequently satisfy the conditions
under which the AC is likely to return false positives. I identified all articles using a Cox durationmodel
in eight political science journals across 3.5 years, and examined the correlations between identified
PH violators and non-violators.2 Nearly 87% of the articles have a moderate correlation for at least one
violator–non-violator pairing, with an average of 5.15 such pairings per article. By contrast, only ~14%
of these articles have easily identifiable features that might prove problematic for the approximation, in
theory (fn. 1). To further underscore my findings’ implications for political scientists, I also reanalyze a
recently published study using the Coxmodel (Agerberg and Kreft 2020) to show that we reach different
conclusions about the authors’ main covariate of interest, depending on which PH calculation we use.

I begin by walking through the differences between the PH test’s approximated and actual calcula-
tions, to provide some sense of why their applied behavior may differ. Next, I describe my simulations’
setup. Third, I discuss my simulation results that show the approximation is appropriately sized in far
more scenarios than the AC. Fourth, I move to the illustrative application and the different covariate

1The change was motivated by the simplifying assumptions’ tenability in certain circumstances, particularly for multistate
duration models and their signature covariate-by-strata interactions (Therneau 2021, lines 42–45). Competing risks models
are a special case of multistate models (Metzger and Jones 2016).

2See Supplementary Appendix G for details and a more complete discussion.
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effect estimates the two calculations imply. I conclude with a summary and discuss my findings’
implications for practitioners.

2. The PH Test Calculation

2.1. Overview
Why might the two calculations perform differently? In short, the approximation makes several
simplifying assumptions when calculating one of the formula’s pieces.3

Grambsch andTherneau’s PH test amounts to a score test (Therneau and Grambsch 2000, 132), also
known as a Rao efficient score test or a Lagrange multiplier (LM) test. Score tests take the form:

LM =UI−1U′, (1)

where U is the score vector, as a row, and I is the information matrix. In a Cox model context, a
covariate’s entry in the score vector is equal to the sum of its Schoenfeld residuals, makingU particularly
easy to compute (Therneau and Grambsch 2000, 40, 85). The score test for whether covariate j is a PH
violator amounts to adding an extra term for xj*g(t) to the original list of covariates (Therneau 2021),
where g(t) is the function of time upon which xj’s effect is potentially conditioned. Usual choices for g(t)
include t and ln(t), but others are possible (and encouraged, in some cases: see Park and Hendry 2015).

To specifically assess whether xj is a PH violator using the full score test, the expanded U vector’s
dimensions, UE

j , are 1×(J+1), where J is the number of covariates in the original model. The (J+1)th
element contains the score value for the additional xj*g(t) term, calculated bymultiplying xj’s Schoenfeld
residuals from the original Coxmodel by g(t), then summing together that product.With a similar logic,
the expanded I matrix for testing whether xj is a PH violator (IE

j ) has dimensions of (J+1)×(J+1). It
is a subset of the full expanded informationmatrix (IE), which is equal to (Therneau 2021, lines 23–33):

IE = ( I1 I2I′2 I3 ) I1 =∑V̂ (tk),
I2 =∑V̂ (tk)g (tk),
I3 =∑V̂ (tk)g2 (tk),

where k is the kth event time (0 < t1 < ⋅ ⋅ ⋅ < tk < tK) and V̂ (tk) is the J× J variance–covariance matrix at
time tk from the original Cox model. We obtain IE

j by extracting the rows and columns with indices 1:
J and j + J from IE. This amounts to all of I1 and the row/column corresponding to xj in the matrix’s
expanded portion.4

2.2. Implementation Differences
In a basic Cox model with no strata,5 the biggest difference between the two calculations originates
from IE. The approximated calculation makes a key simplifying assumption about V̂ (tk): it assumes
that V̂ (tk)’s value is constant across t (Therneau and Grambsch 2000, 133–134). The approximation
also uses the average of V̂ (tk) across all the observed failures (d), V = d−1∑V̂ (tk) = d−1I1, in lieu of
∑V̂ (tk), because V̂ (tk) “may be unstable, particularly near the end of follow-up when the number of

3For more details, see Metzger’s (2023c) Appendix A and the sources therein, as well as this article’s Supplementary
Appendixes A and B.

4The global test statistic takes the same general form except it usesUE, the expanded score vector with all J expanded terms,
and all of IE (Therneau and Grambsch 2000, 134).

5In the presence of strata, the two calculations have more potential places of divergence. The approximation’s simplifying
assumptions about IE are more tenuous (Therneau and Grambsch 2000, 141–142), to the point thatTherneau and Grambsch
suggest a tweak in how practitioners use the test (Metzger and Jones 2021). This tenuousness is one ofTherneau’s motivations
for shifting survival::cox.zph to the actual calculation (see fn. 1).
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subjects in the risk set is not much larger than [V̂ (tk)’s] number of rows” (Therneau and Grambsch
2000, 133–134).

As a consequence of these simplifying assumptions:

1. IE’s upper-left block diagonal (I1) is always equal to V =∑V̂ (tk)/d for the approximation, after
the V substitution. By contrast, it equals∑V̂ (tk) for the AC.

2. IE’s block off-diagonals (I2) are forced to equal 0 for the approximation. For the AC, they would
be nonzero (=∑V̂ (tk)g (tk)).

3. IE’s lower-right block diagonal (I3) is equal to V∑g2 (tk) ≡ ∑V̂ (tk)d−1∑g2 (tk) for the
approximation (Therneau 2021, lines 38–41), after theV substitution. By contrast, I3 would equal∑V̂ (tk)g2 (tk) for the AC.

Supplementary Appendix A provides IE for both calculations in the two-covariate case, to illustrate.
Consider the difference between the test statistic’s two calculations for covariate xj in a model with

two covariates (J = 2).6 For the approximation, it is equal to (Therneau and Grambsch 2000, 134):

Tapx
j = {∑ks∗j,k [g (tk)−g(t)]}2

dV̂β̂j
∑k([g (tk)−g(t)]2)

, (2)

where s∗j,k are the scaled Schoenfeld residuals
7 for xj at time k and V̂β̂j

is β̂j’s estimated variance from the
original Cox model.8

If we rewrite the approximation’s formula using unscaled Schoenfelds, to make it analogous to the
AC’s formula:

Tapx
j =

⎧⎪⎪⎨⎪⎪⎩∑k

s∗j,k�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
[d(V̂β̂j

sj,k+ Ĉovβ̂j,β̂¬j
s¬j,k)+ β̂j][g(tk)−g(t)]

⎫⎪⎪⎬⎪⎪⎭
2

dV̂β̂j
∑k
⎛
⎝[g(tk)−g(t)]

2⎞
⎠

, (3)

where sj,k is the unscaled Schoenfeld residual for covariate j at time k and ¬j refers to the other covariate
in our two-covariate specification.

By contrast, the AC for xj when J = 2 will equal:

(4)

where the various V̂s and Ĉov refer to specific elements of V̂ (tk), the time-specific variance–covariance
matrix, and ∣IE

j ∣ is IE
j ’s determinant.9 ∣IE

j ∣ has J + 1 terms; when J = 2, it equals (before demeaning g (tk)
[fn. 8]):

6The approximation’s algebraic formula is the same regardless of J’s value. The same is not true for the AC.
7Under the approximation’s simplifying assumption, for a specific tk, s∗k = dskV̂ (β̂) (Therneau and Grambsch 2000, 134). R

and Stata calculate their scaled Schoenfelds using this formula.Without the simplifying assumption, s∗k = skV̂−1(tk) (Therneau
and Grambsch 2000, 131).

8g (tk) is eventually demeaned because itmakes certain portions of the calculationmore numerically stablewithout affecting
the final answer (Therneau 2021, lines 34–35).

9Supplementary Appendix B explains the AC formula’s origins.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

34
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://doi.org/10.1017/pan.2023.34
http://doi.org/10.1017/pan.2023.34
https://doi.org/10.1017/pan.2023.34


“PAN_Driver” — 2024/2/19 — 18:49 — page 244 — #5

244 Shawna K. Metzger

∣IE
j ∣ = {(∑K

k=1V̂ (tk,xj))([∑K
k=1V̂ (tk,x¬j)∑K

k=1V̂ (tk,xj)g2 (tk)]
−[(∑K

k=1Ĉov(tk,xj,x¬j)g (tk))2])}
+{(∑K

k=1Ĉov(tk,xj,x¬j))([∑K
k=1Ĉov(tk,xj,x¬j)g (tk)∑K

k=1V̂ (tk,xj)g (tk)]
−[∑K

k=1Ĉov(tk,xj,x¬j)∑K
k=1V̂ (tk,xj)g2 (tk)])}

+{(∑K
k=1V̂ (tk,xj)g (tk))([∑K

k=1Ĉov(tk,xj,x¬j)∑K
k=1Ĉov(tk,xj,x¬j)g (tk)]

−[∑K
k=1V̂ (tk,x¬j)∑K

k=1V̂ (tk,xj)g (tk)])} . (5)

2.3. Implications
Equations (3) and (4) diverge in two major places. Both manifest in the AC (Equation (4)):

1. The additional, non-Schoenfeld term in the numerator (shaded light gray);
2. A substantially more complex denominator.The AC’s denominator is one consequence of I2 ≠ 0,

as Supplementary Appendix B explains. Additionally, g(t) only appears inside the k-summations
involving V̂ (tk) for the AC’s denominator, which stems from I3 ≠∑V̂ (tk)d−1∑g2 (tk).

Tj is distributed asymptoticallyχ2 when the PH assumption holds (Therneau andGrambsch 2000, 132),
meaning Tj’s numerator and denominator will be identically signed.

Understanding when each calculation is likely to be appropriately sized (few false positives) and
appropriately powered (many true positives) amounts to understanding what makes Tj larger. A higher
Tj translates to a lower p-value, and thus a higher chance of concluding a covariate violates PH, holding
Tj’s degrees of freedom constant.The key comparison is the numerator’s size relative to the denominator.
Specifically, we need a sense of (1) when the numerator will become larger relative to the denominator
and/or (2) when the denominator will become smaller, relative to the numerator.

However, the numerator’s and denominator’s values are not independent within either calculation.
Moreover, the numerator and the denominator do not simply share one or two constituent quantities,
but several quantities, often in multiple places (and sometimes transformed), making basic, but mean-
ingful comparative statics practically impossible within a given calculation, let alone comparing across
calculations. This interconnectivity is one reason I use Monte Carlo simulations to assess how each
calculation performs.

The additional term in Tact
j ’s numerator hints at one factor that may make the calculations perform

differently: the correlation among covariates. Ĉov(tk,xj,x¬j) appears in the AC for J = 2, both in
the numerator’s non-Schoenfeld term (Equation (4), light gray shading) and all three terms in the
denominator.10 Ĉov(tk,xj,x¬j) is equal to (Therneau and Grambsch 2000, 40):

Ĉov(tk,xj,x¬j) = [∑r∈R(tk){exp(XB)xjx¬j}∑r∈R(tk) exp(XB) ]−[∑r∈R(tk){exp(XB)xj}∑r∈R(tk) exp(XB) × ∑r∈R(tk){exp(XB)x¬j}∑r∈R(tk) exp(XB) ],
(6)

10The time-specific variance–covariance matrix, of which Ĉov(tk,xj,x¬j) is one element, does not appear in the approx-
imation because of its simplifying assumption. The simplifying assumption’s equivalent, Ĉovβ̂j,β̂¬j

, does appear in the
approximation, and this quantity is equal to the sum of all the individual Ĉov(tk,xj,x¬j)s. However, Ĉovβ̂j,β̂¬j

acts as a scaling
factor inside the approximation’s Schoenfeld-related term, for ¬j’s Schoenfeld only (Equation (3)). By contrast, it contributes
toward the overall weight for the AC’s entire Schoenfeld term (Equation (4)), giving rise to the two calculations’ potentially
different behavior fromCorr(xj,x¬j).
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where r ∈ R(tk) represents “observations at risk at t−k ” and XB is the at-risk observation’s linear
combination. Correlated covariates would impact xjx¬j’s value, which eventually appears in both
bracketed terms. Generally speaking, as ∣Corr(xjx¬j)∣ increases, ∣xjx¬j∣ increases, thereby increasing
∣Ĉov(tk,xj,x¬j)∣’s value.

More broadly, each formula provides guidance as to which features of the data-generating process
(DGP)might be useful to vary across the different simulation scenarios. Consider the pieces that appear
in either equation:

• V̂ (tk). In the AC, the individual elements of V̂ (tk) appear in both the numerator and the
denominator (e.g., Ĉov(tk,xj,x¬j), as previously discussed for the correlation among covariates).
In the approximation, V̂ (tk) appears only indirectly via V̂ (β̂), the model’s estimated variance–
covariance matrix, as V̂ (β̂) = I−1 and I = ∑V̂ (tk). Portions of V̂ (β̂) appear in the approx-
imation’s numerator, as part of the scaled Schoenfeld calculation (V̂β̂j

, Ĉovβ̂j,β̂¬j
), and in its

denominator (V̂β̂j
).

• ∑r∈R(tk) exp(XB)θ, where θ is a generic placeholder for a weight,11 appears in multiple places
in both calculations: namely, within the formula for V̂ (tk)’s individual elements and within the
unscaled Schoenfeld formula. exp(XB) is an at-risk observation’s risk score in tk, meaning its
(potentially weighted) sum speaks to the total amount of weighted “risk-ness” in the dataset at
tk.12 The riskset’s general size at each tk, then, is relevant.

• exp(XB) also suggests that the covariates’ values, along with their respective slope estimates, are
of relevance. Additionally, the covariates are sometimes involved with the weights (see fn. 11),
producing another way in which their values are relevant.

• t, the duration. It ends up appearing demeaned in both calculations, g (tk)− g(t) (see fn. 8). The
demeaning makes clear that t’s dispersion is relevant.

• Only observations experiencing a failure are involved in the final steps of the V̂ (tk) and Schoenfeld
formulas, implying the number of failures (d) is relevant.

3. Simulation Setup

I use the simsurv package in R to generate my simulated continuous-time durations (Brilleman et al.
2021).13 All the simulations use a Weibull hazard function with no strata, a baseline scale parameter of
0.15, and two covariates: (1) a continuous, non-PH-violating covariate (x1 ~N ) and (2) a binary, PH-
violating covariate (x2 ~ Bern(0.5)). x2’s TVE is conditional on ln(t). Making the PH violator a binary
covariate gives us a best-case scenario, because others’ simulations suggest that the Schoenfeld-based
PH test’s performance is worse for continuous covariates than for binary covariates (Park and Hendry
2015).

I design my simulations to address whether there are performance differences between the approxi-
mated and actual PH test calculations in a correctly specified base model, where x1 and x2 are the only
covariates.14 I vary a number of other characteristics that can impact the PH test’s performance, per
Section 1’s discussion. Some of the characteristics’ specific values are motivated by existing duration
model-related simulations. In total, I run 3,600 different scenarios, derived from all permutations of the

11θ = {1,xjx¬j,xj,x¬j} appear in different portions of the V̂ (tk) and/or sk formulas (e.g., Equation (6)).
12exp(XB) is always nonnegative, but θ can be negative. Thus, each additional observation at risk at tk does not necessarily

produce a larger value of∑r∈R(tk) exp(XB)θ.
13See Metzger (2023a,b) for replication materials.
14I use the phrase “base model” to acknowledge it is the model we would first estimate to test for PH violations. In terms

of matching the true DGP, it is not the outright correct model (Supplementary Appendix E) because it lacks any PH-violation
corrections.
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characteristics I list in Supplementary Appendix C.15 The results section’s discussion focuses primarily
on five of these characteristics:

• Three Weibull shape parameter (p) values {0.75, 1, 1.25}, producing scenarios with decreasing,
flat, and increasing baseline hazards, respectively. p = 1matches Keele (2010) andMetzger (2023c).
Varying p impacts t’s dispersion by affecting how quickly subjects fail. Higher shape values reduce
t’s dispersion, all else equal.

• Two sample sizes {100, 1,000}.The first matches Keele (2010) andMetzger (2023c). I run n = 1,000
to check whether the n = 100 behavior persists when the PH test’s asymptotic properties are likely
in effect.

• Five levels of correlation between the two covariates {−0.65,−0.35, 0, 0.35, 0.65}. I use theBinNor
package to induce these correlations (Demirtas, Amatya, andDoganay 2014).16 I run both positive
and negative correlations to verify that the behavior we observe is independent of the correlation’s
sign, as the formulas suggest. The results are indeed roughly symmetric for the scenarios I run
here. Therefore, I only report the positive correlation results in text, but the supplemental viewing
app (see fn. 15) has the graphs for both.

• Two RC patterns. In one pattern, I randomly select rc% subjects and shorten their observed
duration by (an arbitrarily selected) 2%. In the second, I censor the top rc% of subjects such that
their recorded durations are at the (100 − rc%)th percentile. The first (“random RC”) corresponds
to a situation where subjects become at risk at different calendar times, whereas the second (“top
rc%”) corresponds to a situation where all subjects become at risk at the same calendar time, but
data collection ends before all subjects fail. For two otherwise identical scenarios (including d’s
value), the top rc% pattern gives me another way to affect t’s dispersion without impacting other
quantities in either formula, because t’s highest observed value is restricted to its (100 − rc%)th
percentile.

• ThreeRCpercentages (rc%) {0%, 25%, 50%}.The 25%matchesKeele (2010),Metzger (2023c), Park
and Hendry’s (2015) moderate censoring scenario, and is near Ng’andu’s (1997) 30% scenario.The
50%matches Park andHendry’s (2015) heavy censoring scenario and is nearNg’andu’s (1997) 60%
scenario. Manipulating rc% allows me to vary d across otherwise comparable scenarios.

As Supplementary Appendix C discusses, I also vary the pattern regarding x2’s effect (specifically, the
ratio of x2’s TVE to its main effect), the recorded duration’s type, x1’s mean, and x1’s dispersion.

For each of these 3,600 scenarios, I estimate a correctly specified base model to determine whether
PH violations exist, as discussed previously. I then apply the two PH test calculations and record each
calculation’s p-values for every covariate. I report the PH tests’ p-values for g(t) = ln(t) from both
calculations, to match the DGP’s true g(t).17,18

In the ideal, I would run 10,000 simulation draws for each of the 3,600 scenarios because of
my interest in p-values for size/power calculations (Cameron and Trivedi 2009, 139–140). However,
the estimating burden would be prohibitive. Additionally, while I am interested in seeing how each
calculation performs against our usual size/power benchmarks, my primary interest is comparing how
the calculations perform relative to one another. Having fewer than 10,000 draws should affect both
calculations equally, provided any imprecision is unaffected by any of the calculations’ performance

15The simulation results for all 3,600 scenarios are viewable in a supplemental viewing app accessible through the replication
materials.

16The actual correlation in a draw’s dataset may not equal the specified correlation, similar to
MASS::mvrnorm(empirical=FALSE)’s behavior. The actual correlation’s mean within a scenario closely matches its
specified correlation (see viewing app’s “Empirical Correlations” tab [fn. 15]).

17The viewing app also contains graphs of the p-values’ distribution (“p-values: Distributions” tab [fn. 15]).
18I use 25 of these scenarios to begin exploring how the final model estimates, with PH corrections, behave (Supplementary

Appendix E).
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differences (i.e., the simulationsmight give an imprecise estimate of statistical size, but both calculations
would have the same amount of imprecision). Nonetheless, I compromise by running 2,000 simulations
per scenario.

4. Simulation Results

The key quantity of interest is the rejection percentage (̂rp), the percent of p-values < 0.05, from the
PH test for each calculation–covariate pairing within a scenario.19 For x1, the non-PH violator, this
value should be 5% or lower, corresponding to a false positive rate of α = 0.05. For PH-violating x2,
80% or more of its PH test p-values should be less than 0.05, with 80% representing our general rule
of thumb for a respectably powered test.20 Our first priority typically is evaluating whether a statistical
test’s calculated size matches our selected nominal size, α. Our second priority becomes choosing the
best-powered test, ideally among those with the appropriate statistical size (Morris,White, and Crowther
2019, 2088)—a caveat that will be relevant later.

I report r̂p along the horizontal axis of individual scatterplots grouped into 3 × 3 sets, where each
set contains 45 scenarios’ worth of results. The set’s rows represent different Corr(x1,x2) values, and
its columns represent different shape parameter values. Each scatterplot within a set, then, represents
a unique Corr(x1,x2)–shape combination among a set of scenarios that share the same true linear
combination, sample size, recorded duration type, and values for x1’s mean and dispersion. I split each
scatterplot into halves and report the results from random RC on the left and top rc% RC on the
right, with the halves’ dividing line representing 0% of a scenario’s p-values < 0.05 (r̂p = 0%) and the
scatterplot’s side edges representing r̂p = 100%. I use short, solid vertical lines within the plot area to
indicate whether a particular covariate’s r̂p should be low (non-PH violators ⇒ size; closer to halves’
dividing line) or high (PH violators⇒ power; closer to scatterplot’s edges). Within each half, I report
the three censoring percentages using different color symbols, with darker grays representing more
censoring.21

I report one of the scatterplot sets in text (Figure 1) to concretize the discussion regarding correlated
covariates’ effect, as it exemplifies the main patterns from the results.15 I then discuss those patterns
more broadly.

4.1. Specific Scenario Walkthrough
Figure 1 shows the simulation results for x1 ∼N (0,1) where XB = 0.001x1+1x2 ln(t), n = 100, and the
estimatedmodel uses the true continuous-time duration. In general, if the two tests perform identically,
the circles (approximation) and triangles (AC) should be atop one another for every estimate–RC
pattern–rc% triplet in all scatterplots. Already, Figure 1 makes clear that this is not the case.

I start by comparing my current results with those from previous work, to ground my findings’
eventual, larger implications. Figure 1’s top row, second column most closely corresponds to Metzger’s
(2023c) simulations. This scatterplot, Corr(x1,x2) = 0, p = 1, with top 25% RC (scatterplot’s right half,
medium gray points), is analogous to her Section 3.3’s “correct base specification” results.22 My top 25%

19 r̂p’s 95% confidence interval (CI) will be equal to r̂p ± 1.96(√ r̂p(1−̂rp)
S ) (Morris, White, and Crowther 2019, 2086). If

r̂p = 5% (for non-PH violators), S = 2,000 produces a 95% CI of [4.1%, 6.0%]. If r̂p = 80% (for PH violators), S = 2,000
produces a 95% CI of [78.2%, 81.7%].

20I use “the calculation’s power” as a discussion shorthand, but the type of statistical test or the calculation of that test does
not affect statistical power, strictly speaking (Aberson 2019, ch. 1).

21The RC pattern is irrelevant for scenarios with 0% RC. I arbitrarily assigned 0% RC to each scatterplot’s right half.
22There, x2’s distribution is the same as here and the top 25% largest durations are censored, but (a) x1 ∼ U [0,1], (b) x1’s

effect size is 1, not 0.001, and (c) Metzger’s linear combinations have either an additional x1 quadratic term or an additional
x1x2 interaction. Regarding (b), Figure 1’s general patterns are unchanged if I increase x1’s effect size to 1 (see supplemental
viewing app [fn. 15]).
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Figure 1. Illustrative simulation results, nonnegative correlations only (n = 100).
Negative correlations omitted for brevity; Corr(x1,x2) < 0 follow similar patterns as Corr(x1,x2) > 0. Vertical lines represent target r̂p for
a well-sized (x1) or well-powered (x2) test.

RC results match Metzger (2023c): both calculations are appropriately sized or close to it (for x1: 6.5%
[approx.] vs. 5.5% [actual]) and both calculations are well powered (for x2: 90.2% [approx.] vs. 90.6%
[actual]). The calculations having similar size and power percentages also mirrors Metzger’s (2023c)
Section 3.3.

The story changes in important ways once Corr(x1,x2) ≠ 0 (moving down Figure 1’s columns). Figure
1 shows that the AC performs progressively worse as Corr(x1,x2) becomes larger, evident in how the
triangles representing non-PH violator x1’s false positive rate move away from each scatterplot’s r̂p = 0%
dividing line. The AC returns an increasingly large number of false positives for x1 that far surpass
our usual 5% threshold, nearing or surpassing 50% in some instances. This means we become more
likely to conclude, incorrectly, that a non-PH-violating covariate violates PH as it becomes increasingly
correlated with a true PH violator. Despite the AC’s exceptionally poor performance for non-violating
covariates, it continues to be powered just as well or better than the approximation for PH violators,
regardless of ∣Corr(x1,x2)∣’s value. These patterns suggest that the AC rejects the null too aggressively—
behavior that works in its favor for PH violators, but becomes a serious liability for non-PH violators.

By contrast, correlated covariates only marginally affect the approximated calculation. The approxi-
mation has no size issues across ∣Corr(x1,x2)∣ values—it stays at or near our 5% false positive threshold,
unlike the AC. However, it does tend to become underpowered as ∣Corr(x1,x2)∣ increases, meaning we
are more likely to miss PH violators as the violator becomes increasingly correlated with a non-PH
violator. While this behavior is not ideal, it suggests that practitioners should be more mindful of their
covariates’ correlations, to potentially contextualize any null results from the approximation.

Finally, Figure 1 shows these general patterns for both calculations persist across panels. More
specifically, the patterns are similar when the baseline hazard is not flat (within the scatterplot set’s
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Table 1. False positive %: Corr(x1,x2) = 0 vs. ≠ 0, n = 100.

Corr = 0 better? (no. of combos) Difference in FP% (average)

Correlation Approx. Actual Approx. Actual

−0.65 199 360 −0.58 −33.75

−0.35 189 360 −0.57 −8.99

0.35 180 359 −0.57 −9.09

0.65 171 360 −0.54 −33.47

Note: “Better”= lower FP% (x1). Difference in FP%= (FP% for Corr= 0)− (FP% for this row’s corre-
lation) within comparable scenarios; negative values: Corr = 0 performs better by x%percentage
points. Number of unique combinations: 360.

rows), for different censoring percentages (within a scatterplot’s half), and for different RC types (across
a scatterplot’s halves, for the same rc%).

4.2. Broader Correlation-Related Patterns: Descriptive
The AC’s behavior is the more surprising of the two findings, but similarly as surprising, Figure 1’s
patterns are not unusual. They are representative of the AC’s behavior in nearly all the 1,800 scenarios
where n = 100. There are 360 unique combinations of the Weibull’s shape parameter (p), x2’s TVE-to-
main-effect ratio, recorded duration type, RC pattern, RC percentage, x1’s mean, and x1’s dispersion for
n = 100. Of these 360, the AC’s false positive rate for ∣Corr(x1,x2)∣ ≠ 0 is worse than the comparable
Corr(x1,x2) = 0 scenario in 359 of them (99.7%; Table 1’s left half, second column). For the lone
discrepant combination,23 three of the four nonzero correlations perform worse than Corr(x1,x2) = 0.
Or, put differently: for the AC, out of the 1,440 n = 100 scenarios in which Corr(x1,x2) ≠ 0, 1,439 of them
(99.9%) have a higher false positive rate than the comparable Corr(x1,x2) = 0 scenario. When coupled
with the number of characteristics I vary in my simulations, this 99.9% suggests that the AC’s high false
positive rate cannot be a byproduct of p, the PH violator’s TVE-to-main-effect ratio, the way in which
the duration is recorded, the RC pattern or percentage, or x1’s magnitude or dispersion.

Other AC-related patterns from Figure 1 manifest across the other scenarios as well. In particular,
like Figure 1, the AC’s false positive rate gets progressively worse in magnitude as ∣Corr(x1,x2)∣ increases
across all 360 combinations (Table 1’s right half, second column). On average, the AC’s false positive rate
for Corr(x1,x2) = 0 is ~9 percentage points lower compared to ∣Corr(x1,x2)∣ = 0.35 and ~33.6 percentage
points lower compared to ∣Corr(x1,x2)∣ = 0.65.

The AC’s most troubling evidence comes from Figure 1’s equivalent for n = 1,000 (Figure 2). With
such a large n, both calculations should perform well because the calculations’ asymptotic properties
are likely active. For Corr(x1,x2) = 0, this is indeed the case. Both calculations have 0% false positives for
x1 (size) and 100% true positives for x2 (power), regardless of p, the RC pattern, or the RC percentage
(Figure 2’s first row). However, like Figure 1’s results, the AC’s behavior changes for the worst when
Corr(x1,x2) ≠ 0. It continues to have a 100% true positive rate (Figure 2’s last two rows, x2 triangles),
but also has up to a 100% false positive rate, and none of its Corr(x1,x2) ≠ 0 false positive rates drop
below 50% (Figure 2’s last two rows, x1 triangles). Also, like Figure 1, the approximation shows no such
behavior for Corr(x1,x2) ≠ 0.

These patterns for the AC appear across the other n = 1,000 Corr(x1,x2) ≠ 0 scenarios, of which
there are 1,440. Corr(x1,x2) = 0 outperforms the comparable Corr(x1,x2) ≠ 0 scenario in all 1,440
scenarios. Figure 2’s 100% false positive rate also bears out with some regularity for the AC (330 of
1,440 scenarios [22.9%]); in all 330, ∣Corr(x1,x2)∣ = 0.65. In the remaining 1,110 scenarios, the AC’s

23p= 1.25, coerced start–stop duration, 50%RCwith random censoring, x1 ∼N (60,1), and x2’smain effect andTVE signed
the same. Descriptively, Corr = 0.35 outperforms Corr = 0 by only 0.35 percentage points.
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Figure 2. Illustrative simulation results, nonnegative correlations only (n = 1,000).
Negative correlations omitted for brevity; Corr(x1,x2) < 0 follow similar patterns as Corr(x1,x2) > 0. Vertical lines represent target r̂p for
a well-sized (x1) or well-powered (x2) test.

lowest false positive rate is 22.6%. The AC’s behavior is so troubling because properly sized tests are
typically our first priority in traditional hypothesis testing, as Section 4’s opening paragraph discusses.
These results indicate that the AC is far from properly sized, whereas the approximation has no such
issues. Taken overall, my simulation results for both sample sizes suggest that we should avoid using
the AC for situations mimicking the scenarios I examined here, at minimum, if not also more broadly,
provided we temporarily bracket other issues that may arise from using the approximation—a theme I
return to in my closing remarks.

5. Illustrative Application

The simulations show that the AC is particularly susceptible to detecting violations, with many false
positives when true PH violations do exist, but the PH violator(s) are even moderately correlated with
non-violators. Political scientists typically correct for PH violations using an interaction term between
the offending covariate and g(t). The potential perils of including an unnecessary interaction term are
lower than excluding a necessary one, in relative terms. For any model type, unnecessary interactions
produce less efficient estimates.24 This increased inefficiency can take a particular toll in the presence of
many such unnecessary interaction terms, which would occur in a Cox model context when a PH test
reveals many potential PH violations.

Using the AC to diagnose PH violations for Agerberg and Kreft (2020; hereafter “A&K”) illustrates
the potential perils of the AC’s high false positive rate and its ramifications for inference. A&K’s
study assesses whether a country having experienced high levels of sexual violence (SV) during a civil

24Supplementary Appendix E confirms as much using a small subset of scenarios.
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Table 2. Agerberg and Kreft: PH test p-values.

Variable Approx. Actual

LSVC 0.451 0.073

HSVC* 0.546 0.010

GDPPC (ln) 0.831 0.141

Polity 0.638 0.020

Conflict intensity: Low 0.029 0.035

Conflict intensity: High 0.032 0.021

Peacekeeping operation 0.788 0.083

Foreign aid (ln) 0.109 0.716

Regional quota diffusion 0.252 0.147

Islamic heritage 0.145 0.016

Women’s civil liberties 0.959 0.009

Electoral system: PR 0.714 0.726

Electoral system: Mixed 0.502 0.336

Total: no. of viols. (p ≤ 0.05) 2 6

Note:* = key independent variable. PH test g(t) = t, p-value thresh-
old = 0.05 (A&K, Online Appendix B).

conflict (“high SV conflicts” [HSVC]) hastens the country’s adoption of a gender quota for its national
legislature, relative to non-HSVC countries.25 They find support for their hypotheses, including the one
of interest here: HSVC countries adopt gender quotasmore quickly compared to countries experiencing
no civil conflict. In their supplemental materials, the authors check for any PH violations using the
approximation, with g(t) = t. Two of their control variables violate at the 0.05 level (Table 2’s “Approx.”
column), but correcting for the violations does not impact A&K’s main findings.

However, a different story emerges if I use the AC26 to diagnose PH violations.27 The AC detects
six violations in A&K’s model—three times as many as the approximation. Importantly, A&K’s key
independent variable, HSVC, is now a PH violator according to the AC, implying that the effect of high
sexual violence during civil conflict is not constant across time. Furthermore, examining HSVC’s effect
(Gandrud 2015) from a fully corrected model28 shows that HSVC’s hazard ratio (HR) is statistically
significant for only t ∈ [5,15] (Figure 3’s solid line).

The t restriction matters because 93% of the countries in A&K’s sample become at risk in the same
calendar year, meaning HSVC now only affects whether countries adopt a legislative gender quota for a
small subset of years in the past (1995–2004) for nearly their whole sample.This conclusion differs from
A&K’s original findings, which suggested (1) a country having experienced HSVC always increased
its chances of adopting a gender quota, relative to countries with no civil conflict, regardless of how
long since the country could have first adopted a quota, and (2) this relative increase was of a lesser

25See Supplementary Appendix F for additional details about the original study.
26As of February 2023, the AC does not incorporate robust or clustered standard errors (SEs) into its computations

(https://github.com/therneau/survival/issues/161). A&K’s original analysis clusters its SEs on country. The approximated PH
test with unclustered SEs identifies no PHviolators, suggesting that theACusing unclustered SEs should generally work against
identifying violators here.

27A&K’s duration is miscoded for 10 countries. I use the corrected coding in the rerun; their main results remain at the 0.1
level. Otherwise, I take all of their research design decisions as is.

28See Supplementary Appendix F for full regression tables.
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Figure 3. Effect of high sexual violence conflicts across time.

magnitude, evident by the vertical distance between HSVC’s estimated HR from the PH-corrected
model (Figure 3’s solid line) and A&K’s original estimated HR (Figure 3, long-dashed horizontal line).

We do not knowwhether HSVC is a true violator because the data’s true DGP is unknown. However,
three pieces of evidence suggest that HSVC may be a false positive, albeit not conclusively. First, there
is a moderate correlation between HSVC and one of the control variables, “Conflict Intensity: High”
(Corr = 0.516), which both the approximation and AC flag as a violator (Table 2). We know the AC
is particularly prone to returning false positives in this situation. Second, HSVC’s scaled Schoenfeld
plot29 shows no unambiguous trends, as we would expect to see for a PH violator. Finally, a series of
martingale residual plots show no clear non-linear trends,30 ruling out model misspecification from
incorrect functional forms, which was Keele’s (2010) and Metzger’s (2023c) area of focus.

29I generate the (unreported) plot using the approximated PH test, as the scaled Schoenfelds use the variance–covariance
matrix, and the AC does not currently acknowledge clustered SEs (fn. 26).

30Model’s XB vs. themodel’s martingales, each covariate vs. themartingales from an auxiliarymodel omitting that covariate,
and each covariate vs. the martingales from a null model.
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6. Conclusion

For Grambsch andTherneau’s (1994) test for PH violations, does the way it is calculated affect the test’s
performance?MyMonte Carlo simulations show that the answer is a resounding yes. More importantly,
I show that the performance differences are non-trivial. I find that the AC has a high false positive rate
in situations where a PH violator is correlated with a non-PH violator, even for correlations as moderate
as 0.35. The approximation does not suffer from the same issue, meaning that it has a crucial advantage
over the AC, given the importance we place on correctly sized statistical tests in traditional hypothesis
testing. From Supplementary Appendix G’smeta-analysis, we knowmoderate correlations are the norm
among political science applications, underscoring the potential danger of the AC’s behavior.

The biggest takeaway from these findings is that practitioners are currently stuck between a rock and
a hard place. Both calculations perform adequately when covariates are uncorrelated with one another,
but that condition is rarely true in social science applications. Purely on the basis of my simulation
results, then, we should favor the approximation.

However, other factors preclude such an easy conclusion. One is a common limitation of any Monte
Carlo study: the behavior I find for the approximation is limited in scope to the scenarios I investigated.
It may be that, for other scenarios that vary different sets of characteristics, the approximation runs
into performance issues similar to the AC. While this may certainly be true, the AC running into such
serious performance issues for relatively simple, straightforward DGPs—while the approximation does
not—is concerning and is sufficiently notable in its own right. These results also point to a number of
related questions worth investigating. As one example, we might ask how the two calculations perform
in a model with more than two covariates, and how the correlation patterns among those covariates
might matter. The answers would be particularly relevant for applied practitioners.

A second factor is Therneau’s main motivation for shifting survival::cox.zph from the
approximated to actual calculation. His concern was the approximation’s simplifying assumption being
violated, which is particularly likely in the presence of strata (see fns. 1 and 5). In light of my results,
though, violating the approximation’s assumptionmay be the lesser of two evils, if the choice is between
that or the AC’s exceptionally poor performance for non-PH violators. Future research would need to
investigate whether the trade-off would be worthwhile, and if so, under what conditions.

Finally, model misspecification is also a relevant factor. All the models I estimate here involve
the correct base specification, with no omitted covariates or misspecified covariate functional forms.
However, we know model misspecification can affect the PH test’s performance, in theory (Keele
2010; Therneau and Grambsch 2000). Metzger (2023c) examines how both calculations perform in
practice with uncorrelated covariates, in both in the presence and absence of model misspecification.
She finds that the approximation can have a high false positive rate for some misspecified base models,
going as high as 78.3% in one of her sets of supplemental results.31 Knowing the approximation can
suffer from the same performance issues as the AC means we cannot leverage my simulation results
regarding the approximation’s low false positive rate—the approximation returning evidence of a PH
violation does not always mean a PH violation likely exists unless practitioners can guarantee no model
misspecification exists, which is a potentially necessary, but likely insufficient, condition.

What might practitioners do in the meantime? The stopgap answers depend on the estimated Cox
model’s complexity, after addressing any model misspecification issues. If the Cox model has no strata
and no strata-specific covariate effects, using the approximation is likely the safer bet. If the model has
strata, but no strata-specific effects, practitioners can again use the approximation, but only aftermaking
the adjustments discussed in fn. 5. In the presence of both strata and strata-specific effects, there is no
strong ex ante reason to suspect fn. 5’s adjustments would not work, but it is a less-studied situation,
traditionally. Future research could probemore deeply to ensure this is the case, especially as competing
risks models can fall into this last category.

31Scenario 1, 0% RC, binary PH violator. She finds no false positive issues with misspecified base models for the AC in the
scenarios she runs—unsurprising, given her simulations’ covariates are uncorrelated.
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Social scientists’ interest in a covariate’s substantive effect makes it paramount to obtain accurate
estimates of that effect. Any covariate violating the Cox model’s PH assumption threatens that goal, if
the violation is not corrected. I have shownhere that successfully detecting PHviolations ismore fraught
thanwe previously realizedwhen usingGrambsch andTherneau’s full, actual calculation to test for these
violations, rather than an approximation of it. I have suggested some short-term, stopgap solutions, but
more research needs to be done to develop more nuanced recommendations and longer-term solutions
for practitioners.

Supplementary Material. To view supplementary material for this article, please visit http://doi.org/10.1017/pan.2023.34.

Data Availability Statement. All analyses run using Stata 17.0 MP6 or R 4.1.0. This article’s replication code has been
published through Code Ocean and can be viewed interactively at https://doi.org/10.24433/CO.0072887.v1 (Metzger 2023a).
A preservation copy of the same code and data can also be accessed via Dataverse at https://doi.org/10.7910/DVN/D56UWV
(Metzger 2023b).
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