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A service center is a facility with multiple heterogeneous servers providing specialized
service to multiple types of customers. An assignment policy specifies which server is
enabled to serve which types of customer, and a routing policy specifies which server a
customer will be routed to for service. Thus, a server can be enabled to serve many types
of customer, and a customer may have many alternate servers who can serve him. This
paper aims to provide decision models to determine optimal static assignment and routing
policies, explicitly taking into account the stochastic fluctuations of demand along with
the autocorrelations and cross-correlations of the different traffic streams. We consider sev-
eral possible performance measures and formulate the optimization problem as a mixed
integer nonlinear programming problem. We also develop an efficient heuristic algorithm
to enhance scalability. Finally, we compare the different policies using the heuristic algo-
rithms. We observe numerically that the routing policy tries to combine the negatively
correlated traffic streams, and separate the positively correlated traffic streams.

1. INTRODUCTION

A service center is a facility with multiple heterogeneous servers providing specialized ser-
vices to multiple types of customers. An incoming customer of each type requests a service
requiring a random amount of time that may depend on customer type and/or server. The
arrival processes of the incoming customers of different types form stochastic traffic streams
that may be dependent on each other. The service center design and control problems
include:

(1) Sizing: determine the number of servers of each type,
(2) Assignment: determine which server to enable to serve which set of customer types,
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(3) Routing: determine which customer should be served by which server,
(4) Scheduling: determine when to activate and de-activate servers.

The objective of this kind of problem is usually to minimize the overall costs while fulfilling
the requirements for quality of service, or to maximize appropriate system performance
measure given the resource constraints. In this paper, we focus on Problems (2) and (3)
above, and provide schemes to determine a static assignment and routing policy that opti-
mizes appropriate system performance measure. Problems (1) and (4) will be treated in a
separate paper later on.

Service center design and control problem arises in many practical applications such
as cloud computing, data centers, health care facilities, call centers, to name a few. Our
study is primarily motivated by the data center design and control problem arising out
of our interaction with a technology company. A data center is a facility used to house
computers and associated components, such as telecommunications, processing and stor-
age systems. In the past, organizations used to host most of their services on dedicated
servers, that is, each server could provide only one service. For example, payroll, inventory
management, and sales applications may be hosted on separate servers. A major reason
to use dedicated servers is to avoid conflicts between services. However, dedicated servers
most likely do not operate at their maximum capacities. They are usually expensive, under-
utilized, and energy-consuming. Although no official figures of server utilization in data
centers are reported, it has been estimated that the common resource utilization is between
15 and 20% (Vogels [27]). The under-utilized servers result in hardware and energy wastage.
Hence, data center design and control with server consolidation is an important topic.
Although the motivation of this study is the data center problem, we would like to investi-
gate the general service center design and control problem that is applicable in more general
settings.

The service center we consider has multiple servers working in parallel, each with its own
queue, and providing specialized services to customers. An incoming customer to the system
would request a service of certain type and immediately be routed to one of the servers that
is capable of handling this type of service. To benefit from server consolidation, we assume
that each server may be capable of handling multiple types of service. In this study, we aim
to simultaneously consider two kinds of decisions: the assignment policy and the routing
policy, with the objective to optimize a given performance measure, examples of which are
introduced in Sections 3–6. The assignment policy determines the set of service types each
server is capable of serving. Some examples of assignment policies include: decision of what
skills each agent should have in a call center or decision of what software portfolio each
computer should have in a data center. On the other hand, the routing policy determines
which server a certain type of customer is routed to upon arrival. The formal definitions
of the assignment policy and the routing policy are introduced in Section 2. The routing
scheme we consider is usually called probabilistic routing or random splitting (Wang and
Morris [29]). It is static in the sense that the routing probabilities do not depend on the state
of the system, such as the queue lengths. Theoretically, dynamic state-dependent routing
policies using queueing information may result in a better system performance. However,
this study is motivated by distributed computer systems where gathering such informa-
tion and implementing dynamic policies accordingly involves a considerable communication
overhead and typically nullifies the potential benefits of dynamic policies. Furthermore,
our optimal static routing policy will depend upon major system parameters, such as
arrival rates, service rates, covariances between streams, etc. In practice, we may monitor
these parameters continuously and adjust the optimal routing policy periodically to adapt
the changes in these system parameters. We refer readers to Borst [8], Sethuraman and
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Squillante [23], Guo, Lu, and Squillante [14], and references therein for deeper discussion of
the motivation of static routing policy.

1.1. Related work

There is considerable literature on customer routing policies. Borst [8], Buzacott and Shan-
thikumar [9] (Section 6), and Sethuraman and Squillante [23] provide the structures of
the optimal policy and frameworks for determining an optimal routing policy with multi-
ple classes of customers. Shanthikumar and Xu [24] and Guo, Lu, and Squillante [14] also
have similar analysis on routing policies but with a single class of customer. All the above
mentioned papers mostly focus on optimal routing policies and assume either dedicated or
fully flexible servers (i.e., each server can serve any type of customers). Gurvich, Armony,
and Mandelbaum [15] and Gurvich and Whitt [16] study the sizing and routing problem of
service system with multiple types of customers and servers, but the former paper assumes
fully flexible servers and the latter one assumes that the available assignments between type
of customer and server are given. Thus, none of these papers consider the assignment and
routing policies simultaneously.

Note that these papers assume that each arriving customer must be immediately and
permanently routed to one of the feasible servers. It will clearly be better if we can postpone
the routing decision until a server becomes free, if such a flexibility was possible. Several
researchers have considered such a possibility. For example, Andradóttir, Ayhan, and Down
[2,3] and Tekin, Andradóttir, and Down [26] use the fluid model to determine maximum sys-
tem capacity or throughput under dynamic server assignment policies and provide general-
ized round-robin policies that achieve the system capacity or throughput arbitrarily close to
these upper bounds for queueing networks with flexible servers. However, they do not intend
to optimize other system performance measures such as mean waiting time or queue length.

There are many other related papers with specific applications. We discuss some of
most related ones in the following three separate subsections based on their applications.

1.1.1. Data center Bichler, Setzer, and Speitkamp [7] and Speitkamp and Bichler [25]
provide integer programming models to minimize overall server costs in the data centers.
They assume that each type of customer can only be served by one server and consider
deterministic capacity demands for each customer type. They formulate the problem as a
bin packing problem. Since the bin packing problem is NP-hard (Johnson et al. [19]), they
introduce heuristic algorithms to solve the problem. However, these studies do not take into
account the system performance requirements.

Chen et al. [10] consider a data center hosting multiple identical servers and providing
multiple services. This paper assumes that the servers can be turned on/off with adjustable
service rates. The objective is to minimize the operational cost, including electricity cost
and setup cost, while satisfying average response time requirements. Anselmi, Amaldi, and
Cremonesi [4] and Anselmi, Cremonesi, and Amaldi [5] consider multi-tiered services in
the data centers. The objective is to minimize the number of servers used while satisfying
performance requirements, such as end-to-end response time constraints and utilization
constraints. Utilization constraints, similar to capacity demand constraints in Bichler et al.
[7] and Speitkamp and Bichler [25], are linear, while end-to-end response time constraints
are nonlinear. They assume that each service tier can only be served by one server, and
different application tiers can be served by a common server. They also consider load-
balanced system, where traffic can be evenly split to multiple servers. However, these papers
do not address the issue of determining the routing policies.
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1.1.2. Call center and contact center Wallace and Whitt [28] propose a staffing
algorithm for call centers with performance constraints. Their paper states that the call
centers can significantly decrease the number of servers if each agent has two skills instead
of one. On the other hand, the additional benefit is not significant when the number of skills
for each agent increases beyond two. They provide a heuristic algorithm and use simulation
to solve the staffing problems. Their staffing algorithm is similar to our heuristic algorithm
for finding the assignment policy, but ours has a different type of routing policy involved.

Whitt [31], Harrison and Zeevi [17], and Bassamboo, Harrison, and Zeevi [6] approach
call center problems by using multi-class stochastic fluid models. The objective in these
papers is to minimize the sum of staffing cost and expected abandonment cost. Customer
abandonment plays a key role in their models. With fluid models, the problems or subprob-
lems are formulated as linear programming problems. However, the same framework may
not be suitable for data center problems, because the overflow and customer abandonment
are commonly seen in call centers but are less significant in data centers.

1.1.3. Health care system Kwak and Lee [21] present a goal programming model to
determine the schedules of physicians and nurses in a health care system. They assume
that the demands of physicians and nurses are known and aim to meet both skill and work
force requirements, and also to minimize total payroll cost. Jaumard, Semet, and Vovor
[18] formulate the nurse staffing and scheduling problem as a mixed integer programming
problem. They suppose the nurses have different skill levels and the demand of nurses of
each skill level is known. The objective is to minimize the labor costs while satisfying the
demand. They further formulate the problem as a shortest path problem to improve the
solution in order to satisfy human resource requirements such as workload, off weekends,
and rotations.

On the other hand, Green [13], Yankovic and Green [32], and de Véricourt and Jennings
[11] provide queueing models to determine appropriate demand levels of resources such
as physicians and nurses in a health care system. They mainly formulate the problems as
M/M/s and M/G/s queues. The objective is to determine the minimum number of servers
needed to satisfy the performance requirements, e.g., the probability of excessive delay.

Many related papers use linear and mixed integer programming models to tackle the
problems assuming the demands are known, and use queueing models to determine appro-
priate server capacities. In this study, we would like to consider the optimization problems
taking account the stochastic fluctuations of demand. Moreover, we include correlations of
traffic streams in our study. Most literature in this area assumes independent traffic streams.
In reality, the traffic streams usually have cycles and are correlated to each other, either
positively or negatively. However, very few studies take into account both the stochastic fluc-
tuations and the natural correlation between traffic streams of services. The service center
performance can be further improved if we take these factors into consideration (Li [22]).

The rest of the paper is organized as follows. We formulate the problem of finding an
optimal assignment and routing policy that minimizes the expected number customers in
the system as a mixed integer nonlinear programming problem in Section 2. We describe and
analyze a queueing model with multiple-dependent traffic streams in Section 3. Since the
analysis of the queueing model is computationally hard, we provide a simple approximation
to the objective function in Section 5. Although the computation is now simpler, the problem
remains non-convex. Finally, in Section 6 we study an entirely different quadratic objective
function that yields a convex mixed integer nonlinear programming problem. This provides
a third method of deriving an assignment and routing policy. We then provide a heuristic
algorithm to solve these nonlinear mixed integer problems, and use two numerical examples
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to compare the expected number of customers in the system under the three policies in
Section 7. We conclude that the policy out of the third method is the quickest to derive,
and does quite well compared to the other two policies. We also observe numerically that
the optimal routing policy tries to combine the negatively correlated traffic streams, and
separate the positively correlated traffic streams.

2. PROBLEM FORMULATION

Consider a service center having M servers with N specialized service (or customer) types.
Each server can provide service to multiple types and a given service type can be han-
dled by multiple servers. Without loss of generality, we assume that an incoming customer
requires exactly one type of service. (If they need more than one, we can simply define the
combination as a new type.) Let

di,k =

{
1, if server k is enabled to provide service type i,

0, otherwise,

for i ∈ {1, . . . , N} and k ∈ {1, . . . ,M}. The matrix d = [di,k] is called the assignment matrix
and describes the assignment policy.

We assume that the total arrival process to the system is a Poisson Process (PP) with
a fixed rate λ. The inter-class dependence and cross-class dependence of arrival processes
are modeled by using a stochastic process {Zn, n ≥ 0}, where Zn is the service type of the
nth arriving customer. We assume that {Zn, n ≥ 0} is an irreducible discrete-time Markov
chain (DTMC) with state space {1, . . . , N}, transition probability matrix Θ, and steady-
state distribution π. We can introduce dependence among the arrival processes of different
types of customers by a suitable choice of Θ.

When a customer of type i arrives to the system, it is routed to server k with proba-
bility αi,k. We assume that the waiting places for customers are with the servers. Hence,
an arriving customer needs to be immediately routed to one of the servers that can serve
him. A customer of type i can be routed to server k (αi,k > 0) only if server k is enabled to
provide service type i, that is, di,k = 1. The policy that determines this routing of customers
to servers is called a routing policy. The matrix α = [αi,k] is called the routing matrix that
describes the static routing policy. The vector αk = [α1,k, . . . , αN,k]′ is called the routing
vector of server k. Each server has a single queue with unlimited space for all classes of cus-
tomers. The service discipline is first-come-first-served (FCFS) for each server. The service
times of customers of type i at server k are iid random variables, with cumulative distribu-
tion function (cdf) Fi,k, mean τi,k, and variance σ2

i,k. The service rate of type i customer
at server k is μi,k = 1/τi,k. We then define τk = [τ1,k, . . . , τN,k], τ2

k = [τ2
1,k, . . . , τ2

N,k], and
σ2

k = [σ2
1,k, . . . , σ2

N,k].
Now, the arrival rate, the service time distributions, the assignment policy, and the

routing policy will determine the performance of the system. Our aim is to identify the
static assignment and routing policy that will optimize the system performance. We first
introduce the optimization model to determine the optimal assignment and routing policy
in the service centers.

First consider a given assignment policy d. A given routing policy α is called d-feasible
if it only routes a customer to a server that is enabled to serve it, that is

di,k = 0⇒ αi,k = 0, for all i, k.
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For a fixed feasible routing policy, each server can be analyzed as a single-server queue
where the inter-arrival times and the service times are modulated by αk = [α1,k, . . . , αN,k]′

and {Zn, n ≥ 0} (see Adan and Kulkarni [1]).
Let Lk(αk) be the expected number of customers in queue k (including any in service),

given a feasible routing policy α. The objective is to minimize the expected total number
of customers in the system in steady state. We shall show in the next section that Lk(αk)
is highly nonlinear in αk.

For a given assignment policy d, we can find an optimal feasible static routing policy
by solving the following nonlinear programming problem P (d):

Problem P (d)

min Ψ(d, α) =
M∑

k=1

Lk(αk), (2.1)

s.t. α is d-feasible. (2.2)

Let α∗(d) be the optimal d-feasible routing policy obtained by solving P (d). Let

Ψ∗(d) = Ψ(d, α∗(d)). (2.3)

We next formulate the assignment and routing problem together. First note that for a fixed
i and k, any d-feasible policy with di,k = 0 is d-feasible with di,k = 1 (all other components
being the same). Hence, Ψ(d) is a decreasing function of each component of d. Thus, in the
absence of any further constraints on d, it is optimal set di,k = 1 for all i and k, that is,
enable every server to handle each type of customer. In practice, enabling the servers has a
cost. There are many ways of modeling such a cost. We handle this in the simplest possible
fashion by insisting that at most T of the di,k’s can be set to one, where T is a given integer
satisfying N ≤ T ≤ NM . If all assignments cost the same, this is one way of handling the
budget constraint. (Alternatively, one can limit the number of assignments on each server
or each type of service, or associate costs with setting any di,k = 1 and include a budget
constraint.) With this, we can formulate the combined routing and assignment problem as
the following mixed integer nonlinear programming program (MINLP):

Problem P

min Ψ∗(d), (2.4)

s.t.
N∑

i=1

M∑
k=1

di,k ≤ T, (2.5)

di,k ∈ {0, 1}, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (2.6)

Let d∗ be the optimal assignment policy provided by solving P . Then α∗∗ = α∗(d∗) is the
optimal routing policy. Equation (2.5) guarantees that total number of all assignments does
not exceed the limit T .

We need to compute Lk(αk) in order to solve P (d) and P . We do that in the next
section.

3. ANALYSIS OF THE QUEUEING MODEL

Let d be an assignment policy and α be a d-feasible policy. The incoming customer of type
i gets routed to queue at server k with probability αi,k, and has service time distribution
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Fi,k(·). One can consider the customers being routed to servers other than server k as having
zero service times. Let Sn,k be the service time of the nth arriving customer (including those
with zero service time) to queue k. Thus, customers arrive to queue k according to PP(λ),
the type of the nth customer is Zn, and the service time of a customer of type i is given by

Gi,k(y) = P (Sn,k ≤ y|Zn = i) = 1− αi,k(1− Fi,k(y)).

Adan and Kulkarni [1] have analyzed a queueing system of this type. We restate some of
their results here.

3.1. Stability

Let Ai(t) be the number of requests of service type i to the system over time (0, t], Yi,k(t)
be the number of requests of service type i being routed to server k over time (0, t], and
Bk(t) be the number of requests being routing to server k over time (0, t], that is,

Bk(t) =
N∑

i=1

Yi,k(t) =
N∑

i=1

Bin(αi,k, Ai(t)).

Let A(t) =
∑N

i=1 Ai(t) be the total number of arrivals over (0, t]. Then we know that

λ = lim
t→∞

E(A(t))
t

.

We define the arrival rate of customers of type i as

λi = lim
t→∞

E(Ai(t))
t

.

Conditioning on A(t), we obtain

λi = lim
t→∞

E(Ai(t))
t

= lim
t→∞

E
[
E
(∑A(t)

r=1 1{Zr=i}
∣∣∣A(t)

)]
t

= lim
t→∞

E (πiA(t))
t

= λπi, (3.1)

and the rate at which customers arrive at queue k is given by

λk(αk) = lim
t→∞

E(Bk(t))
t

= lim
t→∞

E
(∑N

i=1 Yi,k(t)
)

t
= lim

t→∞

∑N
i=1 E[E(Bin(αi,k, Ai(t))|Ai(t))]

t

= lim
t→∞

∑N
i=1 E(αi,kAi(t))

t
= λπαk. (3.2)

The expected service time of a customer arriving at queue k in steady state is given by

τk(αk) = τkdiag[π]αk/παk. (3.3)

Thus, the queue at server k is stable if

λk(αk)τk(αk) = λτkdiag[π]αk < 1. (3.4)

We shall say the system is stable if queue k is stable for k = 1, 2, . . . ,M .
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3.2. The queuing time process

Let Wn,k be the waiting time (excluding service time) of the nth customer joining the queue
in front of server k. Let

φn
i,k(s) = E(e−sWn,k ;Zn = i), Re(s) ≥ 0, n ≥ 0. (3.5)

Assume that stability condition holds, and define

φi,k(s) = lim
n→∞φn

i,k(s). (3.6)

Define the LST of the service time as follows:

G̃i,k(s) =
∫ ∞

0

e−stdGi,k(t), (3.7)

G̃k(s) = diag[G̃1,k(s), . . . , G̃N,k(s)]. (3.8)

In addition, let eN be an N-vector whose elements are all one. The main result is given in
the following theorem.

Theorem 1: (Adan and Kulkarni [1]) The transform vector φk(s) = [φ1,k(s), . . . , φN,k(s)]
satisfies

φk(s)[λG̃k(s)Θ + (s− λ)IN ] = svk, (3.9)

φk(0)eN = 1, (3.10)

where IN is an N -dimensional identity matrix. Let Γk
1 and Γk

2 be the first and second
moments of service times at server k:

Γk
1 = diag[α1,kτ1,k, . . . , αN,kτN,k], (3.11)

Γk
2 = diag[α1,k(σ2

1,k + τ2
1,k), . . . , αN,k(σ2

N,k + τ2
N,k)]. (3.12)

The vector vk = [v1,k, . . . , vN,k] is given by the unique solution to the following N linear
equations:

vkai = 0, i ∈ {2, . . . , N}, (3.13)

vkλ−1eN = π(λ−1IN − Γk
1)eN , (3.14)

where ai is a non-zero vector satisfying

[λG̃k(si)Θ + (si − λ)IN ]ai = 0, i ∈ {2, . . . , N}, (3.15)

and si is the solution of s to

det(λG̃k(s)Θ + (s− λ)IN ) = 0, (3.16)

with s1 = 0 and Re(si) > 0 for i = 2, . . . , N .

The solution of Eq. (3.16) involves a nonlinear eigenvalue problem, which is computa-
tionally difficult to solve when the dimension is high.
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3.3. Expected waiting time

Define

mi,k = lim
n→∞E(Wn,k;Zn = i), (3.17)

mk = [m1,k, . . . ,mN,k]. (3.18)

Theorem 2: (Adan and Kulkarni [1]) The vector mk satisfies the following equations:

mk(IN −Θ) = π(Γk
1Θ− λ−1IN ) + vkλ−1IN , (3.19)

mk(λ−1IN − Γk
1)eN =

1
2
πΓk

2eN , (3.20)

where vk is as in Theorem 1.

The expected queueing time in queue of server k is then given by mkeN . Thus, the
expected queueing time in queue plus service time of customers being routed to server k is(

mk +
πΓk

1

παk

)
eN . (3.21)

3.4. Expected queue length

By Little’s law and the result from Eq. (3.21), we know that the expected queue length of
server k is given by

Lk(αk) = λπαk

(
mk +

πΓk
1

παk

)
eN . (3.22)

This is a highly nonlinear function of αk, and difficult to compute due to necessity of solving
Eq. (3.16).

4. OPTIMAL ASSIGNMENT AND ROUTING POLICIES

With the results of the previous section, we can model the routing problem for a given
assignment policy d as a nonlinear programming problem as follow:

Problem P (d)

min Ψ(d, α) =
M∑

k=1

(
mk +

πΓk
1

παk

)
eN , (4.1)

s.t.
M∑

k=1

αi,k = 1, ∀i ∈ {1, . . . , N}, (4.2)

αi,k ≤ di,k, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . ,M}, (4.3)

λτkdiag[π]αk < 1, ∀k ∈ {1, . . . ,M}, (4.4)

αi,k ≥ 0, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . ,M}. (4.5)

Equation (4.2) guarantees that the traffic of each type is routed to at least one server, while
Eq. (4.3) prevents the traffic of any class from being routed to a server that is not enabled
to handle it (i.e., the routing policy is d-feasible). Equation (4.4) is the stability constraint.
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Let α∗(d) be the optimal routing policy provided by solving P (d). Define

Ψ∗(d) = Ψ(d, α∗(d)) =
M∑

k=1

Lk(α∗
k(d)). (4.6)

We can model the combined assignment and routing problem as:

Problem P

min Ψ∗(d), (4.7)

s.t.
N∑

i=1

M∑
k=1

di,k ≤ T, (4.8)

di,k ∈ {0, 1}, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (4.9)

Let d∗ be the optimal assignment policy obtained by solving the above nonlinear mixed
integer problem P . Then α∗∗ = α∗(d∗) is the optimal routing policy. Note that the objec-
tive function Eq. (4.1) is not in a closed form since the mk’s are obtained by the matrix
analytic method as described in Sections 3.2 and 3.3. This queueing model provides the
exact expected number in the system. However, the calculation is complicated and makes
Lk(αk) difficult to be used in the objective function. Hence, we develop an approximation
for Lk in the next section.

5. DIFFUSION APPROXIMATION

In this section, we introduce a diffusion approximation to estimate the expected queue
lengths when traffic intensity is high. We define L̃k(αk) as an approximation to Lk(αk).

Define the long-run variance–covariance matrix Σ = [Σi,j ] as

Σi,j = lim
t→∞

Cov(Ai(t), Aj(t))
t

, i, j ∈ {1, . . . , N}. (5.1)

The next theorem shows how to compute this Σ.

Theorem 3: Suppose the arrival process is modulated by a DTMC {Zn, n ≥ 0} as described
in Section 2. Then the variance–covariance matrix Σ is given by

Σ = λ{diag[π] + diag[π][(Θ− eNπ)(IN −Θ + eNπ)−1]

+ [(Θ− eNπ)(IN −Θ + eNπ)−1]′ diag[π]}. (5.2)

See Appendix 8 for a detailed proof.
Similar to the queuing model discussed in Section 3, we consider the limiting behavior

of one single server at a time. For any server k, the inter-arrival times and service times are
regulated by αk and {Zn, n ≥ 0}. However, unlike the analysis of queueing model, we only
consider the customers that are actually routed to each server. For any given k, we define
{Un,k, n ≥ 1} to be the sequence of inter-arrival times to server k. Clearly, this is not an
iid sequence, and hence the arrival process {Bk(t), t ≥ 0} generated by it is not a renewal
process. Similarly, let {Vn,k, n ≥ 1} be the sequence of service times at server k. It is also
not an iid sequence, and hence the queue at server k is not a GI/GI/1 queue.
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Our first step is to approximate it by a GI/GI/1 queue. To do this, we construct an iid
sequence {Ũn,k, n ≥ 1} of inter-arrival times, so that the first two moments of the arrival
process {B̃k(t), t ≥ 0} generated by it match the first two moments of {Bk(t), t ≥ 0}. The
precise statement is given in the theorem below.

Theorem 4: Let {Ũn,k, n ≥ 1} be an iid sequence of non-negative random variables and
{B̃k(t), t ≥ 0} be the renewal process generated by it. Suppose

E(Ũn,k) =
1

λπαk
, (5.3)

Var(Ũn,k) =
α′

k(Σ− λ diag[π])αk + λπαk

(λπαk)3
. (5.4)

Then

lim
t→∞

E(B̃k(t))
t

= lim
t→∞

E(Bk(t))
t

, (5.5)

lim
t→∞

Var(B̃k(t))
t

= lim
t→∞

Var(Bk(t))
t

. (5.6)

The detailed proof is given in Appendix A.2.
We also construct an iid sequence {Ṽn,k, n ≥ 1} of service times whose first two moments

match the first two moments of {Vn,k, n ≥ 1}. The precise statement is given in the theorem
below.

Theorem 5: Let {Ṽn,k, n ≥ 1} be an iid sequence of non-negative random variables with

E(Ṽn,k) =
τk diag[π]αk

παk
, (5.7)

Var(Ṽn,k) =
(σ2

k + τ2
k ) diag[π]αk

παk
−
(

τk diag[π]αk

παk

)2

. (5.8)

Then

E(Ṽn,k) = lim
n→∞E(Vn,k), (5.9)

Var(Ṽn,k) = lim
n→∞Var(Vn,k). (5.10)

The detailed proof is given in Appendix A.3.
Now we consider a GI/GI/1 queue with arrival process {B̃k(t), t ≥ 0} and service times

{Ṽn,k, n ≥ 1}. From Theorems 4 and 5 we can further write down the traffic intensity, ρk,
squared coefficient of variation of the inter-arrival times, c2

ak
, and squared coefficient of

variation of the service times, c2
sk

, as:

ρk = λτk diag[π]αk, (5.11)

c2
ak

=
Var(Ũn,k)
[E(Ũn,k)]2

=
α′

k(Σ− λ diag[π])αk + λπαk

λπαk
, (5.12)

c2
sk

=
Var(Ṽn,k)
[E(Ṽn,k)]2

=
(σ2

k + τ2
k ) diag[π]αkπαk − (τk diag[π]αk)2

(τk diag[π]αk)2
. (5.13)
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We then use the diffusion approximation from Whitt [30] for the expected queue length
of server k:

L̃k(αk) =
ρkc2

ak
+ c2

sk

2(1− ρk)

=
(α′

k(Σ− λ diag[π])αk + λπαk − 1)(τk diag[π]αk)2 + (σ2
k + τ2

k ) diag[π]αkπαk

2(1− λτk diag[π]αk)(τk diag[π]αk)2
.

(5.14)

Whitt [30] shows that L̃k(αk) is a good approximation for the expected queue length of
GI/GI/1 queue, especially in heavy traffic. We use numerical examples in Section 7.2 to
show that this approximation works well for our study. Guo, Lu, and Squillante [14] also
derive a similar diffusion approximation for the expected queue length and use it to obtain
optimal routing policy of single class customers to multiple servers.

Using Eq. (5.14) as performance measure, we model the routing problem for a given
assignment policy d as a nonlinear programming problem as follow:

Problem P̃ (d)

minΨ̃(d, α) =
M∑

k=1

(α′
k(Σ− λ diag[π])αk + λπαk − 1)(τk diag[π]αk)2

+ (σ2
k + τ2

k ) diag[π]αkπαk

2(1− λτk diag[π]αk)(τk diag[π]αk)2
, (5.15)

s.t.
M∑

k=1

αi,k = 1, ∀i ∈ {1, . . . , N}, (5.16)

αi,k ≤ di,k, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}, (5.17)

λτk diag[π]αk < 1, ∀k ∈ {1, . . . , M}, (5.18)

αi,k ≥ 0, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (5.19)

As in the queueing model, let α̃∗(d) be the optimal routing policy obtained by solving P̃ (d).
Define

Ψ̃∗(d) = Ψ̃(d, α̃∗(d)) =
M∑

k=1

L̃k(α∗
k(d)). (5.20)

Then we formulate the combined assignment and routing problem as:

Problem P̃

min Ψ̃∗(d), (5.21)

s.t.
N∑

i=1

M∑
k=1

di,k ≤ T, (5.22)

di,k ∈ {0, 1}, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (5.23)

Let d̃∗ be the optimal assignment policy obtained by solving the above nonlinear mixed
integer problem P̃ . Then α̃∗∗ = α̃∗(d∗) is the optimal routing policy. One advantage of this
approximation is that the parameters for this model are easier to estimate. To solve the
problem P , introduced in the Section 4, we need to obtain the transition probability matrix.
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However, to accurately estimate the transition probability matrix, we have to observe the
sequences of incoming traffic, which could be difficult due to possible multiple arrivals with
the same time stamp. On the other hand, to solve the problem P̃ , we only need to observe
the total incoming traffic in a given time interval for each class to estimate the steady-
state mean arrival rates and the variance–covariance matrix. Then we can approximate the
expected queue length using this limited information of traffic. Another advantage of the
approximation is that the approximated expected queue length L̃k(αk) can be obtained as a
closed-form expression. Compared to using a matrix analytic method to obtain the expected
queue length Lk(αk) in queueing model, using the closed form expression involving only
matrix multiplication in diffusion approximation model is obviously preferable and much
faster.

However, neither Lk(αk) nor L̃k(αk) are convex functions of αk in general, even if we
further assume that the service time distributions are the same for all classes of customers.
For example, suppose that the service time is exponentially distributed with rate μ for all
types of customers on every server. The Hessian matrix of L̃k(αk) with respect to αk is

H̃k(αk) =
[αkλπ + (μ− λπαk)IN ]′(Σ− λ diag[π])[αkλπ + (μ− λπαk)IN ]

(μ− λπαk)3
+

2μλ2π′π
(μ− λπαk)3

.

(5.24)

Unfortunately, H̃k(αk) is not a positive-semidefinite matrix because (Σ− λ diag[π]) may
not be positive-semidefinite. This means the objective functions of P and P̃ may not be
convex. The following theorem provides an analytical result for a special case.

Theorem 6: If traffic streams of all services are independent of each other and can be
routed to any server, that is, di,k = 1 for all i and k, and the service time distributions are
the same for all services, then

αi,k =
1
M

, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M} (5.25)

are optimal solutions to P and P̃ .

Proof: Under any static routing policy, if arrival processes of all services are independent,
then the arrival process routed to each server is a PP. Since the service time distributions are
all the same, the queueing system at each server forms an M/G/1 queue. We will show that
the sum of expected queue lengths over all servers is minimized when the traffic intensity is
the same for every server. If all assignments are available on every server, then αi,k = 1/M
for all i and k is the solution that always makes traffic intensity the same for every server
and thus is optimal. The detailed proof is in Appendix A.4. �

If traffic streams of all services are independent of each other and can be routed to any
server, but service time distributions are not all identical, Borst [8] has shown that Lk(αk)
is convex in α and provided a framework for solving the routing problem.

Remark 1: One can show by counter example that Eq. (5.25) is not an optimal solution to
P or P̃ if traffic streams of some services are correlated with each other, that is, there are
some non-zero off-diagonal entries in Σ.
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6. CONVEX QUADRATIC MODEL

The performance measure introduced in the queueing model of Section 3 is difficult to
compute. Hence, we introduced diffusion approximation model in Section 5. Although this
produces analytically tractable performance measure, the resulting optimization problem
remains non-convex, which makes its solution hard. This motivates us to find an alternate
performance measure that can efficiently provide a good assignment and routing policy
(which might not be optimal). Note that this new performance measure is not meant to be
a further approximation to the performance measures of Section 3 or 5. Its main utility is in
producing a candidate assignment and routing policy. Then we can compare performance
of this policy with those obtained in Sections 3 and 5 using the performance measure of
Section 3. In this section, we derive a convex quadratic model that is applicable when
the service time distributions only depend on the servers but not on the customer types,
that is, Fi,k = Fk ∀i, k and Fk is a non-negative random variable. In this case, we know
μi,k = μk = 1/E(Fk) ∀i, k, and may interpret μk as the service rate or service capacity of
server k. Let Ai(t), Bk(t), λi, and Σi,j be as defined in Section 3, Eqs. (3.1) and (5.1).
We further assume that the system starts in the steady state at time t = 0. Then the total
traffic being routed to server k in a unit of time is

Bk(1) =
N∑

i=1

Bin(αi,k, Ai(1)).

The service capacity of server k is μk as described earlier. Hence, we can think of μk −Bk(1)
as the capacity imbalance in a unit of time. Now we define the performance measure Qk(αk)
as given below:

Qk(αk) = E [μk −Bk(1)]2 = Var[μk −Bk(1)] + {E[μk −Bk(1)]}2

= Var[Bk(1)] + {E[μk −Bk(1)]}2

= α′
k(Σ̂− λ diag[π])αk + λπαk + (λπαk − μk)2

= α′
kΣ̂αk + (λπαk − μk)2 − α′

k(λ diag[π])αk + λπαk, (6.1)

where Σ̂ = [Σ̂ij ], with

Σ̂ij = Cov(Ai(1), Aj(1)).

Note that Σ̂ can be approximated by Σ if the number of arrivals in one unit of time is large;
see Eq. (A.1). The derivation of the above equation is similar to the proof of Eq. (A.9) for
Theorem 4. It can be shown that Qk(αk) is not a convex function since (Σ̂− λ diag[π]) may
not be positive-semidefinite. To avoid this non-convex issue, we define another version of
capacity imbalance in a unit of time as μk − B̂k(1), where

B̂k(1) =
N∑

i=1

E[Bin(αi,k, Ai(1))|Ai(1)] =
N∑

i=1

αi,kAi(1),

the conditional expected total traffic being routed to server k in a unit of time given the
number of arrivals of each type to the system. Similar to Eq. (6.1), we define the performance
measure Q̂k(αk) as follows:

Q̂k(αk) = E
[
μk − B̂k(1)

]2

. (6.2)

Let
Λ = [λ1, λ2, . . . , λN ].
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Theorem 7: We have
Q̂k(αk) = α′

kΣ̂αk + (Λαk − μk)2. (6.3)

Q̂k(αk) is a convex quadratic function of αk.

Proof: By definition, we first derive Q̂k(αk) as

Q̂k(αk) = E
[
μk − B̂k(1)

]2

= Var[μk − B̂k(1)] + {E[μk −Bk(1)]}2

= Var[B̂k(1)] + {E[μk − B̂k(1)]}2

= Var

[
N∑

i=1

Ai(1)αi,k

]
+

{
E

[
μk −

N∑
i=1

Ai(1)αi,k

]}2

= α′
kΣ̂αk + (Λαk − μk)2.

(6.4)

Next, we show the convexity. The Jacobian matrix of Q̂k(αk) with respect to αk is

JQ̂k
(αk) = Σ̂αk + 2Λ′(Λαk − μk), (6.5)

and the Hessian matrix of Q̂k(αk) with respect to αk is

HQ̂k
(αk) = Σ̂ + 2Λ′Λ. (6.6)

This Hessian matrix is positive-semidefinite because Σ̂ is a variance–covariance matrix,
which is always positive-semidefinite, and 2Λ′Λ is positive-semidefinite as well. �

There are two main advantages of this objective function Q̂k(αk). First, we need to
estimate only the first and second moments of traffic streams to evaluate it. Thus, it is
easier to use than the objective function Lk(αk). Also, it uses as much information as
the objective function L̃k(αk). However, unlike L̃k(αk) or Qk(αk), Q̂k(αk) is convex. Note
that we are not claiming that Q̂k(αk) is an approximation of Lk(αk) or L̃k(αk). The main
motivation is to provide a convex quadratic program to obtain a candidate assignment and
routing policy. Using Q̂k(αk) as performance measure, we model the routing problem for a
given assignment policy d as a convex quadratic programming problem as follows:
Problem P q(d)

min Ψq(d, α) =
M∑

k=1

[α′
kΣ̂αk + (Λαk − μk)2], (6.7)

s.t.
M∑

k=1

αi,k = 1, ∀i ∈ {1, . . . , N}, (6.8)

αi,k ≤ di,k, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}, (6.9)

Λαk < μk, ∀k ∈ {1, . . . , M}, (6.10)

αi,k ≥ 0, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (6.11)

Let αq(d) be the optimal routing policy provided by solving P q(d). Define

Ψq(d) = Ψq(d, αq(d)) =
M∑

k=1

Q̂k(αq
k(d)). (6.12)
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As in the previous two models, we formulate the combined assignment and routing
problem as:

Problem P q

min Ψq(d), (6.13)

s.t.
N∑

i=1

M∑
k=1

di,k ≤ T, (6.14)

di,k ∈ {0, 1}, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (6.15)

P q can be solved as a mixed integer quadratic programming problem (MIQP). There are
efficient solvers available to solve this type of problems, such as CPLEX and Gurobi. Let dq

be the optimal assignment policy obtained by solving the above MIQP problem P q. Then
αq∗ = αq(dq) is the optimal routing policy.

Remark 2: One can show that the variance of B̂k(1),

Var[B̂k(1)] = α′
kΣ̂αk.

The folk theorem in queues says that the congestion can be reduced by reducing the variance
of the input process. Thus, it would make sense to simply minimize

M∑
k=1

α′
kΣ̂αk.

We have numerically evaluated this objective function and found that it performs much
worse than

∑M
k=1 Q̂k. It produces policies that substantially under-perform the policies

produced. Thus, somehow the term (Λαk − μk)2 plays a very discriminating part in this
problem.

Similar to queueing model and diffusion approximation model, we next consider a fur-
ther special case where all assignments are available on every server. In this case, we have
the following analytical solution to P q. Let L be a subset of {1,. . . ,M} so that

1 + λ + |L|μk −
∑
l∈L

μl ≥ 0, ∀k ∈ L, (6.16)

1 + λ + |L|μk −
∑
l∈L

μl < 0, ∀k /∈ L. (6.17)

Theorem 8: Let di,k = 1 for all i and k, and L be as defined above. Then the optimal
routing policy for P q is given by

αi,k =

⎧⎪⎨
⎪⎩

1 + λ + |L|μk −
∑

l∈L μl

(1 + λ)|L| , ∀i ∈ {1, . . . , N}, k ∈ L,

0, otherwise.
(6.18)

The optimality of Eq. (6.18) can be shown by verifying that the Karush–Kuhn–Tucker
conditions are satisfied by this solution. See Appendix A.5. for the detailed proof.

Remark 3: We describe an O(M) algorithm to find L defined above. Without loss of gen-
erality, we assume that the servers are listed in the descending order of service rate, that
is, μ1 ≥ · · · ≥ μM .
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Algorithm 1

Finding the Set L

L← {1};
for k = 2→M do

if 1 + λ + |L|μk −
∑

l∈L μl ≥ 0 then
L← L ∪ {k};

else
break;

end if
end for

This procedure can be justified by discussing the two possible outcomes of the “if” statement
for any k within the loop:

Case I: When the condition of “if” statement is satisfied,

1 + λ + (|L|+ 1)μj −
∑

l∈L∪{k}
μl ≥ 1 + λ + |L|μk

−
∑
l∈L

μl ≥ 0, ∀j ∈ {k} ∪ L = {1, . . . , k − 1}. (6.19)

In other words, adding new element into the set L will not nullify the existing elements in
L. Hence, we update the set L to L ∪ {k} and loop to the next.

Case II: When the condition of “if” statement is not satisfied,

1 + λ + (|L|+ 1)μj −
∑

l∈L∪{k}
μl ≤ 1 + λ + |L|μk −

∑
l∈L

μl < 0, ∀j /∈ L = {1, . . . , k − 1}.

(6.20)

In other words, adding any other elements into the set L will not satisfy the condition.
Hence, we stop as soon as we obtain the first violation of the condition and the set L has
been determined.

7. SOLUTION

There are commercial software packages available to solve our convex quadratic model P q.
For example, the well known AMPL/CPLEX is capable of solving the MIQP problem.
On the other hand, for queueing model P or diffusion approximation model P̃ , the global
optimal solutions are difficult to obtain because the objective functions are non-convex
and some decision variables are binary. We have discussed some special cases that can
be solved analytically in previous sections. Beyond those special cases, we need to use
heuristic algorithms to solve the problem in general. We introduce one such algorithm
below.

7.1. Heuristic Algorithm

The main goal of the heuristic algorithm is to determine the optimal static routing and
assignment policy. The assignment policy is obtained by solving the nonlinear integer pro-
grams P or P̃ , which are difficult to solve in general. Meanwhile, determining the optimal
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static routing scheme for a fixed assignment policy involves solving P (d) or P̃ (d), which are
relatively easy since they involve a continuous nonlinear optimization.

We introduce a heuristic algorithm called Backward Selection Heuristic Algorithm. In
this algorithm, we start by assuming all assignments are available on every server, that
is, di,k = 1 for all i and k, and finding the optimal static routing policy, α, under this
assumption.

We have shown in Theorem 6 that αi,k is positive for all i and k if traffic streams are
independent. However, if traffic streams are not independent, we can expect to have αi,k

equal to zero for some i and k. The intuitive explanation is that the system would benefit
from routing the traffic streams with negative correlations into common servers but suffer
from routing the traffic streams with positive correlations into common ones. Hence, if traffic
streams of service type i and j are positively correlated, usually αi,k and αj,k would not be
positive at the same time. We do not have a rigorous proof of this, but we will illustrate
this idea by a numerical example in Section 7.2.

Based on this initial routing policy, the second step is to remove all assignments with
optimal solution α.,. = 0, that is, if αi,k = 0 then set di,k = 0. In this step, we remove
the unused assignments so that we can decrease the total number of assignments without
sacrificing system performance. Then we check whether total number of assignments left
is less than or equal to the desired number T . If yes, the solution satisfies all constraints
of the mixed integer nonlinear programming problem and is optimal. Otherwise, further
elimination of assignments is needed.

In the next step, we remove an assignment on a server that results in the smallest
increase in the objective function value. The idea of this algorithm is to behave in a greedy
fashion. We try to remove one “least important” assignment at a time until total number of
assignments left is no more than T . It may not result in an optimal solution but can provide
a good solution in a relatively short time. It is common in the service center design problem
that practitioners pursue a good solution instead of an optimal solution since finding optimal
solution requires too much effort. Also, the greatly fluctuating traffic streams in service
center makes an accurate design unnecessary. To find the solution, this algorithm has to
run O(M2N2) nonlinear programming problems in the worst case. It takes a long time when
M and N are large, but we can expect it takes much shorter time than solving the original
problem. The pseudocode of this algorithm is presented in Appendix B.

In the next subsection, we use a numerical example to illustrate the Backward Selection
Heuristic Algorithm by applying queueing model and diffusion approximation model as
congestion performance measures. We will also compare these two models with convex
quadratic model at the end.

Note that we do not use this algorithm to solve P q, since it is a mixed integer quadratic
program and there are standard software packages available to solve it.

7.2. Numerical Example I

We consider an example with five servers (M = 5) and eight types of services (N = 8). We
assume that the overall arrival rate, the transition probability matrix of the DTMC deter-
mining the customer class, and the service time distributions are known. We can calculate
the variance–covariance of arrival process needed for diffusion approximation model from
the given arrival rate and transition probability matrix. The upper limit of the total number
of assignments is T = 12.

We assume that the overall customer arrival process is a PP with rate λ = 135 and the
service time is exponentially distributed with rate dependent on server. The service rates
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of five servers are 5, 5, 20, 40, and 80, respectively. Let transition probability matrix

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0333 0.3000 0.1905 0.0952 0.0476 0.0994 0.1068 0.1271
0.2667 0.0667 0.1905 0.0952 0.0476 0.0994 0.1068 0.1271
0.1569 0.1765 0.3000 0.0167 0.0167 0.0994 0.1068 0.1271
0.1569 0.1765 0.0333 0.2833 0.0167 0.0994 0.1068 0.1271
0.1569 0.1765 0.0667 0.0333 0.2333 0.0994 0.1068 0.1271
0.1569 0.1765 0.1905 0.0952 0.0476 0.0333 0.0667 0.2333
0.1569 0.1765 0.1905 0.0952 0.0476 0.2000 0.0333 0.1000
0.1569 0.1765 0.1905 0.0952 0.0476 0.0667 0.2000 0.0667

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The steady-state distribution is π = [0.1569 0.1765 0.1905 0.0952 0.0476 0.0994
0.1068 0.1271]. This example has a special design so that eight customer types are sepa-
rated into three groups before generating transition probability matrix: a group of services
with negatively correlated traffic streams among group members, and two groups of ser-
vices with positively correlated traffic streams among group members. The traffic streams
between any two types in different groups are independent. This design can be achieved by
properly choosing the transition probability so that Θi,j = πj and Θj,i = πi if we want the
traffic stream of type i and j to be independent.

Variance–covariance matrix (Σ) and correlation coefficient matrix (R) can be obtained
by Eq. (5.2),

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16.93 4.24 0 0 0 0 0 0
4.24 19.58 0 0 0 0 0 0

0 0 33.30 −5.56 −2.03 0 0 0
0 0 −5.56 19.43 −1.02 0 0 0
0 0 −2.03 −1.02 9.48 0 0 0
0 0 0 0 0 11.61 0.91 0.90
0 0 0 0 0 0.91 12.31 1.20
0 0 0 0 0 0.90 1.20 15.06

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.23 0 0 0 0 0 0
0.23 1 0 0 0 0 0 0

0 0 1 −0.22 −0.11 0 0 0
0 0 −0.22 1 −0.07 0 0 0
0 0 −0.11 −0.07 1 0 0 0
0 0 0 0 0 1 0.08 0.07
0 0 0 0 0 0.08 1 0.09
0 0 0 0 0 0.07 0.09 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From the correlation coefficient matrix, we observe that the arrival processes of service 1
and 2 are positive correlated with each other and independent of the rest of the services.
The arrival processes of service 3, 4, and 5 are negative correlated with each other and
independent of all the rest of the services. The arrival processes of service 6, 7, and 8
behave similarly to those of 1 and 2 but with weaker correlations.

With the above data, we can apply the heuristic algorithm. The resulting assignment
and routing policies using queueing model and diffusion approximation model are presented
in the next two subsections, respectively.
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7.2.1. Queueing model In the initial step of the algorithm, we assume that all assign-
ments are available on every server and solve for the optimal routing policy. Assuming that
di,k = 1 for all i and k, the following initial routing policy matrix is obtained by solving
P (d),

α∗(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1

0.080 0.080 0.002 0.012 0.826
0.080 0.080 0.002 0.012 0.826
0.080 0.080 0.002 0.012 0.826

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As we expected, we observe that the traffic streams with positive correlations are routed
into different servers, while the traffic streams with negative correlations are routed into
common servers.

In the next step, we remove all assignments with α., . = 0. The total number of assign-
ments left is 20. In terms of the total expected queue length, the system with these 20
assignments can perform as well as the system with 40 assignments, that is, all assignments
being enabled to provide every type of service. Since the desired total number of assign-
ments is T = 12, we need to proceed with the algorithm further and remove eight more
assignments.

Table 1 shows the removal progress using the algorithm. In this table, 1’s mean the
assignments are removed in the initial step; 2 in the fifth row and third column means the
assignment of service type 5 on server 3 is removed when we proceed with the elimination
process (the “while loop” in the Algorithm 2) for the first time; 3 in the forth row and third
column means the assignment of service type 4 on server 3 is removed when we proceed with
the elimination process for the second time, etc. We repeat the elimination process until the
number of assignments left is less than or equal to 12. The zeros on the table mean those
assignments remain on the servers after the completion of the heuristic algorithm. Based on
this table, we determine the service assignment of the system. The assignment policy out
of this heuristic algorithm d∗

h should be to enable server k to provide service type i if and
only if it is zero in the row i and column k in Table 1.

Table 1. Example I: removal progress of Heuristic
algorithm using queueing model

Server
Service
Type 1 2 3 4 5

1 1 1 1 0 1
2 1 1 1 1 0
3 0 0 6 0 0
4 9 0 3 5 0
5 8 7 2 4 0
6 1 1 1 1 0
7 1 1 1 0 1
8 1 1 0 1 1
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Along with the above assignment policy, we determine the routing policy out of the
heuristic algorithm:

α∗∗
h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1

0.139 0.080 0 0.023 0.758
0 0.119 0 0 0.881
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The expected queue length under this assignment and routing policy is 32.69.

7.2.2. Diffusion approximation model Assuming that di,k = 1 for all i and k again,
another initial routing policy is obtained by solving P̃ (d),

α̃∗(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1

0.080 0.080 0.002 0.012 0.826
0.080 0.080 0.002 0.012 0.826
0.080 0.080 0.002 0.012 0.826

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This initial routing policy comes out to be exactly the same as the initial routing policy
obtained by queueing model. Similar to what we did for queueing model, we further proceed
with the algorithm and use the Table 2 to show the removal progress.

The assignment policy this heuristic algorithm d̃∗
h should be to enable server k to provide

service type i if and only if it is zero in the row i and column k in Table 2. Along with the

Table 2. Example I: removal progress of heuristic
algorithm using diffusion approximation model

Server
Service
Type 1 2 3 4 5

1 1 1 1 0 1
2 1 1 1 1 0
3 0 0 6 0 0
4 9 0 3 5 0
5 8 7 2 4 0
6 1 1 1 1 0
7 1 1 1 0 1
8 1 1 0 1 1
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above assignment policy, we determine the routing policy:

α̃∗∗
h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1

0.139 0.082 0 0.023 0.756
0 0.115 0 0 0.885
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The total expected queue length under this routing policy is 32.69. In this example, both
models give us the same total expected queue length with same assignment policy and
slightly different routing policy.

7.2.3. Convex quadratic model We solve the convex quadratic model P q directly
using MIQP solver CPLEX. Given T = 12, we obtain the following optimal routing
policy:

αq∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0.434 0.566 0
0 0 0 0.369 0.631

0.218 0 0 0 0.782
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 0.417 0 0.583

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The total expected queue length under this routing policy is 36.26.
In order to further compare the three models: queueing model P , diffusion approxi-

mation model P̃ , and convex quadratic model P q, we perform the following experiment.
Using the same set of parameters given above, we solve P , P̃ , and P q to find the optimal
static assignment and routing policies. (We use heuristic algorithm for P and P̃ , but MIQP
for P q.) Under each of these assignment and routing policies, we compute the expected
queue length as explained in Section 3. We summarize the results in Table 3 and Figure 1.
The total expected queue lengths with T = 8 are not presented because they do not satisfy
the stability condition.

We have several key observations from this numerical experiment. The heuristic
algorithm provides consistent solutions between queueing model and diffusion approxima-
tion model for different number of assignments (T ). Owing to the non-convex objective
functions, solving nonlinear models using the heuristic algorithm still takes thousands of
seconds, even though the diffusion approximation model only takes less than half of the
time taken by the queueing model (1,983 versus 5,100 seconds). On the other hand, solving
the convex quadratic model only takes a few seconds. For most of the cases, the solutions
by convex quadratic model are not as good as the nonlinear model but are in a reasonable
range. When T is quite small, the convex quadratic model even provides a better solution
than nonlinear models. This is because the heuristic algorithm is not guaranteed to produce
the optimal solution.
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Table 3. Example I: Total expected queue length under assignment and routing
policy derived by solving queueing model P , diffusion approximation model P̃ , and convex
quadratic model P q

Number of
Assignments (T ) 9 10 11 12 13 14 15 16 17 18 19

Ψ(d∗h, α∗∗
h ) 55.49 33.01 32.69 32.63 32.59 32.57 32.57 32.56 32.56 32.56 32.56

Ψ(d̃∗h, α̃∗∗
h ) 55.49 33.01 32.69 32.63 32.59 32.57 32.57 32.56 32.56 32.56 32.56

Ψ(dq, αq) 44.44 36.02 35.17 36.26 36.42 36.21 36.28 37.02 38.20 37.16 37.30
Number of
Assignments (T ) 20 21 22 23 24 25 26 27 28 29 30
Ψ(d∗h, α∗∗

h ) 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56

Ψ(d̃∗h, α̃∗∗
h ) 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56

Ψ(dq, αq) 37.44 37.32 37.63 37.60 37.61 37.53 37.66 37.58 37.51 37.42 37.33
Number of
Assignments (T ) 31 32 33 34 35 36 37 38 39 40
Ψ(d∗h, α∗∗

h ) 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56

Ψ(d̃∗h, α̃∗∗
h ) 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56

Ψ(dq, αq) 37.32 37.33 37.34 37.34 37.34 37.34 37.34 37.34 37.34 37.30
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Figure 1. Example I: total expected queue length under assignment and routing pol-
icy derived by solving queueing model P , diffusion approximation model P̃ , and convex
quadratic model P q.

7.3. Numerical Example II: Virtual Computing Laboratory (VCL)

We consider another example with five servers (M = 5) and eight types of services (N = 8).
Here, the system parameters such as the overall arrival rate, the transition probability
matrix of the DTMC determining the customer class, and the service time distributions
are estimated from a real data set. This data set is an access log file obtained from the
VCL in the University of North Carolina at Chapel Hill. The VCL provides access for
researchers and students to a virtual computer environment that can be used to access
software applications. The data set contains about ten thousand service requests between
August and November 2012, each with the type of service requested, the time of arrival,
the time of service beginning, and the time of departure.
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We assume that the overall customer arrival process is a PP with rate λ = 73. This
arrival rate is estimated by mean arrival rate between 9 am and 5 pm. This specific
time interval is chosen because the data show that the arrival rate is much higher during
the daytime. Obviously the overall performance of system is mainly determined by how
well the system performs during these peak hours. The transition probability matrix of the
DTMC is estimated from the sequence of service requests:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3210 0.3310 0.0160 0.1020 0.0270 0.0280 0.0900 0.0850
0.1310 0.6550 0.0140 0.0610 0.0130 0.0140 0.0520 0.0600
0.1330 0.3910 0.1330 0.0570 0.0480 0.0190 0.1050 0.1140
0.2450 0.3510 0.0120 0.1630 0.0330 0.0310 0.0760 0.0890
0.1460 0.4070 0.0310 0.1540 0.0540 0.0310 0.0770 0.1000
0.2180 0.3100 0.0070 0.0770 0.0350 0.1690 0.0990 0.0850
0.2120 0.3300 0.0160 0.0710 0.0260 0.0280 0.2220 0.0950
0.1980 0.3780 0.0200 0.0980 0.0220 0.0120 0.1040 0.1680

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The steady-state distribution out of the above transition probability is

π = [0.1913 0.5008 0.0171 0.0834 0.0211 0.0231 0.0819 0.0812],

and the correlation coefficient matrix (R) is

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.21 −0.02 0.08 0.01 0.04 0.04 0.03
−0.21 1 −0.04 −0.13 −0.07 −0.09 −0.15 −0.11
−0.02 −0.04 1 −0.02 0.04 −0.01 0.01 0.02

0.08 −0.13 −0.02 1 0.06 0.02 −0.01 0.03
0.01 −0.07 0.04 0.06 1 0.03 0.01 0.02
0.04 −0.09 −0.01 0.02 0.03 1 0.03 −0.01
0.04 −0.15 0.01 −0.01 0.01 0.03 1 0.05
0.03 −0.11 0.02 0.03 0.02 −0.01 0.05 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this example, we assume that service time is exponentially distributed with rate
dependent on service type, which is estimated by mean service rate of each type from the
data. The service rate we use is

[μ1,k, μ2,k, . . . , μN,k] = [12 20 20 50 12 12 20 20] ∀k.

We round the service rates to the choices of three different rates and scale them up propor-
tionally for the ease of application with queueing model. This is not unrealistic because the
data show some similarity of service time distributions between different service types.

We apply the heuristic algorithm with queueing model and diffusion approximation
model. We do not include the convex quadratic model in the example since it requires the
service rates to be independent of service types. For queueing model, assuming di,k = 1 for
all i and k, we obtain the following initial routing policy matrix by solving P (d),

α∗(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.432 0 0 0 0.568
0.119 0.304 0.303 0.274 0

0 0.328 0.331 0.342 0
0 0 0 1 0

0.299 0 0 0 0.701
0.344 0.132 0.132 0 0.392

0 0.340 0.341 0.320 0
0 0.392 0.392 0.217 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

https://doi.org/10.1017/S0269964814000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000011


OPTIMAL STATIC ASSIGNMENT AND ROUTING POLICIES FOR SERVICE CENTERS 303

Table 4. Example II: total expected queue length under assignment and routing policy
derived by solving Queueing model P and diffusion approximation model P̃

Number of
Assignments (T ) 11 12 13 14 15 16 17 18 19 20

Ψ(d∗h, α∗∗
h ) 26.78 22.59 22.48 22.43 22.38 22.34 22.33 22.32 22.31 22.31

Ψ(d̃∗h, α̃∗∗
h ) 26.78 22.59 22.54 22.46 22.41 22.35 22.36 22.35 22.34 22.36

Number of
Assignments (T ) 21 22 23 24 25 26 27 28 29 30
Ψ(d∗h, α∗∗

h ) 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30

Ψ(d̃∗h, α̃∗∗
h ) 22.36 22.37 22.36 22.36 22.36 22.36 22.36 22.36 22.36 22.36

Number of
Assignments (T ) 31 32 33 34 35 36 37 38 39 40
Ψ(d∗h, α∗∗

h ) 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30

Ψ(d̃∗h, α̃∗∗
h ) 22.36 22.36 22.36 22.36 22.36 22.36 22.36 22.36 22.36 22.36

Similarly for diffusion approximation model, assuming di,k = 1 for all i and k, we obtain
the following initial routing policy matrix by solving P̃ (d),

α̃∗(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.500 0 0 0 0.500
0.049 0.300 0.300 0.300 0.049

0 0.333 0.334 0.334 0
0 0.333 0.334 0.333 0

0.500 0 0 0 0.500
0.500 0 0 0 0.500

0 0.334 0.333 0.333 0
0 0.333 0.333 0.334 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Unlike in Example I, the initial routing policy matrices from two models are not exactly
the same, but they still have some similar structures. These two routing policy matrices
have lots of common zero entries, which further confirms our conjecture that it is optimal
to separate traffic streams to different servers if they are not positively correlated. However,
due to the mixed correlation structure in this example, this effect is not as obvious as in
Example I.

We then solve P and P̃ using heuristic algorithm for P and P̃ with all the possible T
value. Under each of these assignment and routing policies, we compute the expected queue
length as explained in Section 3. We summarize the results in Table 4 and Figure 2. The
total expected queue lengths with T = 8, 9, 10 are not presented because they do not satisfy
the stability condition.

Similar to our observations from the previous example, the solutions from two models
are not exactly the same, but the resulting expected queue lengths are quite close to each
other. In addition, solving diffusion approximation model takes only about one-third of the
time that solving queueing model does (5,892 versus 17,812 s).

8. CONCLUSION AND FUTURE STUDY

In this paper, we provide schemes for determining the assignment and routing policies for
a service center. First, we formulate the problem as a mixed integer nonlinear program-
ming problem aiming to minimize the system congestion performance measures. Second,
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Figure 2. Example II: total expected queue length under assignment and routing policy
derived by solving queueing model P and diffusion approximation model P̃ .

we introduce reasonable performance measures in three models: queueing model, diffusion
approximation model, and convex quadratic model. These three models all provide solutions
taking account the autocorrelations within traffic steams and correlations between different
traffic streams. The queueing model produces expected queue length as performance mea-
sure by a matrix analytic method, which is accurate but time consuming. To improve the
efficiency, we study the diffusion approximation model which gives a closed form expression
of approximated expected queue length, which is easy to compute, but is non-convex. We
then define a convex performance measure that is easier to optimize and yields policies that
perform near optimally.

As we observed from the numerical examples, the queueing model and diffusion approxi-
mation model take much longer time to solve but result in solutions with better performance
(smaller total expected queue lengths). When the convex quadratic model is applicable, it
provides the most efficient method of deriving assignment and routing policies of accept-
able performance. Finally, we develop a greedy heuristic algorithm to increase the scalability.
Comparing the numerical results of the queueing model and the diffusion approximation
model, we observe that the assignment policies obtained by both models are essentially the
same. Hence, using diffusion approximation model can be more efficient without sacrificing
system performance.

For the future study, we think it would be interesting to investigate the effect of the
correlation structure on the assignment and routing policies. Another interesting direction
is to look at how one can reduce the required number of servers while satisfying a given
quality of service requirement by taking account the correlations between different traffic
streams into design.
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APPENDIX A. PROOFS OF THEOREMS

A.1. Proof of Theorem 3

Proof: Recall that Σi,j = limt→∞ Cov(Ai(t),Aj(t))
t . By (8) from Good [12], we know that

E
[
Ai(t)Aj(t) |A(t) = r

]
= 1{i=j}πir + 2

(
r

2

)
πiπj + rπi[(Θ− eNπ)(IN −Θ + eNπ)−1]i,j

+ rπj [(Θ− eNπ)(IN −Θ + eNπ)−1]j,i + O(1), (A.1)

and hence

E[Ai(t)Aj(t)] = E
[
E
(
Ai(t)Aj(t) |A(t)

)]
= E (A(t)) {1{i=j}πi + πi[(Θ− eNπ)(IN −Θ + eNπ)−1]i,j

+ πj [(Θ− eNπ)(IN −Θ + eNπ)−1]j,i}+ πiπjE [A(t) (A(t)− 1)] + O(1)

= λt{1{i=j}πi + πi[(Θ− eNπ)(IN −Θ + eNπ)−1]i,j

+ πj [(Θ− eNπ)(IN −Θ + eNπ)−1]j,i}+ πiπj(λt)2 + O(1). (A.2)

Then we can derive Σi,j ,

Σi,j = lim
t→∞

Cov[Ai(t), Aj(t)]

t
= lim

t→∞
E[Ai(t)Aj(t)]− E[Ai(t)]E[Aj(t)]

t

= λ{1{i=j}πi + πi[(Θ− eNπ)(IN −Θ + eNπ)−1]i,j

+ πj [(Θ− eNπ)(IN −Θ + eNπ)−1]j,i}, (A.3)

and hence

Σ = λ{ diag[π] + diag[π][(Θ− eNπ)(IN −Θ + eNπ)−1]

+ [(Θ− eNπ)(IN −Θ + eNπ)−1]′ diag[π]}. (A.4)

�

A.2. Proof of Theorem 4

Proof: Given that

E(Ũn,k) =
1

λπαk
, (A.5)

we know that

lim
t→∞

E(B̃k(t))

t
= λπαk (A.6)
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by the elementary renewal theorem. This shows that Eq. (5.5) holds since we also know that

lim
t→∞

E(Bk(t))

t
= λπαk. (A.7)

from Eq. (3.2).
By Theorem 8.7 of Kulkarni [20], we know that

lim
t→∞

Var(B̃k(t))

t
=

Var(Ũn,k)

(E(Ũn,k))3
= λπαk + α′

k(Σ− λ diag[π])αk. (A.8)

To show that Eq. (5.6) holds, we check

lim
t→∞

Var(Bk(t))

t
= lim

t→∞

Var
(∑N

i=1 Yi,k(t)
)

t
= lim

t→∞
Var[

∑N
i=1 Bin(αi,k, Ai(t))]

t

= lim
t→∞

∑N
i=1 Var[Bin(αi,k, Ai(t))]

t

+ lim
t→∞

∑N
i=1

∑N
j=1,i 	=j Cov[Bin(αi,k, Ai(t)), Bin(αj,k, Aj(t))]

t

= lim
t→∞

∑N
i=1 Var{E[Bin(αi,k, Ai(t))|Ai(t)]}+

∑N
i=1 E{Var[Bin(αi,k, Ai(t))|Ai(t)]}

t

+ lim
t→∞

∑N
i=1

∑N
j=1,i 	=j Cov{E[Bin(αi,k, Ai(t))|Ai(t), Aj(t)], E[Bin(αj,k, Aj(t))|Ai(t), Aj(t)]}

t

+ lim
t→∞

∑N
i=1

∑N
j=1,i 	=j E{Cov[Bin(αi,k, Ai(t)), Bin(αj,k, Aj(t))|Ai(t), Aj(t)]}

t

=
N∑

i=1

[
α2

i,k lim
t→∞

Var(Ai(t))

t
+ αi,k(1− αi,k) lim

t→∞
E(Ai(t))

t

]

+
N∑

i=1

N∑
j=1,i 	=j

αi,kαj,k lim
t→∞

Cov(Ai(t), Aj(t))

t

= λπαk + α′
k(Σ− λ diag[π])αk. (A.9)

This completes the proof of Theorem 4. �

A.3. Proof of Theorem 5

Proof: Let Xn be the type of nth customer arriving to queue k. The expectation of service times
of queue k is given by

lim
n→∞E(Vn,k) = lim

n→∞E[E(Vn,k|Xn)] =
N∑

i=1

τi,kπiαi,k∑N
i=1 πiαi,k

=
τk diag[π]αk

παk
, (A.10)

and the variance of service times of queue k is given by

lim
n→∞Var(Vn,k) = lim

n→∞{E[Var(Vn,k|Xn)] + Var[E(Vn,k|Xn)]}

=
N∑

i=1

σ2
i,kπiαi,k∑N
i=1 πiαi,k

+
N∑

i=1

τ2
i,kπiαi,k∑N
i=1 πiαi,k

−
(

τk diag[π]αk

παk

)2

,

=
(σ2

k + τ2
k ) diag[π]αk

παk
−
(

τk diag[π]αk

παk

)2

. (A.11)

This shows that both Eqs. (5.9) and (5.10) hold. �
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A.4. Proof of Theorem 6

Proof: To prove Theorem 6, we need to show that the sum of expected queue lengths over all
servers is minimized when the traffic intensity is the same for every server under the assumptions
in the theorem. Let λk be the arrival rate to server k and then total arrival rate λ =

∑M
k=1 λk.

Since we assume that the service time distributions are all the same, we can let μ be the service
rate and C2

s be the squared coefficient of variation of service times on every server. We can further
define traffic intensity of server k to be

ρk = λk/μ = λπαk/μ,

and traffic intensity of whole system to be

ρ = λ/(Mμ).

We will show the result for queueing model. The same argument can apply to diffusion approxima-
tion model. Since each queue k is an M/G/1 queue, one may write down Lk(αk), the expected queue
length of queue k, by Pollaczek–Khinchin formula. The total expected queue length minimization
problem can be written as

min
M∑

k=1

Lk(αk) =
M∑

k=1

[
ρk +

ρ2
k(1 + c2sk

)

2(1− ρk)

]
, (A.12)

s.t. λ =

M∑
k=1

λk or Mρ =

M∑
k=1

ρk, (A.13)

0 ≤ ρk ≤ 1 ∀k ∈ {1, . . . , M}. (A.14)

Taking derivatives of Lk(αk) with respect to ρk, we have

dLk(αk)

dρk
= 1 +

ρk(1 + c2sk
)(2− ρk)

2(1− ρk)2
, (A.15)

d2Lk(αk)

dρ2
k

=
1 + c2sk

(1− ρk)3
> 0 (given 0 ≤ ρk < 1). (A.16)

Hence, we know that Lk(αk) is a convex function of ρk and so is
∑M

k=1 Lk(αk). We can integrate

the constraint Mρ =
∑M

k=1 ρk into objective function and rewrite the problem as

min
M∑

k=1

Lk(αk) =

M−1∑
k=1

[
ρk +

ρ2
k(1 + c2sk

)

2(1− ρk)

]
+

(
Mρ−

M−1∑
k=1

ρk

)
+

(Mρ−∑M−1
k=1 ρk)2(1 + c2sk

)

2(1−Mρ +
∑M−1

k=1 ρk)

= Mρ +

M−1∑
k=1

ρ2
k(1 + c2sk

)

2(1− ρk)
+

(Mρ−∑M−1
k=1 ρk)2(1 + c2sk

)

2(1−Mρ +
∑M−1

k=1 ρk)
, (A.17)

subject to 0 ≤ ρk ≤ 1, ∀k. Taking the first-order partial derivative of objective function with respect
to ρk, ∀1 ≤ k ≤M − 1, we have

∂
∑M

k=1 Lk(αk)

∂ρk
=

(
1 + c2sk

2

)[
2ρk − ρ2

k

(1− ρk)2
− 2(Mρ−∑M−1

k=1 ρk)− (Mρ−∑M−1
k=1 ρk)2

(1−Mρ +
∑M−1

k=1 ρk)2

]
.

(A.18)

Setting
∂
∑M

k=1 Lk(αk)
∂ρk

= 0 for all 1 ≤ k ≤M − 1 and knowing that 0 ≤ ρk < 1, we have

2ρk − ρ2
k

(1− ρk)2
=

2(Mρ−∑M−1
k=1 ρk)− (Mρ−∑M−1

k=1 ρk)2

(1−Mρ +
∑M−1

k=1 ρk)2
, ∀k ∈ {1, . . . , M − 1}, (A.19)
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and ρ1 = · · · = ρM−1 = ρ is a solution that satisfies the equation above. Hence, we can conclude
that ρ1 = · · · = ρM = ρ is an optimal solution for queueing model because it satisfies all constraints,
have all first-order partial derivatives equal to zero, and the objective function is convex.

We may follow the same fashion to prove the result of diffusion approximation model. The
details are omitted. �

A.5. Proof of Theorem 8

Proof: Assuming that di,k = 1 for all i and k, P q can be reduced to

Problem P q′

min
M∑

k=1

Q̂k(αk) =
M∑

k=1

[α′
kΣ̂αk + (λπαk − μk)2], (A.20)

s.t.
M∑

k=1

αi,k = 1, ∀i ∈ {1, . . . , N}, (A.21)

αi,k ≥ 0, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . , M}. (A.22)

This is a quadratic programming problem. Let eN be an N -vector whose elements are all ones. We

rewrite the P q′
in a standard form of quadratic programming problem,

Problem P q′′

min
1

2
x′Hx + c′x, where H =

⎡
⎢⎣

Σ̂ + λ2π′π
. . .

Σ̂ + λ2π′π

⎤
⎥⎦

MN×MN

and c =

⎡
⎢⎣
−λμ1π′

...
−λμMπ′

⎤
⎥⎦

MN

, (A.23)

s.t. Ax ≥ b, where A = IMN and b = [0, . . . , 0]′MN , (A.24)

Bx = d, where B = [IN , . . . , IN ]N×MN and d = eN , (A.25)

x = [α1, . . . , αM ]MN ≥ 0, where αk = [α1,k, . . . , αN,k]′ for all k. (A.26)

We first need to show that Σ̂eN = λπ′. By definition,

[ΣeN ]i =
N∑

j=1

Cov(Ai(1), Aj(1)) = Cov(Ai(1), A(1)). (A.27)

For any i,

E[Ai(1)A(1)] = E[E(Ai(1)A(1)|A(1))] = E[E(Ai(1)|A(1))A(1)] = E[πiA(1)2]

= πiVar(A(1)) + πi[E(A(1))]2, (A.28)

and

E(Ai(1))E(A(1)) = πi[E(A(1))]2. (A.29)

Hence, we know that

Cov(Ai(1), A(1)) = E[Ai(1)A(1)]− E(Ai(1))E(A(1)) = πiVar(A(1)) = λπi, (A.30)

⇒ Σ̂eN = λπ′. (A.31)
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Let x0j be the jth element of the column vector x0 ∈ RMN . Next, we show that Eq. (6.18) is an
optimal solution to P q in the special case, that is,

x0j =

⎧⎪⎨
⎪⎩

1 + λ + |L|μk −
∑

l∈L μl

(1 + λ)|L| , ∀k ∈ L, j ∈ {(k − 1)N + 1, . . . , kN},

0, otherwise,

(A.32)

is an optimal solution to P q′′
. We will check that x0 is an optimal solution by showing that there

exist u0 ∈ RMN and v0 ∈ RN such that Hx0 + c = A′u0 + B′v0, Ax0 ≥ b, u0 ≥ 0, Bx0 = d, and
<Ax0 − b, u0 >= 0 (Karush–Kuhn–Tucker conditions). Let u0j be the jth element of the column

vector u0 ∈ RMN . We pick

u0j =

⎧⎪⎨
⎪⎩

(−λ− λ2 − |L|μkλ +
∑

l∈L μlλ)πi

|L| , ∀k /∈ L, i ∈ {1, . . . , N}, j = (k − 1)N + i,

0, otherwise.

(A.33)
and

v0 =
(λ + λ2 −∑

l∈L μlλ)π′

|L| . (A.34)

Let us verify all the conditions.

1. Ax0 = x0 ≥ b and u0 ≥ 0 because x0 and u0 are both non-negative by the definition of L.

2.

Bx0 =

⎡
⎣∑

k/∈L

0 +
∑
k∈L

1 + λ + |L|μk −
∑

l∈L μl

(1 + λ)|L|

⎤
⎦

N

=

[
(1 + λ)|L|+ |L|∑k∈L μk − |L|

∑
l∈L μl

(1 + λ)|L|
]

N

= eN = d. (A.35)

3. 〈Ax0 − b, u0〉 = 〈x0, u0〉 =
∑MN

j=1 x0j u0j = 0 because x0j and u0j are not non-zero at the
same time for any j.

4. Let (Hx0)k be the column vector with (k − 1)N + 1th to kNth elements of the vector Hx0.
For any k ∈ L,

(Hx0)k = (Σ + λ2π′π)eN

(
1 + λ + |L|μk −

∑
l∈L μl

(1 + λ)|L|
)

= (λπ′ + λ2π′)
(

1 + λ + |L|μk −
∑

l∈L μl

(1 + λ)|L|
)

=

(
λ + λ2 + |L|μkλ−∑

l∈L μlλ

|L|

)
π′, (A.36)

(Hx0 + c)k =

(
λ + λ2 −∑

l∈L μlλ

|L|

)
π′ = A′u0 + B′v0. (A.37)

For any k /∈ L,

(Hx0)k = 0, (A.38)

(Hx0 + c)k = λμkπ′ = A′u0 + B′v0. (A.39)

From the above verification, we can conclude that x0 is an optimal solution since the objective
function is convex quadratic and there exist u0 ∈ RMN and v0 ∈ RN that satisfy the Karush–
Kuhn–Tucker conditions. �
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APPENDIX B. BACKWARD SELECTION HEURISTIC ALGORITHM

Assuming to solve P , we write down the Backward Selection Heuristic Algorithm as below:

Algorithm 2

Backward Selection Heuristic Algorithm

t←MN ;
for i = 1→ N, k = 1→M do

di,k ← 1;
end for
α← α∗(d) as defined in Problem P (d);
for i = 1→ N, k = 1→M do

if αi,k = 0 then
di,k ← 0;

end if
end for
t←∑N

i=1

∑M
k=1 di,k

while t > T do
for i = 1→ N, k = 1→M do

if di,k = 0 then
Ψi,k ←∞;

else
di,k ← 0;
Ψi,k ← Ψ(d) as defined in Problem P (d);
di,k ← 1;

end if
end for
(i, k)← arg mini,k Ψi,k;
di,k ← 0;
t← t− 1;

end while

To solve the Problem P̃ , one can simply replace α∗(d) and Ψ(d) with α̃∗(d) and Ψ̃(d) in the
Algorithm 2.
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