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We consider the full three-dimensional dynamics of a thin falling liquid film on a flat
plate inclined at some non-zero angle to the horizontal. In addition to gravitational
effects, the flow is driven by an electric field which is normal to the substrate far
from the flow. This extends the work of Tseluiko & Papageorgiou (J. Fluid Mech.,
vol. 556, 2006b, pp. 361–386) by including transverse dynamics. We study both
the cases of overlying and hanging films, where the liquid lies above or below
the substrate, respectively. Starting with the Navier–Stokes equations coupled with
electrostatics, a fully nonlinear two-dimensional Benney equation for the interfacial
dynamics is derived, valid for waves that are long compared to the film thickness.
The weakly nonlinear evolution is governed by a Kuramoto–Sivashinsky equation
with a non-local term due to the electric field effect. The electric field term is
linearly destabilising and produces growth rates proportional to |ξ |3, where ξ is
the wavenumber vector of the perturbations. It is found that transverse gravitational
instabilities are always present for hanging films, and this leads to unboundedness
of nonlinear solutions even in the absence of electric fields – this is due to the
anisotropy of the nonlinearity. For overlying films and a restriction on the strength of
the electric field, the equation is well-posed in the sense that it possesses bounded
solutions. This two-dimensional equation is studied numerically for the case of
periodic boundary conditions in order to assess the effects of inertia, electric field
strength and the size of the periodic domain. Rich dynamical behaviours are observed
and reported. For subcritical Reynolds number flows, a sufficiently strong electric
field can promote non-trivial dynamics for some choices of domain size, leading to
fully two-dimensional evolutions of the interface. We also observe two-dimensional
spatiotemporal chaos on sufficiently large domains. For supercritical flows, such
two-dimensional chaotic dynamics emerges in the absence of a field, and its presence
enhances the amplitude of the fluctuations and broadens their spectrum.
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1. Introduction
Thin liquid films arise in many physical applications, in particular cooling and

coating processes. In the case of cooling, numerous studies (Shmerler & Mudawar
1986; Lyu & Mudawar 1991; Miyara 1999; Serifi, Malamataris & Bontozoglou
2004; Aktershev 2010; Aktershev & Alekseenko 2013; Mascarenhas & Mudawar
2013) provided evidence that interfacial waves increase heat transfer by orders of
magnitude. This phenomenon was shown to be caused by convection effects and
increased heat transfer in regions where film thinning occurs. For coating processes
however, a stable thin film of relatively constant thickness is required to evenly
coat the surface of a substrate. For gravity-driven flows on inclined planes, it was
shown by Benjamin (1957) and Yih (1963) that there is a critical Reynolds number,
depending on the angle of inclination, above which a thin film becomes unstable to
long-wave disturbances. For Reynolds numbers close to this critical value, it is viable
to use long-wave asymptotics to produce a nonlinear Benney equation which describes
the interface evolution (Benney 1966). The addition of an electric field to the thin
film flow problem gives rise to additional stresses acting at the fluid interface, which
in turn affect the flow stability; electric fields can promote non-trivial dynamics for
flows that would be stable in their absence. Melcher & Taylor (1969) reviewed the
early work on the modelling of perfectly conducting liquids and perfect dielectrics,
and developed the Taylor–Melcher leaky dielectric model for poorly conducting fluids
which was then studied extensively (Feng & Scott 1996; Saville 1997), even in the
thin film context (Pease & Russel 2002; Craster & Matar 2005). The possibility of
controlling film flows using vertical electric fields was considered by a number of
authors (Kim, Bankoff & Miksis 1992, 1994; Bankoff et al. 1994; Bankoff, Griffing
& Schluter 2002; Griffing et al. 2006) in their study of the electrostatic liquid–film
radiator.

The two-dimensional simplification of our model, yielding one-dimensional
evolution equations for the interface, has been studied firstly by González &
Castellanos (1996) and then extensively by Tseluiko & Papageorgiou (2006a,b, 2010),
in which a normal electric field acts to destabilise the interface of a gravity-driven
thin film flow, even for subcritical Reynolds numbers. From a fully nonlinear Benney
equation for the interface height, they study the weakly nonlinear evolution of the
scaled interfacial position η(x, t) that satisfies the canonical equation

ηt + ηηx ± ηxx + γH(ηxxx)+ ηxxxx = 0, (1.1)

where H is the Hilbert transform and γ > 0 measures the strength of the applied
electric field; the − or + is taken depending on whether the Reynolds number is
subcritical or supercritical, respectively. González & Castellanos (1996) identified
a critical electric field strength for subcritical Reynolds number flows above which
instability of a mode with non-zero wavenumber is found, and a local bifurcation
analysis was performed. Tseluiko & Papageorgiou (2006b) completed an extensive
numerical study of the initial value problem for (1.1) with periodic boundary
conditions on the interval [0, L], finding attractors for the dynamics in windows
of the parameters γ and L. The same authors provided analytical bounds for attractor
dimensions and solution energy (Tseluiko & Papageorgiou 2006a). These models were
extended to include dispersive effects (expansion to a higher-order Benney equation
is warranted) for the case of vertical film flow (see Tseluiko & Papageorgiou 2010).
Mukhopadhyay & Dandapat (2004) considered the same problem but proceeded with
an integral boundary layer formulation, resulting in coupled evolution equations for
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the fluid flux and interface height. Additionally, Tseluiko & Papageorgiou (2007)
studied the case of a horizontal flat substrate by means of long-wave asymptotics
for both overlying and hanging films, for a regime in which surface tension is
stronger than that of our study. They provided evidence, using a mixture of numerics
and analysis, for the global existence of positive smooth solutions. Furthermore, they
showed that the film does not touch down at a finite time but approaches the substrate
surface asymptotically in infinite time. Numerical evidence is given for this, including
the case of hanging films in the absence of an electric field.

The present study extends the work described above to fully two-dimensional
interfaces. We obtain novel transverse dynamics and show the breakdown of the
weakly nonlinear assumption for certain set-ups. We proceed with an analysis similar
to Tseluiko & Papageorgiou (2006b) to obtain a fully nonlinear two-dimensional
Benney equation for the interface height that retains both inertia and surface tension
effects. Finite-time blow-up has been observed numerically for the corresponding
one-dimensional Benney equation, and in the present work we do not proceed with
a numerical study of the two-dimensional Benney equation. Instead, we study the
weakly nonlinear evolution by perturbing about the exact constant solution for the
interface height, to obtain a non-local two-dimensional Kuramoto–Sivashinsky-type
equation analogous to (1.1). Interestingly, the resulting equation is well-posed for
overlying films with electric field strengths below a critical value; otherwise, there
are transverse instabilities that cannot be saturated by the nonlinear term. Even in the
absence of an electric field, this class of weakly nonlinear models is not appropriate
for the case of hanging films. For overlying films, we will derive the canonical
equation

ηt + ηηx + (β − 1)ηxx − ηyy + γ1R(η)+∆2η= 0, (1.2)

where R is a non-local fractional Laplacian operator, β > 0 is a Reynolds number
term measuring inertial effects, and 0 6 γ 6 2 measures the electric field strength
as in (1.1) (the latter restriction is imposed to prevent unbounded solutions as
mentioned above). When supplemented with periodic boundary conditions on the
rectangle Q = [0, L1] × [0, L2], we are left with four parameters governing the
dynamical behaviour of solutions. For numerical simulations, we reduce this problem
by restricting to square periodic domains, setting L1= L2= L, and study the dynamics
for various choices of β, γ and L. A number of authors (Kevrekidis, Nicolaenko &
Scovel 1990; Papageorgiou & Smyrlis 1991; Smyrlis & Papageorgiou 1996) explored
the attractor windows for the well-known one-dimensional Kuramoto–Sivashinsky
equation

ηt + ηηx + ηxx + ηxxxx = 0, (1.3)

on periodic domains of length L. Increasing L yields windows of steady attractors,
travelling wave attractors, time-periodic attractors and period-doubling behaviours,
among other phenomena. In the majority of the parameter windows, the solution
profiles are found to have a characteristic cellular form. Chaotic attractors are found
for sufficiently large L, and chaotic behaviour persists for L above a certain threshold.
A related equation is the two-dimensional Kuramoto–Sivashinsky equation derived by
Nepomnyashchy (1974a,b) for thin film flow down a vertical plane,

ηt + ηηx + ηxx +∆
2η= 0. (1.4)

The dynamics of solutions to (1.4) is similar to that observed for (1.3), and solutions
in the chaotic regime are found to vary weakly in the transverse direction (Tomlin,
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Region II

Region I x

y

z

FIGURE 1. Schematic of the problem.

Kalogirou & Papageorgiou 2017). We find even richer dynamical behaviour for (1.2)
due to the destabilising electric field, which has no directional preference and provides
stronger linear instabilities in the mixed Fourier modes. For subcritical Reynolds
number flows, β < 1, a sufficiently strong electric field is required to promote
interfacial waves. We examine the attractor windows for both a small subcritical
Reynolds number with β = 0.01, and a moderate one with β = 0.5. For supercritical
Reynolds numbers, β > 1, we observe the usual Kuramoto–Sivashinsky-type dynamics
in the absence of an electric field, however, its introduction qualitatively changes
the dynamics, producing fully two-dimensional steady and travelling interfacial wave
states, as well as time-periodic, quasi-periodic and chaotic attractors. For supercritical
Reynolds number flows, we take β = 2 and explore the attractors numerically.

The structure of the paper is as follows. In § 2 we give the physical model and the
full formulation of the problem in dimensional variables, and then we obtain the non-
dimensional equations in § 2.1. In § 3, we make a long-wave assumption and derive
a fully nonlinear Benney equation for the interface height. After this, § 4 gives the
analysis and computations of the canonical weakly nonlinear evolution equation (1.2)
which is valid for overlying films only. Finally, § 5 contains our conclusions and a
discussion.

2. Physical model and governing equations
Consider a Newtonian fluid with constant density ρ, dynamic viscosity µ and

kinematic viscosity ν, flowing under gravity on the surface of a flat infinite
two-dimensional substrate inclined at a non-zero angle θ to the horizontal. We
use coordinates (x, y, z) fixed in the plane as shown in figure 1, with x directed
down the slope in the streamwise direction, y in the spanwise direction and z
perpendicular to the substrate. Note that as θ increases, the plate and axes rotate; for
θ ∈ (0,π/2) we have overlying films, for θ =π/2 vertical films and for θ ∈ (π/2,π)
hanging films are obtained. The surface tension coefficient between the liquid and the
surrounding hydrodynamically passive medium is denoted by σ (assumed constant),
and the acceleration due to gravity is denoted by g = (g sin θ, 0, −g cos θ). The
local film thickness is represented by h(x, y, t), a function of space and time, with
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unperturbed thickness `. The liquid film is assumed to be a perfect conductor and
the surrounding medium is taken to be a perfect dielectric with permittivity εα. A
voltage is set up by grounding the plate at zero potential and imposing a uniform
field normal to the plate far away, i.e. E→ E0 = (0, 0, E0) as z→∞, where E0 is
a constant. Denoting the voltage potential by V , it follows that in the electrostatic
limit appropriate to this study, the electric field takes the form E = −∇V , where ∇
is the usual three-dimensional spatial gradient operator (this follows from Maxwell’s
equations that yield ∇ × E= 0 in this limit). Since the fluid is perfectly conducting,
the voltage potential is zero at the fluid interface. The liquid layer and surrounding
medium are denoted by Regions I and II, respectively. The fluid in Region I is
governed by the incompressible Navier–Stokes equations

ut + (u · ∇)u = −
1
ρ
∇p+ ν∇2u+ g, (2.1a)

∇ · u = 0, (2.1b)

where u = (u, v, w) is the velocity field, p is the pressure and ∇2
= ∇ · ∇. Since

E=−∇V , and in addition Gauss’ law states that ∇ · (εαE)= 0 (we assume that there
are no volume charges in Region II), it follows that V satisfies Laplace’s equation in
Region II,

∇
2V = 0, (2.2)

subject to the conditions

V = 0 at z= h(x, y, t), ∇V→−E0 as z→∞. (2.3a,b)

For the fluid, we have no-slip conditions at the solid substrate surface, u|z=0 = 0, the
kinematic condition

w= ht + uhx + vhy at z= h(x, y, t), (2.4)

and a balance of stresses at the interface as detailed next. Any point on the interface
at time t has position vector r= (x, y, h(x, y, t)). The contravariant base vectors t1, t2,
and unit normal n are defined by

t1 =
∂r
∂x
=

 1
0
hx

 , t2 =
∂r
∂y
=

 0
1
hy

 , n=
t1 × t2
√

K
=

1
√

K

−hx
−hy

1

 , (2.5a−c)

where K = 1 + h2
x + h2

y . Since the voltage potential is constant on the interface,
∇V · t1 = 0 and ∇V · t2 = 0, which written out in full are

Vx + hxVz = 0, Vy + hyVz = 0, (2.6a,b)

where it is understood that all functions are evaluated at z = h(x, y, t). The stress
tensors in Regions I and II have components

T I
jk =µ

(
∂uk

∂xj
+
∂uj

∂xk

)
− pδjk, T II

jk = εα

(
∂V
∂xj

∂V
∂xk
−

1
2
|∇V|2δjk

)
− patmδjk, (2.7a,b)

respectively, where patm is the atmospheric pressure in Region II and we have
employed the usual subscript notation for the coordinate system and velocity
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components. We balance the stresses in the tangential and normal directions at
the interface,

[(T in) · t1]
I
II = 0, [(T in) · t2]

I
II = 0, (2.8a,b)

[(T in) · n]III = σ
(1+ h2

x)hyy − 2hxhyhxy + (1+ h2
y)hxx

K3/2
, (2.8c)

where the jump notation [·]III= (·)I− (·)II has been introduced and the term multiplying
σ in (2.8c) is the curvature of the interface. Using (2.6a), the tangential stress balance
in the t1 direction (2.8a) becomes

(1− h2
x)(uz +wx)+ 2(wz − ux)hx − (uy + vx)hy − (vz +wy)hxhy = 0, (2.9)

and similarly using (2.6b), the tangential stress balance in the t2 direction (2.8b) reads

(1− h2
y)(vz +wy)− (uy + vx)hx + 2(wz − vy)hy − (uz +wx)hxhy = 0. (2.10)

The normal stress balance (2.8c) written out in full becomes

patm − p−
εα

2
KV2

z − σ
(1+ h2

x)hyy − 2hxhyhxy + (1+ h2
y)hxx

K3/2

+ 2µ
uxh2

x + (uy + vx)hxhy + vyh2
y − (uz +wx)hx − (vz +wy)hy +wz

K
= 0. (2.11)

The stress balances (2.9)–(2.11) complete the set of dimensional nonlinear interfacial
conditions. The normal stress balance (2.11) is the originator of the coupling between
the problems in Regions I and II. This is unique to the case of a perfectly conducting
liquid film surrounded by a perfect dielectric (where one phase possesses infinite
conductivity and the other zero conductivity, respectively), otherwise the electric field
has contributions to the tangential stresses as in the case of the Taylor–Melcher leaky
dielectric model (see for example Papageorgiou & Petropoulos 2004).

2.1. Non-dimensionalisation of equations
The exact Nusselt solution with a film of uniform thickness (Nusselt 1916; Benjamin
1957) can be modified to account for the electric field as done for the one-dimensional
problem by Tseluiko & Papageorgiou (2006b) to give

h= `, u=
g sin θ

2ν
(2`z− z2), v = 0, w= 0,

p= patm −
1
2
εαE2

0 − ρg(z− `) cos θ, V = E0(`− z),

 (2.12)

with bars denoting base states. The velocity profile is semi-parabolic in z, and the
voltage potential is linear in z as expected. We will non-dimensionalise velocities with
the base velocity at the free surface, U0 = u|z=` = g`2 sin θ/2ν, and make use of the
non-dimensional parameters

Re=
U0`

ν
=

g`3 sin θ
2ν2

, We=
εαE2

0`

2µU0
=

εαE2
0

ρg` sin θ
, C=

U0µ

σ
=
ρg`2 sin θ

2σ
.

(2.13a−c)
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Re is the Reynolds number measuring the ratio of inertial to viscous forces, We is
the electric Weber number measuring the ratio of electrical to fluid pressures, and C
is the capillary number measuring the ratio of surface tension to viscous forces. In
order to non-dimensionalise and simplify the problem, we write

x∗ =
1
`

x, y∗ =
1
`

y, z∗ =
1
`

z, u∗ =
1

U0
u, t∗ =

U0

`
t, h∗ =

1
`

h,

p∗ =
`

µU0

(
p− patm +

1
2
εαE2

0 + ρgz cos θ
)
, V∗ =

1
E0`

(V + E0z).

 (2.14)

We substitute (2.14) into the equations and boundary conditions, and drop the stars.
In Region I, the Navier–Stokes equations transform to

Re(ut + (u · ∇)u) = −∇p+∇2u+ 2ex, (2.15a)
∇ · u = 0, (2.15b)

where we have defined ex = (1, 0, 0). Laplace’s equation in Region II and the no-slip
and impermeability conditions are unchanged, while the far field condition for V (2.3b)
becomes ∇V → 0 as z→∞. At the interface, the zero voltage potential condition
(2.3a) becomes V = h at z= h. The kinematic condition (2.4) and the tangential stress
relations (2.9) and (2.10) are all unchanged, whereas the normal stress relation (2.11)
transforms to

We
2
+ h cot θ −

1
2

p−
We
2

K(1− Vz)
2

+
uxh2

x + (uy + vx)hxhy + vyh2
y − (uz +wx)hx − (vz +wy)hy +wz

K

=
1

2C

(1+ h2
x)hyy − 2hxhyhxy + (1+ h2

y)hxx

K3/2
, (2.16)

where all variables are evaluated at z = h. The system remains nonlinear and
intractable analytically; in what follows we make progress by employing a long-wave
expansion, in which we assume that the typical lengths in the x and y directions are
large compared to the film thickness.

3. Fully nonlinear long-wave evolution equations
We assume that the typical interfacial deformation wavelengths λ are large

compared to the unperturbed thickness `, set δ = `/λ� 1 and introduce the change
of variables in Region I,

x=
1
δ

x̂, y=
1
δ

ŷ, t=
1
δ

t̂, w= δŵ. (3.1a−d)

For brevity, we omit the transformed Navier–Stokes equations. The no-slip and
impermeability conditions are unchanged. Substitution of (3.1) into the interfacial
conditions and dropping hats keeps the kinematic condition (2.4) unchanged, while
the stress balances become

(1− δ2h2
x)(uz + δ

2wx)+ 2δ2(wz − ux)hx − δ
2(uy + vx)hy − δ

2(vz + δ
2wy)hxhy = 0, (3.2a)
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(1− δ2h2
y)(vz + δ

2wy)− δ
2(uy + vx)hx + 2δ2(wz − vy)hy − δ

2(uz + δ
2wx)hxhy = 0, (3.2b)

We
2
+ h cot θ −

1
2

p−
We
2

Kδ(1− Vz)
2

+ δ
δ2uxh2

x + δ
2(uy + vx)hxhy + δ

2vyh2
y − (uz + δ

2wx)hx − (vz + δ
2wy)hy +wz

Kδ

=
δ2

2C

(1+ δ2h2
x)hyy − 2δ2hxhyhxy + (1+ δ2h2

y)hxx

K3/2
δ

, (3.2c)

where Kδ = δ
2h2

x + δ
2h2

y + 1 and all variables are evaluated at z= h.
The normal stress balance (3.2c) contains the non-local contribution Vz|z=h, where

V satisfies Laplace’s equation in Region II. To calculate this, we consider a rescaled
normal variable ζ = δz in Region II, along with the same temporal and spatial
rescalings (3.1a–c) as in Region I with a view to obtain Vζ |ζ=δh to leading order.
Introducing the asymptotic expansions

h= h0 + δh1 + δ
2h2 + · · · , V = V0 + δV1 + δ

2V2 + · · · , (3.3a,b)

and noting that V|ζ=δh = V0|ζ=0 +O(δ), Vζ |ζ=δh = (V0)ζ |ζ=0 +O(δ), yields the leading-
order problem

∇
2V0 = 0, V0|ζ=0 = h0, ∇V0→ 0 as ζ→∞. (3.4a−c)

By taking Fourier transforms in x and y and considering the resulting differential
equation, it follows that (V0)ζ |ζ=0 = −R(h0) where R is a fractional Laplacian
with Fourier symbol R̂(ξ) = |ξ | =

√
ξ 2

1 + ξ
2
2 for wavenumber vector ξ = (ξ1, ξ2).

The common notation in the literature is R = (−∆)1/2, where ∆ ≡ ∂2
x + ∂

2
y is the

two-dimensional Laplace operator. We have an integral representation (Córdoba &
Córdoba 2004),

R( f )=
1

2π

∫
R2

f (x)− f (x′)
|x− x′|3

dx′, (3.5)

where x = (x, y), x′ = (x′, y′), and the integral is understood in a principal value
sense. Returning to the unscaled variable z = ζ/δ, the non-local contribution in the
normal stress balance (3.2c) is Vz|z=h=−δR(h0)+O(δ2). It follows from (3.2c) that in
order to retain the effects of surface tension and the electric field in the leading-order
dynamics, we must take the scalings

C= δ2C, We=
We
δ
, (3.6a,b)

where C and We are O(1) quantities. We also assume that the Reynolds number Re
is an O(1) quantity.

Turning to the fluid dynamics in Region I, we introduce the following asymptotic
expansions

u= u0 + δu1 + δ
2u2 + · · · , v = v0 + δv1 + δ

2v2 + · · · ,

w=w0 + δw1 + δ
2w2 + · · · , p= p0 + δp1 + δ

2p2 + · · · .

}
(3.7)

The leading-order terms of the momentum equations in the streamwise and spanwise
directions are

(u0)zz =−2, (v0)zz = 0. (3.8a,b)
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These can be integrated to obtain

(u0)z = 2(h0 − z), (v0)z = 0, (3.9a,b)

where we have used the leading-order terms of the tangential stress balances (3.2a)
and (3.2b), which are (u0)z|z=h0 = 0 and (v0)z|z=h0 = 0, respectively. One more
integration, use of no-slip and the leading-order continuity equation provides the
leading-order flow field

u0 = (2h0 − z)z, v0 = 0, w0 =−z2(h0)x. (3.10a−c)

To leading order, the kinematic equation (2.4) is

(h0)t + u0(h0)x + v0(h0)y −w0 = 0 at z= h0(x, y, t). (3.11)

Substituting (3.10) into this yields

(h0)t + 2h2
0(h0)x = 0. (3.12)

We need to regularise this equation by adding higher-order terms since its solutions
encounter infinite slope singularities at finite times and the long-wave expansion
breaks down. To leading order, the z-momentum equation implies that p0 is
independent of z, and then using the normal stress balance (3.2c) gives

p0 = 2
[

h0 cot θ −WeR(h0)−
1

2C
1h0

]
. (3.13)

We proceed as before, but now collect O(δ) terms in the governing equations and
boundary conditions. The first-order velocities u1, v1 and w1 can be found analytically
by integration of the second-order momentum equations (and using tangential stresses,
no-slip and the continuity equation). For completeness, these are

u1 =

[
1
2

z2
− zh0

]
(p0)x + Re

[
1
6

z4h0 −
2
3

z3h2
0 +

4
3

zh4
0

]
(h0)x + 2zh1, (3.14a)

v1 =

[
1
2

z2
− zh0

]
(p0)y, w1 =−

∫ z

0
(u1)x + (v1)y dz′. (3.14b,c)

The second-order contribution to the kinematic condition (2.4) is found to be

(h1)t + u1(h0)x + v1(h0)y −w1 + 2h0h1(h0)x + h2
0(h1)x = 0 at z= h0(x, y, t), (3.15)

where Taylor expansions about z= h0 have been used. Substitution of the first-order
velocities (3.14) gives the time evolution of h1,

(h1)t +

[
2h2

0h1 +
8Re
15

h6
0(h0)x −

1
3

h3
0(p0)x

]
x

+

[
−

1
3

h3
0(p0)y

]
y

= 0. (3.16)

A regularised Benney equation for H = h0 + δh1, with errors of O(δ2), is found by
adding δ times equation (3.16) to (3.12), this is

Ht +∇ ·

[(
2
3

H3
+

8Re
15
δH6Hx

)
ex −

2
3
δH3
∇

(
H cot θ −WeR(H)−

1
2C
1H
)]
= 0,

(3.17)
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where we have redefined ∇ = (∂x, ∂y) and ex = (1, 0). As noted by Tseluiko &
Papageorgiou (2006b) for the one-dimensional analogue of (3.17), solutions may
not exist for all time for some parameters, and finite-time blow-ups are observed in
numerical simulations (Pumir, Manneville & Pomeau 1983; Rosenau, Oron & Hyman
1992). Due to such global existence difficulties, we proceed by studying the weakly
nonlinear evolution of a sufficiently small perturbation to the uniform state. The above
procedure was also carried out to the next order in δ to calculate a Benney equation
with errors of O(δ3); this is required to retain dispersive effects. This equation is
currently under investigation and findings will be reported in future work.

4. A multidimensional non-local Kuramoto–Sivashinsky equation
4.1. Weakly nonlinear evolution

We substitute H=1+ δη into (3.17) where η=O(1), and also assume that cot θ =O(1)
(for the one-dimensional equation, see Tseluiko & Papageorgiou 2006b). Moving to a
slow time scale and performing a Galilean transformation with the rescaling

t= 4δt, x= x− 2t, (4.1a,b)

and then dropping bars gives the leading-order equation

ηt + ηηx + (β
∗
− κ)ηxx − κηyy + γ

∗1R(η)+µ∆2η= 0. (4.2)

Here the O(1) parameters are

β∗ =
2Re
15
, κ =

1
6

cot θ, γ ∗ =
We
6
, µ=

1
12C

, (4.3a−d)

and ∆≡ ∂2
x + ∂

2
y is the two-dimensional Laplace operator as before. The spatial average

of a solution is a conserved quantity for (4.2) – this is set to zero as the interfacial
perturbation should conserve the fluid mass. It is clear from our previous rescalings
that β∗,µ>0, γ ∗>0, and that κ >0, κ=0, or κ <0 depending on whether the film is
overlying, vertical or hanging, respectively. The choice of β∗=κ corresponds to taking
the critical Reynolds number for the flow, above which the flow becomes unstable
to long waves (in the absence of a field). Note that if the electric field is removed
and we also consider a vertical substrate, setting γ ∗ = 0 and κ = 0 in (4.2), then
after rescaling, the two-dimensional Kuramoto–Sivashinsky equation (1.4) obtained by
Nepomnyashchy (1974a,b) is recovered. The operator corresponding to the linear part
of (4.2),

L= (β∗ − κ)∂xx − κ∂yy + γ
∗1R+µ∆2, (4.4)

has Fourier symbol

L̂(ξ)=−(β∗ − κ)ξ 2
1 + κξ

2
2 − γ

∗(ξ 2
1 + ξ

2
2 )

3/2
+µ(ξ 2

1 + ξ
2
2 )

2 (4.5)

for wavenumber vector ξ = (ξ1, ξ2). If we consider hanging films with κ < 0, then
it is clear that there are linearly unstable y-modes (Fourier modes which are purely
transverse). Even for overlying films with non-zero values of γ ∗ and sufficiently small
values of the product κµ, a band of low y-modes are linearly unstable due to the
non-local term corresponding to the electric field. Due to the form of the nonlinearity
in (4.2), there is no energy transfer between y-modes. Thus, if a y-mode is linearly
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unstable, then it will grow exponentially without bound and the problem is ill-posed
in this sense. There is no control over these transverse instabilities, and the weakly
nonlinear analysis cannot be modified to overcome this issue. Since the case of γ ∗= 0
is not of particular interest, we are forced to restrict to overlying films with κ > 0 by
taking θ ∈ (0,π/2) (if κ = 0, then for any γ ∗> 0 there are unstable transverse modes);
in the remainder of this paper we study overlying films only. We rescale (4.2) with

t=
κ2

µ
t, x=

κ1/2

µ1/2
x, y=

κ1/2

µ1/2
y, η=

µ1/2

κ3/2
η, (4.6a−d)

and once again drop the bars to obtain the following canonical equation for overlying
electrified films,

ηt + ηηx + (β − 1)ηxx − ηyy + γ1R(η)+∆2η= 0. (4.7)

The parameters β > 0, γ > 0 are defined by

β =
β∗

κ
, γ =

γ ∗

κ1/2µ1/2
, (4.8a,b)

where β = 1 corresponds to the critical Reynolds number flow. To prevent unbounded
growth of solutions, equation (4.7) is studied under certain restrictions on γ and
domain choice (both γ and the domain dimensions affect the unstable spectrum as
we see below). We proceed with Q-periodic domains (where Q= [0, L1] × [0, L2]) for
which there are no unstable y-modes for the choices of L1 and L2, leaving us only with
a restriction on γ . In what follows, we perform a linear stability analysis expanding
on the above discussion to determine this condition. In the two-dimensional analogue
of our problem where the interface dynamics is governed by (1.1), all instabilities
are controlled by the energy transfer due to the nonlinear term. The potential for
unbounded growth of transverse modes caused by strong electric fields or hanging
arrangements is unique to the full three-dimensional problem.

4.2. Linear stability analysis
We linearise (4.7) about η= 0 to obtain

ηt + (β − 1)ηxx − ηyy + γ1R(η)+∆2η= 0, (4.9)

and look for solutions of the form

η(x, t)=
∑
k∈Z2

Akeik̃·x+s(k̃)t, (4.10)

where s(k̃) is the growth rate, Ak are constants, and k̃ has components

k̃1 =
2π

L1
k1, k̃2 =

2π

L2
k2, (4.11a,b)

for k∈Z2 (we use this notation to distinguish the wavenumber vectors k̃ in the discrete
spectrum from the general wavenumber vectors ξ ∈ R2 for a continuous spectrum).
Using the Fourier symbol of the operator R, the dispersion relation follows readily,

s(k̃1, k̃2)= (β − 1)k̃2
1 − k̃2

2 + γ (k̃
2
1 + k̃2

2)
3/2
− (k̃2

1 + k̃2
2)

2. (4.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.250


Three-dimensional wave evolution on electrified falling films 65

Instead of working with domain dimensions L1 and L2, we introduce the parameters

ν1 =

(
2π

L1

)2

, ν2 =

(
2π

L2

)2

, (4.13a,b)

which simplifies (4.12) to

s(k1, k2)= (β − 1)ν1k2
1 − ν2k2

2 + γ (ν1k2
1 + ν2k2

2)
3/2
− (ν1k2

1 + ν2k2
2)

2. (4.14)

Instability is found when s(k1, k2) > 0 (note that s is real) and neutral stability curves
for a given mode (k1, k2) in the ν1–ν2 plane are obtained by setting s(k1, k2) = 0
in (4.14) above. Note that the neutral stability curve for the (k1, k2)-mode is the
same as the neutral stability curve for the (|k1|, |k2|)-mode, so we refer to the latter
for simplicity in the following discussion. For the (k1, 0)-mode, the neutral stability
curves are straight lines defined by 2k1

(
ν±1
)1/2
= γ ±

√
γ 2 + 4(β − 1) for parameters

such that the right-hand side is real and positive. Then, if γ 2
+ 4(β − 1) 6 0, these

purely streamwise modes are always linearly or neutrally stable. If β > 1, there
is linear instability for the (k1, 0)-mode in the region ν1 < ν+1 , and if β 6 1 and
γ 2
+ 4(β − 1)> 0, there is a band of instability in the interval ν−1 < ν1 < ν

+

1 , where
ν±1 are

ν±1 =
γ 2
+ 2(β − 1)± γ

√
γ 2 + 4(β − 1)

2k2
1

. (4.15)

Similarly for the purely transverse (0, k2)-mode, equation (4.14) gives the straight line
neutral curves defined by 2k2

(
ν±2
)1/2
= γ ±

√
γ 2 − 4, and it follows that we have

linear or neutral stability for γ 6 2, while for γ > 2 there is a strip of linear instability
in the ν2−interval

γ 2
− 2− γ

√
γ 2 − 4

2k2
2

< ν2 <
γ 2
− 2+ γ

√
γ 2 − 4

2k2
2

. (4.16)

Hence γ 6 2 is precisely the condition we need to impose in order to study (4.7)
for any domain dimensions; this ensures that the y-modes are always damped, except
for γ = 2, when these modes can be neutrally stable at distinct values of L2. This
restriction on γ translates back to the requirement that

We 6
(

2 cot θ
C

)1/2

. (4.17)

This condition does not imply that the mixed Fourier modes are also linearly stable.
Finding the neutral stability curves can be done analytically, but the determination of
the number of unstable modes in each instability region is best done numerically in a
straightforward manner; for particular values of the parameters β and γ , the regions
of stability in the ν1–ν2 plane are quite complicated. Recall that β = 1 corresponds to
taking the critical Reynolds number for the flow, Rec = 5 cot θ/4, with β < 1 (β > 1)
being subcritical (supercritical). For the subcritical case, we will show numerical
simulations for β = 0.01 and β = 0.5, and for the supercritical case we compute
with β = 2. The linear stability regions for these values of β, along with the critical
case β = 1, are shown in figure 2 with the maximum allowable electric field strength
γ = 2. This value of γ gives unstable wavenumbers for all values of β > 0, hence the
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FIGURE 2. (Colour online) Linear stability regions for γ = 2 and a range of Reynolds
numbers. The number of unstable modes within regions in the ν1–ν2 plane is displayed,
where we have only counted the pairs or quartets of modes as one. The diagonal lines
correspond to ν1 = ν2 along which we perform numerical simulations.

dynamics for small subcritical Reynolds numbers is non-trivial on sufficiently large
domains. Figure 2(a) has a relatively small value with β = 0.01, and shows distinct
behaviour from the other cases in panels (b–d); there are regions of linear stability
(no unstable modes depicted with white) in-between regions of linear instability. A
subcritical Reynolds number, corresponding to β < 1, is a necessary condition for the
existence of such stable regions, but is not sufficient, as can be seen from the results
in figure 2(b) for β = 0.5. As expected, the number of unstable modes increases
as ν1 and ν2 decrease (analogous to the domain size increasing). Note also that in
the figure, due to the symmetries of the dispersion relation (4.14), we count the
quartet of unstable modes (k1, k2), (k1, −k2), (−k1, k2), (−k1, −k2) as one, with
obvious special cases when either k1 or k2 are zero. Regions in parameter space
where there are no unstable modes give solutions of (4.7) that decay to the trivial
zero solution, as can be shown analytically. An energy equation giving the evolution
of the L2-norm of η may be constructed by multiplying (4.7) by η, and integrating
over Q. The resulting equation has no contribution from the nonlinear term due to
the periodic boundary conditions. From this, it may be observed that if s(k̃) < 0
for all non-zero k ∈ Z2, an exponentially decaying bound on the L2-norm of η is
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obtained. Maximum exponential growth rates may be obtained in a similar way. For
subcritical Reynolds number flows, β < 1, with the condition that the electric field
strength is sufficiently weak, γ < 2(1 − β)1/2, all Fourier modes are linearly stable
for any choice of length parameters, and hence all solutions decay to zero. The
case of γ = 2(1 − β)1/2 for a subcritical flow corresponds to the critical electric
field strength identified by González & Castellanos (1996) for the one-dimensional
equation (1.1) (where the − is taken), above which the flat film solution becomes
unstable for sufficiently large domain lengths. For other choices of β and γ , unstable
wavenumbers may not be attained by the discrete spectrum, thus there will be a
condition on L1 and L2 to determine whether the solution decays to zero – this was
discussed for the one-dimensional equation by Tseluiko & Papageorgiou (2006b),
however it is more complicated for our two-dimensional problem and does not add
to our exposition. Nevertheless, for β 6 1 and γ > 2(1− β)1/2, or for β > 1, the first
bifurcation can be shown to always occur at

L1 =
4π

γ +
√
γ 2 + 4(β − 1)

(4.18)

when the (1, 0)-mode first becomes linearly unstable. However, the flow may stabilise
again as observed in figure 2(a).

4.3. Numerical method
We now move on to a numerical study of (4.7) on Q-periodic domains for which we
use the Fourier series representation of the solution,

η(x, t)=
∑
k∈Z2

ηk(t)eik̃·x, (4.19)

where η−k is the complex conjugate of ηk since η is real-valued. We denote the norm
and inner product on the space L2

= L2
per(Q) as

|η|2 =

(∫
Q
η2 dx

)1/2

= |Q|1/2
(∑

k∈Z2

|ηk|
2

)1/2

, 〈η, u〉2 =
∫

Q
ηu dx= |Q|

∑
k∈Z2

ηku−k,

(4.20a,b)
respectively, where |Q| = L1L2. We utilise a second-order implicit–explicit backwards
differentiation formula (BDF) method which belongs to a family of numerical schemes
constructed by Akrivis & Crouzeix (2004) for a class of nonlinear parabolic equations
under appropriate assumptions on the linear and nonlinear terms. They considered
evolution equations of the form

ηt +Aη=B(η), (4.21)

where A is a positive definite, self-adjoint linear operator, and B is a nonlinear
operator which satisfies a local Lipschitz condition. It was shown that these numerical
schemes are efficient, convergent and unconditionally stable. For our consideration of
(4.7), we have

Aη= (β − 1)ηxx − ηyy + γ1R(η)+∆2η+ cη, B(η)=−ηηx + cη, (4.22a,b)

where the constant c is chosen to ensure that A is positive definite (see appendix A).
It follows simply that the linear operator R is self-adjoint in L2, and thus A is also a
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self-adjoint linear operator. The local Lipschitz condition for the nonlinear operator B
is proved by Akrivis et al. (2016) and therefore the linearly implicit methods derived
by Akrivis & Crouzeix (2004) are good candidates and are used for our problem.

Let Hn be the approximation of the solution η at time n1t for time step 1t and
n ∈ N obtained by splitting the spatial domain Q into M × N equidistant points,
and let Ã and B̃ be the discretisations of A and B, respectively. Taking H0 as the
discretisation of the initial condition η0, we employ one step of the implicit Euler
method as a starting approximation,

H1
+1tÃH1

=H0
+1tB̃(H0), (4.23)

and then use the second-order implicit–explicit BDF scheme

3
2

Hn+2
+1tÃHn+2

= 2Hn+1
−

1
2

Hn
+ 21tB̃(Hn+1)−1tB̃(Hn). (4.24)

We take the discrete Fourier transform of these equations, denoted by F , and solve
the resulting equations in Fourier space. Let Â be the discretisation of the operator
A in Fourier space, it is a matrix operator with

Âk =−(β − 1)k̃2
1 + k̃2

2 − γ (k̃
2
1 + k̃2

2)
3/2
+ (k̃2

1 + k̃2
2)

2
+ c, (4.25)

so that
F(Ã(Hn))k = ÂkĤn

k, (4.26)

where Ĥn is the discrete Fourier transform of Hn. The discrete Fourier transform of
the nonlinear operator B is given by

F(B̃(Hn))k =−
ik̃1

2
F((Hn)2)k + cĤn

k . (4.27)

Taking the discrete Fourier transform of (4.23) and (4.24), for the implicit Euler step
we obtain

Ĥ1
k =

Ĥ0
k +1tF(B̃(H0))k

1+1tÂk
, (4.28)

and for the second-order BDF steps

Ĥn+2
k =

4Ĥn+1
k − Ĥn

k + 41tF(B̃(Hn+1))k − 21tF(B̃(Hn))k

3+ 21tÂk
. (4.29)

The initial conditions with zero spatial average used in our numerical simulations are

η0(x)=
20∑

|k|∞=1

ak cos(k̃ · x)+ bk sin(k̃ · x), (4.30)

where the coefficients ak and bk are random numbers from the interval (−0.05, 0.05).

4.4. Numerical results
We do not carry out an exhaustive computational study of the dynamics as the lengths
L1 and L2 vary independently, due to the large number of runs required producing a
significant amount of data to be analysed. Instead, we restrict our attention to square
periodic domains by setting L1 = L2 = L, or equivalently ν1 = ν2 = ν. For subcritical
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Reynolds numbers we take β = 0.01 and β = 0.5, and as noted previously, these
have very different linear stability regions as seen in figure 2(a,b). For supercritical
Reynolds numbers (the dynamics is non-trivial even in the absence of a field with
γ = 0) we take β = 2, and provide a qualitative description of the dynamics as γ
is increased. We will examine the attractor windows of dynamical behaviours in the
bifurcation parameter L (and ν also), in particular obtaining wave formations which
are not dominated by one-dimensional behaviour. To provide a qualitative description
of solutions to (4.7) and the nature of the attractor, we employ a number of data
analysis tools. We use the L2-norm as a measure of the solution energy, defining

E(t)= |η(t)|2. (4.31)

From this we construct the phase plane diagram for the energy, plotting E(t) against
Ė(t). To construct the Poincaré energy return map, we find the sequence of times
{tn}

N
n=1 when E is at a minimum over a large time interval. We then plot the points

(En,En+1) where En=E(tn). The two-dimensionality of solutions to (4.7) is quantified
by studying the time-averaged power spectrum of solutions, given by

S(k)= |Q| lim
T→∞

1
T

∫ T

0
|ηk|

2 dt (4.32)

for each k ∈Z2. In practice, we approximate S(k) by

S(k)=
|Q|

T2 − T1

∫ T2

T1

|ηk|
2 dt, (4.33)

where 0� T1 � T2 are two large times. Any activity in the mixed Fourier modes
for solutions in the attractor will be made apparent with this diagnostic; if the
time-averaged power spectrum is restricted to the (k1, 0)-modes, then we will call it
one-dimensional, otherwise it is called two-dimensional. The integration times used
were at least 103 time units, and Fourier modes of magnitude as small as 10−15 were
retained. The time steps used for numerical simulations were 10−4 or smaller; for
larger values of β and γ , smaller time steps are required to obtain good convergence
(for a convergence analysis of the same scheme applied to the Kuramoto–Sivashinsky
equation (1.4), see Akrivis et al. 2016). It is worthwhile to question whether there
are any issues associated with performing numerical simulations at the critical electric
field strength γ = 2. From the form of the nonlinearity in (4.7), the problem for the
transverse modes (y-modes) is linear and decouples. For γ = 2, there exist discrete
values of L2 at which the transverse modes are neutrally stable, otherwise they are
always damped, and so the dynamical behaviour we observe at the endpoint γ = 2
is not a special case, but can be found for γ slightly less than 2. We note that
numerical simulations were also performed for γ > 2, and as predicted by the linear
theory, blow-ups are observed for some domain dimensions; this is not surprising
given that the transverse mode problem decouples as discussed above.

In our presentation of results, we use the following key for the attractor behaviour:

(i) Z denotes an attractor consisting of the trivial zero solution.
(ii) D(k1,k2) denotes a modal attractor (steady or travelling) in which solutions are

dominated by the (k1m, ±k2m)-modes where m ∈ Z. For example, D(2,0) is an
attractor of bimodal states in the streamwise direction with solutions dominated
by the (2m, 0)-modes.

(iii) TP denotes a time-periodic attractor (more specific details of these will be given
where appropriate in the following discussion).
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FIGURE 3. Schematic of the attractors for β = 0.01, γ = 2.
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FIGURE 4. (Colour online) Profiles of solutions in D(1,0) and D(1,1) for β = 0.01, γ = 2.

(iv) A denotes a range of attractors with complicated dynamical behaviour, including
period-doubling bifurcations, multimodal steady or travelling waves, time-
periodic/quasi-periodic attractors, periodic bursting and chaotic attractors.

For the attractors denoted by TP or A, a subscript 1 or 2 indicates whether the
attractor dynamics is dominated by one or two-dimensional behaviour, respectively.
It is important to note that due to the Galilean transformation (4.1b) that is used
to remove an advective term, all steady states correspond to travelling waves in the
original frame of reference.

4.4.1. Small subcritical Reynolds number, β = 0.01
For β = 0.01 and γ < 2

√
0.99 ≈ 1.9900, we have decay of all solutions to zero

for arbitrary initial conditions, and so we concentrate on the case of γ = 2. The
linear stability regions for this choice of γ are depicted in figure 2(a), and following
the line along which the numerical results are obtained (ν1 = ν2), initially there is
alternation between linear stability and instability. Figure 3 was constructed from a
large number of numerical experiments to collect a broad, qualitative description of
the solution attractors. As L increases, the (1, 0)-mode becomes linearly unstable
first at L = 5.7, and an attractor of one-dimensional unimodal steady states and
travelling waves is observed (these are analogous to solutions observed for other
Kuramoto–Sivashinsky-type equations). An example of such a profile from this
unimodal D(1,0) window is given in figure 4(a). Increasing L further to 7.0, the
(1, 0)-mode then becomes stable again and all initial conditions are attracted to
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FIGURE 5. Schematic of the attractors (not drawn to scale) for β = 0.5, γ = 1.5, 2.

the zero solution – see the schematic in figure 3. This process is repeated when
the (1, 1)-mode is destabilised at L = 8.3, and diagonal unimodal steady states
and travelling waves are observed, dominated by the (k, k)-modes or (k, −k)-modes
depending on the initial condition. Figure 4(b) shows an example of a solution profile
in the attractor of type D(1,1). As before, a region of linear stability in all Fourier
modes is then reached at L= 9.6, and this persists until L= 11.4. Increasing L further,
we find an increasingly complicated sequence of attractors. For L between 11.4 and
15.4, at most three modes are linearly unstable – the (2, 0), (1, 2) and (2, 1)-modes.
Initially, increasing L above 11.4, we see time-periodic and quasi-time-periodic
attractors with homoclinic bursting behaviour, where the profile switches between
an odd pair (under the parity transformation) of bimodal states through a short
two-dimensional pulse transition period (see supplementary movie 1 available at
https://doi.org/10.1017/jfm.2017.250 for a time-periodic solution). Beyond L = 13.6,
the (1, 2)-mode dominates and we observe a window of the attractor D(1,2). For L
above 14.7, we mostly find attractors of homoclinic bursting behaviours with long
burst times – we observed burst times of O(103) time units. All modes become
linearly stable again at L= 15.4, and non-trivial behaviour is not found until L= 16.6
when the (2, 2)-mode becomes unstable and a D(2,2) solution emerges. For L above
18.7, the dynamics becomes increasingly complicated (see supplementary movie 2 for
a quasi-time-periodic solution exhibiting homoclinic bursting behaviour for L= 18.85,
where the interface undergoes transitions between a pulse state and a ‘snaking’
transverse wave). Finally, fully chaotic behaviour is found for sufficiently large L.

4.4.2. Moderate subcritical Reynolds number, β = 0.5
Having considered small inertia effects, we now turn to larger values of β, but still

in the subcritical regime. We pick β = 0.5, in which case we have decay of all initial
conditions to the trivial zero solution for γ <

√
2≈ 1.4142. Thus, we will investigate

the cases γ = 1.5 and 2 – the linear stability regions for β = 0.5, γ = 2 are displayed
in figure 2(b). The figure shows clearly that in contrast to the smaller inertia case β=
0.01, there are no regions of stability after the first mode becomes linearly unstable,
and hence non-trivial dynamics is expected throughout as L increases (this can also
be observed for γ = 1.5, except at the discrete value of L1 = 4π). This is confirmed
by the results of figure 5, which depicts the most attracting states as L increases for
γ = 1.5 and 2.

For γ = 1.5, the zero solution loses stability to the (1, 0)-mode when L exceeds
2π, and a window of unimodal D(1,0) states emerges. Note that according to linear
theory, the (1, 0)-mode becomes stable at L = 4π, and for L > 4π the (2, 0)-mode
loses stability. At L= 4π, we find a Hopf bifurcation with a time-periodic, spatially

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

25
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.250
https://doi.org/10.1017/jfm.2017.250


72 R. J. Tomlin, D. T. Papageorgiou and G. A. Pavliotis

0
22 44 6

6 8
8 10

10
12

12
14

14
16

16
18

18

0
22 44 66 8

8 10
10 12

12 14
14 16

16
18

18

0
–4

0
4

–4

0
5

5 10
10 15

15
20

20

0
55 10

10 15

15
20

20

(a) (b)

0
–4

(d)

0
–4

(c)

x
y

x
y

x
y

x
y

FIGURE 6. (Colour online) Window A2, β = 0.5, γ = 2.

one-dimensional TP1 solution emerging until L=14.3 – these solutions are homoclinic
bursts with long-lived D(2,0) solutions undergoing time-periodic oscillations through
unimodal D(1,0) states (burst times are around 300 time units for values of L away
from the boundary of this window). The next attractor window, 14.3 < L < 17.8,
contains bimodal D(2,0) states that in turn lose stability via a Hopf bifurcation to
time-periodic solutions (no homoclinic bursting) in the window 17.8 < L < 18.7.
The strong one-dimensionality persists in the window 18.7 < L < 34.4 and complex
dynamics including trimodal steady states and chaotic bursting are found. Beyond
this, the mixed modes remain active in chaotic solutions, and are characterised by the
presence of small deformations on the usual cellular one-dimensional chaotic profiles.

The dynamics for γ = 2 is much more interesting. As the strength of the
destabilising electric field is increased, the more complicated dynamics appears
for lower values of L. There is also a change in the attractor windows observed,
with increased and persistent two-dimensionality due to the electric field intensifying
the instability in the mixed modes. As summarised in figure 5, beyond L = 3.7 we
observe a window of unimodal states as before, but the next window between L= 7.1
and L = 7.3 exhibits two-dimensional time-periodic behaviour (see supplementary
movie 3). The time-periodic solutions become less attractive as L increases, and
in the window 7.3 < L < 7.6 they give way to diagonal modal D(1,1) states similar
to those obtained for β = 0.01, γ = 2, shown in figure 4(b). Between L = 7.6 and
10.2, we observe a window of two-dimensional time-periodic homoclinic bursting
behaviour (labelled TP2 on figure 5), while for L = 10.2 onwards we find a range
of very interesting fully two-dimensional solutions before the onset of chaos. Several
solutions from this range are depicted in figure 6. Panel (a) shows the profile of
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FIGURE 7. Schematic of the attractors for β = 2, γ = 0, 0.5, 1, 1.5, 2.

a quasi-periodic solution at L = 19.0; the underlying pulse structures travel in the
x-direction and modulate weakly, but otherwise retain their shape and coherent details
(see supplementary movie 4 of which figure 6a is a snapshot). Figure 6(b–d) shows
profiles of steady solutions at L= 19.7, 21.0 and 22.2. All three of these are stable
in the sense that they are computed from initial value problems that reach steady
states. Panel (b) corresponds to a solution in the attractor D(2,3), while panel (c)
displays a rather unusual ‘snaking’ steady state (reminiscent of the quiescent state
of the homoclinic bursting solution shown in supplementary movie 2). The profile in
panel (d) is found to be similar to that of panel (b), but has a pulse disturbing the
structure; the pulse has dimensions analogous to those in panel (a) and hence we
can conclude that there is an interplay between different attractors producing quite
intricate two-dimensional interfacial steady states.

4.4.3. Supercritical Reynolds number, β = 2
For β = 2, we have non-trivial dynamics for all values of γ and for sufficiently

large domain lengths; thus, to obtain a picture of the dynamics as the electric field
increases we consider the cases γ = 0, 0.5, 1, 1.5 and 2. The linear stability regions
for γ = 2 (and β = 2) have been given earlier in figure 2(d). Extensive computations
were undertaken to construct a solution phase diagram as before, and this is given in
figure 7. For brevity, we will not go into the details of these windows, but note that,
with the exception of γ = 0 and 2, the same sequence of attractors is observed as L
increases (and the same as was observed for the one-dimensional equation (1.1) in the
supercritical case by Tseluiko & Papageorgiou 2006b), this is

Z→D(1,0)→ TP1/2→D(2,0)→ TP1→ A2. (4.34)
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FIGURE 8. (Colour online) Representative profiles from the A2 windows for β = 2. Panel
(a) shows the profile of a travelling wave, and (b) a steady state in the A2 windows for
the values of γ = 1.5 and 2, respectively. The values of L are 9.5 and 10.0, respectively.

The first time-periodic window exhibits homoclinic bursting behaviour, and the
dynamics transitions from one to two-dimensional within the window. The second
time-periodic window exhibits one-dimensional dynamics, and the time periodicity is
not of bursting type. Note also that this sequence of windows is similar to that found
in other cases (see figure 5, for instance, for β = 0.5). For γ = 0, we do not observe
a transition from one to two-dimensional in the first time-periodic window, and for
γ = 2, we observe a second window of unimodal states after the first two-dimensional
time-periodic window. All of the windows labelled A2 contain the usual complicated
range of dynamics, eventually entering chaotic regimes as L increases further. Figure 8
gives examples of the fully two-dimensional interfacial dynamics supported in the A2

windows; panel (a) shows the profile of a wave travelling at an oblique angle for
γ = 1.5, and panel (b) shows a steady state for γ = 2.

Finally, we briefly discuss the qualitative effect of introducing an electric field
to a dynamical regime that is already chaotic. For chaos to arise in the absence of
an electric field, we require a supercritical Reynolds number that already provides
complex dynamics on periodic domains of sufficiently large lengths. We take L= 30
so that chaotic dynamics is seen in the absence of a field, i.e. γ =0. Figure 9(a) shows
a snapshot of the chaotic solution for this case, the interfacial profile remains strongly
one-dimensional throughout the evolution. In the results depicted in figure 9(b–e), the
electric field parameter is increased to γ = 0.5, 1, 1.5 and 2, respectively. The flow
remains chaotic as expected, and the snapshots shown indicate that the field has
a crucial effect in introducing two-dimensionality into the interfacial fluctuations.
The introduction of the field also increases the number of cellular structures, their
amplitude, and the energy of the solutions defined by (4.31). A more complete
presentation of the time evolution and dynamics of solutions in this regime can be
found in supplementary movie 5. The movie is constructed by increasing γ after
intervals of 20 time units, explicitly we take

γ (t)=


0 if 0 6 t< 20,
1 if 20 6 t< 40,
2 if 40 6 t< 60.

(4.35)
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FIGURE 9. (Colour online) Profiles of solutions in the chaotic regime for β= 2, L= 30.0.

We find that a strengthening of the electric field increases the frequency of the chaotic
oscillations of the energy E(t), as well as the amplitude of the solution (the average
energy increases from approximately 40 to 100, and then to approximately 240, as
γ increases from 0 to 1, and finally to 2 as described above). In the interval 20 6
t < 40, we observe approximately seven oscillations of E(t), whereas increasing to
γ = 2 in the interval 40 6 t < 60 produces roughly 20 oscillations. These results
show that even for supercritical Reynolds numbers where there is already instability
in the x-direction without an electric field effect, the transverse dynamics is non-trivial
and not dominated by one-dimensional behaviour upon the introduction of the electric
field.
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5. Conclusions and future directions

We derived a long-wave Benney model (3.17) that describes three-dimensional long-
wave dynamics of a gravity-driven thin film flow under the action of a normal electric
field. For overlying films, the weakly nonlinear evolution is found to be governed
by a Kuramoto–Sivashinsky equation (4.7) with a linear non-local term corresponding
to the electric field. Solutions to this equation are bounded only if the electric field
strength is below a threshold value – otherwise, unbounded exponential growth of
the transverse modes cannot be prevented (as is the case for hanging films). The
critical electric field strength is set by the condition that all purely transverse modes
are linearly stable; mixed modes can still be unstable however, and hence produce
non-trivial nonlinear two-dimensional phenomena. The present study has documented
numerically a host of dynamical behaviours of solutions to (4.7) on periodic domains
as the system size changes (a more in-depth study of the solution space is beyond the
scope of the present work).

An important question to pose is, what happens when the electric field strength
is above critical, We > (2 cot θ/C)1/2, and/or the film is hanging? In this case, the
weakly nonlinear analysis breaks down (η does not remain O(1)), and hence we
need to revert to the fully nonlinear Benney equation (3.17). Current work on this
problem by the authors suggests that transverse structures form that are connected by
thin film regions with dewetting being possible, for both hanging and overlying films
– the results will be presented elsewhere. We have also tried to retain higher-order
terms in the weakly nonlinear evolution in an effort to investigate whether structural
stability can be attained with bounded solutions emerging. We find that this does
not happen, and in fact, even more instabilities can enter, resulting in enhanced
ill-posedness, something that is not unusual in gradient expansions. An additional
direction with practical applications, involves using feedback control to stabilise the
two-dimensional solutions either to the flat state or a predetermined non-uniform
state. This is particularly interesting in parameter regimes where the model predicts
unbounded growth. The authors are currently studying such control strategies, building
on the one-dimensional work of Thompson et al. (2016) and Gomes, Papageorgiou
& Pavliotis (2017).

Finally, it is important to point out that (4.7) supports pattern formation phenomena
and derives directly from an asymptotic analysis of the Navier–Stokes equations
coupled with electrostatics. It is therefore of intrinsic interest as a pattern-forming
two-dimensional evolution equation in analogous ways to the Swift–Hohenberg
equation (Swift & Hohenberg 1977).
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Appendix A. Estimates for numerics
We now derive a condition on c to ensure that the operator A defined in (4.22a) is

positive definite on L2. Firstly, by Cauchy–Schwarz and integration by parts,

〈Aη, η〉2 = −(β − 1)|ηx|
2
2 + |ηy|

2
2 + γ 〈R(η), 1η〉2 + |1η|22 + c|η|22

> −β|ηx|
2
2 − |ηy|

2
2 − γ |1η|2|R(η)|2 + 1

2 |1η|
2
2 +

1
2
|ηxx|

2
2 +

1
2 |ηyy|

2
2 + c|η|22.

(A 1)

From the Fourier symbol of R, it follows that

|R(η)|2 =
√
|ηx|

2
2 + |ηy|

2
2 6 |ηx|2 + |ηy|2, (A 2)

and Young’s inequality gives

|ηx|
2
2 6

1
2ε1
|η|22 +

ε1

2
|ηxx|

2
2, |ηy|

2
2 6

1
2ε2
|η|22 +

ε2

2
|ηyy|

2
2, (A 3a,b)

γ |1η|2|ηx|2 6
ε3

2
|1η|22 +

γ 2

2ε3
|ηx|

2
2, γ |1η|2|ηy|2 6

ε4

2
|1η|22 +

γ 2

2ε4
|ηy|

2
2, (A 3c,d)

for any ε1, ε2, ε3, ε4 > 0. Then, using these with (A 1) yields

〈Aη, η〉2 >

(
c−

β

2ε1
−

1
2ε2
−

γ 2

4ε1ε3
−

γ 2

4ε2ε4

)
|η|22 +

(
1
2
−
βε1

2
−
γ 2ε1

4ε3

)
|ηxx|

2
2

+

(
1
2
−
ε2

2
−
γ 2ε2

4ε4

)
|ηyy|

2
2 +

(
1
2
−
ε3

2
−
ε4

2

)
|1η|22. (A 4)

Taking

ε1 =
1

β + γ 2
, ε2 =

1
1+ γ 2

, ε3 = ε4 =
1
2
, (A 5a−c)

ensures that all the brackets preceding norms of derivative terms in (A 4) are zero. So
to ensure that A is positive definite, it is sufficient to take

c>
β

2ε1
+

1
2ε2
+

γ 2

4ε1ε3
+

γ 2

4ε2ε4
=

1
2
[(β + γ 2)2 + (1+ γ 2)2]. (A 6)
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