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ON SIEVED ORTHOGONAL POLYNOMIALS II: 
RANDOM WALK POLYNOMIALS 

JAIRO CHARRIS AND MOURAD E. H. ISMAIL 

1. Introduction. A birth and death process is a stationary Markov 
process whose states are the nonnegative integers and the transition 
probabilities 

(1.1) pmn(t) = Pr{X(t) = n\X(0) = m) 

satisfy 

(1.2) Pm„(t) = 
Pmt + 0(/) n = m + 1 
8mt + 0(0 n = m - 1 
1 — 08m + Sm)t + o(0 n = m, 

as / —> 0. Here we assume /?n > 0, 8n + 1 > 0, « = 0, 1,. . . , but ô0 ^ 0. 
Karlin and McGregor [10], [11], [12], showed that each birth and death 
process gives rise to two sets of orthogonal polynomials. The first is the set 
of birth and death process polynomials {Qn(x) } generated by 

Ôo(*) = 1> Gi(*) = (A) + «b " ^Vi8o, 

« > 0. 

In this case there exists a positive measure da supported on [0, oo) such 
that 

/ ; 

oo 

Qn(x)Qm(x)da(x) = 8mn/iTn, m, n = 0, 1,. . . 
o 

holds where 

•un = / y j , . . . p„-l/{sls2... 8„), « > o, «o = l. 
The second set is the set of random walk polynomials. They arise when 
one studies a random walk on the state space. The random walk 
polynomials {Rn(x) } satisfy the recursion 

(1.3) xRn(x) = BnRn + x(x) + AA- i (* )> n > 0 

and the initial conditions 
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(1.4) R0(x) = 1, /?,(*) = X/BQ, 

with 

(1.5) Bn = B„/(Bn + 8n), Dn = 8n/(B„ + 8„). 

Clearly Bn + Dn = 1. The random walk polynomials are orthogonal with 
respect to a positive measure supported in [— 1, 1]. In fact 

(1.6) 

where 

/ - . * » ,{x)Rn(x)dR(x) = A„8„ 

(1.7) A0 = l, An = {DlD2...Dn}/{B0Bl...B„_]), n > 0. 

The ultraspherical (Gegenbauer) polynomials {Cn(x) } are random walk 
polynomials with 

(1.8) Bn = l-(n + \)/(n XI Dn = l-(n + 2X \)/(n + A), 

( [15] and [17] ). On the other hand the random walk polynomials 
associated with 

(1.9) Bn = ±(n + 2X)/(n X), Dn = -n/(n + A), 

are {n\Ck
n(x)/(2X)n}, where 

(1.10) (a)0 = 1, (a)w = a(o + 1) (a + « - 1), « > 0. 

Al-Salam, Allaway and Askey [1] observed that two limiting cases of the 
Rogers continuous ^-ultraspherical polynomials, [2], [4], are interesting. In 
both cases q approached exp(2<ni/k), k is a given positive integer, k > 1. 
This led them to define the sieved ultraspherical polynomials of the first 
kind by 

( l . n ) 

cx
0(x; k) 1, c\x; k) = x, 

(m + 2\)cA
mk+l(x; k) = 2x(m + \)cA

mk(x; k) 
~ »»<£,*_i(x; k), m > 0, 

4 + 1 ( x ; k) = 2xcx
n(x; k) - c^_,(x; k), k{ n, n > 0 

and the sieved ultraspherical polynomials of the second kind via 

B^ix; k) = 1, Bx(x; k) = 2x, 

(1.12) mBx
mk(x; k) = 2x(m + A ) ^ _ , ( x ; k) 

- (m + 2\)Bx
mkJx; k), m > 0 

££+,(*; it) = 2xBx(x; k) - 2**_,(;c; it), A: j n + 1, n > 0. 

In this work, we generalize the sieved ultraspherical polynomials to a 
fairly large class of random walk polynomials. This is done by starting 
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RANDOM WALK POLYNOMINALS 399 

with a set of random walk polynomials {Rn(x) } satisfying (1.3) and (1.4). 
We shall also assume that k > 1 is a given integer and 

(1.13) Bn + Dn = l9 0<Bn< In = 0, 1, . . . . 

The sieved random walk polynomials of the first kind are generated by 

(1.14) r0(x) = 1, rx(x) = x, 

xrn(x) = dn_xrn + x(x) + bn_xrn_x(x), n > 0, 

while the sieved random walk polynomials of the second kind are defined 
recursively by 

(1.15) s0(x) = 1, sx(x) = 2x, 

xsn(x) = 
lOO + dnSn-\(X\ n > °> 

where 

(1.16) bn = dn=
l- ilk\n+\,bnk_x=Bn^,dnk_x=Dn_x. 

In particular, when Bn, Dn are defined by (1.9), Rn(x) = Cn(x), the rw's 
and sn's are essentially the cn

9s and ^ ' s of Al-Salam, Allaway and Askey. 
We shall establish explicit formulas and generating functions for rn(x) and 
sn(x) in terms of Rn(x) and the Chebyshev polynomials, see (2.3), (2.5), 
(2.6), (3.4) and (3.5). In Section 4 we shall show that such formulas hold 
only for random walk polynomials. In Section 5 we shall show how to 
compute the Stieltjes transform of the distribution (spectral) function of 
{rn(x) } from the asymptotics of the random walk polynomials {Rn(x) } 
and their duals {Sn(x) }. The dual polynomials {Sn(x) } are the random 
walk polynomials 

(1.17) S0(x) = 1, S{(x) = x/DQ, xSn(x) = DnSn + x(x) + BnS„^(x). 

Karlin and McGregor [11] studied random walk polynomials {Rn(x) } 
when 8n = n and (in = b. Carlitz [6] was generalizing earlier work of 
Tricomi and independently discovered the same set of polynomials at the 
same time. Chihara [7] calls them the Tricomi-Carlitz polynomials but we 
shall call them the Carlitz-Karlin-McGregor (CKM) polynomials and 
denote them by {rn(x\ b) }, as in [3]. They are recursively defined by 

^" ; \ x(n + b)rn(x; b) = brn + x{x\ b) + nrn_x(x\ b), n ^ 0. 

Carlitz proved their orthogonality using Euler's identity 

(1.19) é° = 1 + a 2 ( a H) (ze-y, 
n = \ n\ 
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but Karlin and McGregor used probabilistic methods to compute their 
distribution function. Their orthogonality relation is 

oo oo 

(1.20) 2 °,rm(x-; b)rn(x:\ b) + 2 °fm(-xj9 b)rn(-x; b) = hn8 

where 

(1.21) a- = b-^(b +jy~lexp(b +j), hn = n\bX-n/(b + n). 

These remarkable polynomials are discrete analogues of the Hermite 
polynomials and their distribution function is a step function (with 
infinitely many steps) that approximates the integral 

/ 

x
 9 

exp(-rW/. 
To see this let 

(1.22) qn(x) = {lb)nl\{x^Vb\ b\ 

It is easy to see that q0(x) = 1, qx(x) = 2x and 

2x(\ 4- n/b)qn(x) = qn + \(x) + 2nqn__x(x\ 

which when compared with 

H0(x) = 1, Hx(x) = 2x9 2xHn(x) = Hn + X{x) + 2nHn^(x)9 

[15, page 188], shows that 

lim qn(x) = Hn(x)9 
b-*oo 

hence 

(1.23) lim {2b)nllrn{x^/2lb\ b) = Hn(x). 
b^oo 

In Section 6 a sieved analogue of the CKM polynomials will be 
introduced. We apply the results of Section 3 and 5 to obtain explicit 
formulas and generating functions for the sieved CKM polynomials. We 
then apply Theorem 5.1 and compute the distribution function of the 
sieved CKM polynomials. 

2. Sieved polynomials of the second kind. Recall that these polynomials 
satisfy (1.15) and (1.16). We shall adopt the convention 

(2.1) £/_,(*) = R_}(x) = 0. 

The elementary trigonometric identity 

(2.2) Un(x) = Un_2(x) + 2Tn(x) 
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will be used repeatedly. We now prove: 

THEOREM 2.1. The explicit representations 

(2.3) snk+l(x) = U^R^T^x)) + Uk_l_2(x)Rn_l(Tk(x)X 

hold for I = 0, 1, . . . , k - 1, n = 0, 1,. . . . 

Proof. Let snk+l(x) denote the right side of (2.3). These sn's clearly 
satisfy the initial conditions in (1.15) so it remains to show that the 
polynomials also satisfy the recursion in (1.15). It is straightforward to 
obtain the recursion 

2xsnk+l{x) = snk+l+x(x) + snk+t_x(x\ I = 0, 1, . . . , k - 2, 

from the recurrence relation 

(2.4) 2xUn(x) = £/„+,(*) + £/„_,(*)• 

This proves the recursion in (1.15) when n = mk + /, / = 1, 2, . . . , k — 2. 
The case 1 = 0 can be similarly proved since (2.4) holds for n = 0 and 

Sl(x) = £//(*), / = 0, 1, . . . , & - 1. 

The case / = k — 1 can be proved as follows. First observe that 

2xsnk+k_x(x) = 2xUk_x(x)Rn(Tk{x)) 

= {Uk(x) + Uk_2(x)}Rn(Tk(x)) 

= 2{Tk(x)+ Uk_2(x)}Rn(Tk(x)), 

in view of (2.2) and (2.4). Now (1.3) and the above relationship yield 

xsnk+k_x{x) = BnRn+x{Tk(x)) + DnRn_x{Tk{x)) 

+ Uk_2(x)Rn(Tk(x)) 

= Bn{Rn+x(Tk(x)) + Uk_2(x)Rn(Tk(x))} 

+ D„{Uk_.2(x)R„(Tk(x)) + R„^(Tk(x))}, 

where we used (1.13). Thus (2.3) holds when n = mk + k — 1. This 
identifies the right sides of (2.3) as the polynomials under investigation 
because both sides satisfy the same second order difference equation and 
the same initial conditions. The proof is now complete. 

COROLLARY 2.2. The sn
9s have the generating function 

(2.5) 2 sn(x)f = 7 ^ ! ! / ' 2 Rn(Tk(x))fK 
n=0 1 — 2xt + t n = 0 

Proof We have 
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oo k — 1 oo 

2 s„(x)t» = 2 / 2 tmksmk+l(X) 
n=0 / = 0 m=0 

A - — 1 OO 

= 2 / 2 t"k[U,(x)R„(Tk(x)) 
1=0 «=0 

+ Uk_l_2(x)Rn_](Tk(x))} 

k—\ oo 

/=0 «=0 

= the right side of (2.5), 

after some simplification, where we used 

k-\ 

2 /*{£/,(*) + ^ - / - 2 ( x ) } 
/=o 

= {1 - 2^Tk{x) + ^ } / { ] - 2xr + f2}. 

This completes the proof. 

When Rn(x) = C*+ 1(JC), the £„'s and Dn's are given by (1.8) with X 
replaced by X + 1 and {sn(x) } reduces to [Bn(x; k) }. In this case (2.5) 
gives 

oo 

2 BX„(x; k)f = {1 - 2tkTk{x) + tk}~x/(\ - 2xt + t \ 
,1=0 

Of [1]. 

Note that in the process of proving Corollary 2.2 we actually proved 

COROLLARY 2.3. The generating relations 
oo oo 

(2.6) 2 snk+l(x)tn = {!/,(*) + ^ - / - 2 ( * ) } 2 Rn{Tk(x))t\ 
w=0 n=0 

hold for I = 0, l, . . . ,Jfc - 1. 

It is easy to show that 

COROLLARY 2.4. L<?/ 

(2.7) £y = cos(77///c), 7 = 0, l , . . . , / c , 

(2.8) *„*+*_,«,-) = 0, y = 1 , 2 , . . . , * - 1. 
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A change of variable in (1.6) gives the following corollary: 

COROLLARY 2.5. The polynomials {snk+k_](x) } satisfy the orthogonality 
relation 

Let the orthogonality relation of {s„(x) } be 

(2.10) J _ l ^ (x> w (x)Ja(x) = \„ôm„, A0 = *• 

It is easy to see that 

(2.11) Xn = {dld2...dn)/{b()bl...bn_,}, « > 0 , A o = l . 

where the bn
9s and d„'s are as in (1.16). We now rewrite (2.3) in terms of 

the orthonormal polynomials. This will be more convenient because the 
spectral properties of a set of orthogonal polynomials depend on 
the asymptotic behavior of the orthonormal polynomials. See [17], [8], and 
[13]. The relationships (1.6) and (2.10) imply 

(2.12) Xnk+l = D0An/Dn, K k - l , Kk+k-x = 2/>0A„, 

and we apply (2.3) to obtain 

(2.13) to^= JKUl{x)
Rn^^J 

= W ^IK-^J , 

vKk+i Do VK 

ifO ^ l < k - 1, and 

(2 14) s^^-k-\(x) _Uk^x(x)Rn(Tk(x)) 

Vhk+k-\ V^o VK 

The following lemma will be very useful. 

LEMMA 2.6. Let {pn(x) } be orthonormal with respect to the positive 
measure d\p(x). The measure d\p(x) has a discrete mass at x = £ if and only 

if 

OO 

when the corresponding moment problem is determined. 

The above lemma is Corollary 2.6, pages 45-46 in [16]. 

THEOREM 2.7. If x = Tk(^) is a mass point of dR then i- supports a mass 
of do. 

https://doi.org/10.4153/CJM-1986-020-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-020-x


404 J. CHARRIS AND M. E. H. ISMAIL 

Proof. The moment problem is determined because the support of both 
dR and do lie in [— 1, 1]. In view of Lemma 2.6 we only need to establish 
the convergence of 

oo 

The convergence of the series follows from (2.13), (2.14), Schwartz 
inequality and the fact that both Bn and Dn lie between zero and one, and 
the proof is complete. 

The following converse to Theorem 2.7 follows trivially from (2.14). 

THEOREM 2.8. Assume that x = £ ¥* £'•, j = 0, 1, . . . , k, supports a 
discrete mass of do, then Tk{%) supports a mass of dR. 

The situation when x = L is a mass point is covered by the following 

THEOREM 2.9. Ifx = £y supports a discrete mass of do then Tk(£j) (which 
is ± 1) does not support a discrete mass dR. 

Proof. Since dR is symmetric it suffices to consider £2/, so 

W = i. 
Now (2.3) implies 

(2.15) snk+l(iy) = U,(£y)[R„(l) - *„_ , (1) ] . 

The recurrence relation (1.3), when written in the form 

B„[Rn + l(l) - Rn(l)] = Dn[Rn(\) - Rn.x{\)], 

and then iterated, leads to 

(2.16) Rn(\)-R„_x(\) = Df'--'I^-\ n>0. 

Now choose I, I < k — 1, such that U[{£2p =£ 0. For this /, the identity 

follows from (2.12), (2.15) and (2.16). The fact do(£) > 0 establishes the 
convergence of the series 

oo 

2 {D0...Dn_l}/{B0...Bn_l}, 
n = \ 

which, when combined with (2.16), shows that 

lim Rn(\) 
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exists and is positive. Furthermore, we get 

lim {D0...D„^)/{B0...B„^} = 0. 
n—>oo 

Finally, the above limit and (1.7) prove that An —» 0 as n —> oo and the 
series 

oo 

2 R2
n(l)/An 

l 

will then diverge, and the proof is complete. 

3. The polynomials of the first kind. We again start with a set of random 
walk polynomials {Rn(x) } satisfying (1.3) and (1.4) and an integer k > 1. 
We also assume (1.13). Define the polynomials of the first kind {rn(x) } 
via 

(3.1) r0(x) = 1, rx(x) = x9 anrn(x) = sn(x) - sn_2(x\ n > 1, 

where 

(3.2) an = 2{d0d{ . . . dn_2}/{bxb2 . . . bn_x), n > 1, a0 = 1, Û1 = 2. 

The reason for the above peculiar choice of an will become apparent 
shortly. 

THEOREM 3.1. The polynomials {rn(x) } satisfy the recursion 

(3.3) xrn(x) = dn_xrn + x(x) + bn_xrn_x(x\ n > 0, 

am/ Z>„ <2«d dn are as in (1.16). 

Proof. Clearly (1.15) and (3.1) give for n > 1, 

~ 4i-2**-3(*) 

= M » + i ^ i ( ^ ) + (K + dn- bn_2}sn_x(x) 

~ dn_2sn_£x\ 
where S-^jt) is interpreted as 0. Observe that (1.13) and (1.16) 
guarantee 

bn + dn = 1, a = 0, 1,. . . . 

Hence, when n > 1, we have 

= *,Ai + l rii+l(*) + ^ - 2 ^ - I * * * - l ( * ) -

The above recurrence relation and (3.2) prove (3.3). 
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Theorem 3.1, (3.1) and the explicit formulas (2.3) imply 

COROLLARY 3.2. The polynomials of the first kind are explicitly given 
by 

(3.4) 
a„k+i(x)rnk+l(x) = 2T,(x)Rn(Tk(x)) 

- 2Tk_l(x)Rn_](Tk(x)),l>0,n i= 0, 
\ ankrnk(x) = R„(Tk(x) ) - R„-2(Tk(x) ), n ^ 0. 

Our next results provide generating functions for {rn(x) }. 

THEOREM 3.3. We have 

(3.5) 1 anrn{x)f = (1 - ^ -^W+f) f ? « ^ ( 7 ; ( x ) ) 
o 1 - 2xt + / w=o 

oo oo 

(3.6) 2 ankrnk(x)f = (1 - ?2) 2 <X(7i(*))-

Proof. From (3.1) we obtain 
oo oo 

2 anrn(x)tn = a0 + ^ + 2 ^ ( x ) - ^ - 2 C * ) ] 
0 2 

oo 

= (i - '2) 2 *„(*)A 
/i = 0 

Now (3.5) follows from the above identity and (2.5). The generating 
function (3.6) immediately follows from the second formula of (3.4). This 
completes the proof. 

4. A characterization theorem. One way of looking at the results of 
Section 2 is the following. We started with a given set of orthogonal 
polynomials {Pn(x) } (the Rn

9s in Section 2) and defined polynomials 

{/>*(*)} by 

(4-1) />„*+/(*) = tf/(*)/i(7i(x)) + Uk.^2(x)Pn^{Tk{x)\ 

n ë 0, 0 ^ / < K 

with P_j(x) = 0. We then required the polynomials {pn(x) } to be also 
orthogonal. As we saw in Section 2 this is always possible when the Pn

9s are 
random walk polynomials. We now show that this is the only possible 
case. 

THEOREM 4.1. The polynomials {pn(x) } and {Pn(x) } are orthogonal if 
and only if {Pn(x) } is a set of random walk polynomials and 80 > 0. 
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Proof. We need only to show that it is necessary for the Pn's to be 
random walk polynomials. Let 

(4.2) xpn(x) = £npn + \(x) + %pn(x) + £npn_x(x\ 

and 

(4.3) xPJx) = BnPn+x(x) + CnP„(x) + DnPn_x(x) 

be the three term recurrence relations satisfied by {pn(x) } and {Pn(x) }. 
The recursion 

IxPnk + lW = Pnk + l-\(x) + Pnk + l-\(x)> ° = l < k ~~ *> 

follows from (4.1) and (2.4). Thus 

t* = £n = \>% = 0 Xk\n + 1. 

On the other hand (2.2) and (2.4) imply 

xpnk+k_x{x) =l-[Uk(x) + Uk_2(x)]Pn(Tk(x)) 

= [Tk(x) + Uk_2(x)]Pn(Tk(x)) 

= BnPn + x{Tk{x)) + [C„ + Uk„2(x)]Pn(Tk(x)) 

+ DnPn_x(Tk(x)) 

= BnPnk+k(x) + [Cn + (1 - Bn)Uk_2{x)\ 

X Pn(Tk(x)) + DnPn_x(Tk(x)), 

where we used (4.1) and (4.3). By equating the coefficients of xn + in the 
above relationship we see that £nk+k_x of (4.2) is Bn. Thus 

Vnk + k-\Pnk + k-\(x) + $nk + k- \Pnk + k-2(x) 

= [Cn + (1 - Bn)Uk_2(x)]P„(Tk(x)) + DnPn_,{Tk{x)\ 

This shows that the r}nk+k_] vanish since the right side of the above 
equation is a polynomial of degree nk + k — 2. Therefore 

Çnk + k-\Pnk + k-l(X) = 0 ~~ Bn)Pnk + k-l(X) 

+ CnPn{Tk{x)) + (Bn + Dn - 1) 

X Pn_x(Tk{x)). 

Equating coefficients of x" + ~ we get 

L t - i = 1 - * « - i . « > 0 . 

Finally this gives 
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CnPn(Tk(x)) + {B„ + D„- \)Pn_x(Tk(x)) = 0, 

and equating coefficients of the highest power of x forces Cn to be zero 
and Bn + Dn to be 1. One then has to go back and treat the case n = 0 
separately to see that D0 > 0, so 50 > 0. 

5. The distribution function of the r^s. Recall that the polynomials dual 
to {R„(x)} are defined by (1.17). Let {/*(.*)} be the numerator 
polynomials of the rn

9s. The r*'s satisfy the initial conditions r$(x) = 0, 
r*(x) = 1 and the second order difference equation 

xr%(x) = dn_xr$+x(x) + bn_xr*_x(x\ n > 0. 

This, (1.16) and (1.15) identify {r*+1(x) }̂ ° as the sieved polynomials of 
the second kind {sn(x) }̂ ° associated with the dual random walk poly
nomials {Sn(x) }. Let 

(5A) J _! rn(x)rm(x)dp{x) = pn8mn, p0 = 1, 

be the orthogonality relation of {rn(x) }. Markov's theorem [17, p. 57] 
establishes 

/ . 
(5.2 ) J ' M l = U m r*k{x)/rnk{x), x * [-1, 1]. 

1 X — t n->oo 

THEOREM 5.1. The continued fraction x(x) whose denominators are 
{rn(x) } is given by 

( 5 3) vOt) = f M l = H m a*Uk-x(x)SH-x{Jk(x)) 
J - ' x - t n^Rn{Tk{x)) - Rn_2(Tk(x))' 

where 

(5.4) ank = {Zy>, .. . D^J/iB^ . . . * „ _ , } , n > 1. 

Proof. Combine (2.3), (3.4), (3.2) and (5.3). 

We now apply Theorem 5.1 to the case of sieved ultraspherical 
polynomials. We choose 

(5.5) B„ = i (n + l)/(#i + A + 1), D„=\- B„, 

hence, [15, p. 279] and (1.11) give 

R„(x) = CX
n
 + l(x), r„(x) = cX„(x;k). 

Now the S„'s satisfy 

2(w + A + l)xSn(x) = (n + 2A + \)S„+i(x) 

+ (n + \)Sn_x{x). 
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In order to identify the 5„'s we set 

Sn(x) = (n+ l)!Pw + 1 (x) / (2X+ l)n9 

and observe that the Pn
9s will then satisfy the recursion relation 

2(n + X)xPn(x) = (n + l)Pn + x(x) + (2X + n - l)Pn-X(x), 

n > 0, 

and the initial conditions P0(x) = 0 and P{(x) = 1. This and (1.3) of page 
279 in [15] identify the Pn's and Sn's as 

P„(x) = ^Cn\x)/X and Sn(x) = (n + 1)!<A
+I(x)/(2X)W + 1. 

In the present case we have 

(2A)> + A) 
fl"* A(«!) 

and 

R„(x) - Rn-2(x) = Cx
n
 + \x) - Cx

nt\(x) = ^ ^ C*(*), 

[15, page 283]. The calculations enable us to reduce (5.3) to 

/ . 
( 5 . 6 ) f _ i ^ 1 = Ukx{x) i i m Cn\Tk(x))/CX

n(Tk(x)). 
— / n—>oo 

Recall that the ultraspherical (Gegenbauer) polynomials are orthogonal 
on [ - 1 , 1] with respect to (1 - x2)X~l/2dx, hence 

C I - - dt = lim cf(x)/Cx(x) 
4 / 1 X — t n-*oo 

follows from Markov's theorem, where C is a normalization constant that 
makes 

C J , (1 - t2)x~V2dt = 1. 
-1 

It is easy to see that 

c - r ( A + i)/{r(l)r(x + I)}. 

This and the Perron Stieltjes inversion formula 

(5.7) F(z) -

if and only if 

f°° da(t) 
J - O O 7 _ / 

https://doi.org/10.4153/CJM-1986-020-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-020-x


410 J. CHARRIS AND M. E. H. ISMAIL 

f<2 F(t - k) - F(t + it) , 
a(t2) - a(tx) = lim / - * '-—-.-± '- dt, 

e^O+ J M Z77/ 

imply 

M*) = J!X? l) , , 1*4-1(*) I {i - T\(X) }x-l/2dx, 

m+$ r 

- 1 < x < 1, 

that is 

* r(i)rK) 
- 1 < X < 1. 

Combining (5.1), (5.8) and (1.7) we establish the orthogonality relation 

(5.9) f_] rn(x)rm(x)(\ - x2)A~ 1 / 2 I ^ - 1 ( ^ ) \1Xdx = Xn8^n 

with 

m+i) 
(5.10) X0 = — - — , \ } = 2Z?0A0, 

0 r(\ + i) x ° ° 

4)^1 '-'dn-2 
A0, « > 1. 

In this case l?w and /)„ are as in (5.5), bn and d„ are related to Bn and D„ via 
(1.16). The orthogonality relation (5.9) is mentioned in [1]. Note that one 
can actually evaluate the right side of (5.6) without knowing the weight 
function of the ultraspherical polynomials. All is needed is to apply 
Darboux's method, [14, Section 8.9] to the generating function 

CO 

2 c\(x)f = (i - 2xt + t2yx 

(or, equivalently use Darboux's formula, [17, Section 8.21] ) and to the 
generating function 

00 ft 
2 C*n\x)tn = 2X(1 - 2xt + t2)~X J 0 0 - 2xw + u2)x~]duy 

n = 0 
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see e.g. [5, Section 3]. The result is 

(5.11) f_x ^ - = 2\Uk_x{x) f[ (1 - 2uTk(x) + u2)x~ldu, 

where /? = x — Vx2 — 1 and Vx — 1 is the branch that behaves like 
x as x —> co. The relationship (5.11) holds in the complex plane cut along 
[— 1, 1] and the integral on the right side of (5.11) is a Hadamard integral, 
[3, pp. 45-46]. 

6. Sieved Carlitz-Karlin-McGregor polynomials. We now introduce a 
sieved analogue of the CKM polynomials. Following the notation in (1.3), 
(1.4), (1.13), (1.14) and (1.16) we choose 

(6.1) Bn = (n + l)/(/i + 6 + 1 ) , Dn = b/(n + 6 + 1 ) , 

and denote the corresponding Rn(x) by Rn(x), so that 

(6.2) Rb
0(x) = 1, Rb(x) = x(b + 1), 

(6.3) x(b + n + \)Rh
n{x) = (n + l)Rb

n + }(x) + bRh
n_x{x\ n > 0. 

Let 

oo 

(6.4) R(x, 0 = 2 Rh
n(x)f 

o 

be a generating function of {Rh
n{x) }. It is straight forward to transform 

the system (6.2)-(6.3) to the initial value problem 

R(x, 0) = 1, (1 - xt) R ^ = [x(b + 1) - bt]R(x9 t). 
dt 

Therefore 

oo 

(6.5) 2 Rb
n(x)f = R(x, t) = (1 - xt)bx~2~b~x exp(bt/x). 

We now apply Darboux's method to the generating function (6.5), [14, 
Section 8.4]. A comparison function is 

(1 - xt)bx~2~b~x Qxp(bx~2). 

Therefore 
n nb-bx-2 

Similarly we denote the corresponding dual polynomials Sn(x) by Sn(x) 
and obtain 
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(6.7) x(b + n + \)pn{x) = (n + 2)pn+l(x) + bpn_x{x\ n > 0 

withp0(x) = l,/?|(x) = x(b + l)/2, where 

(6.8) p„(x) = b"Sb
n(x)/(n + 1)!. 

We again use the generating function 

oo 

P(X, 0 = 2 Pn(*)f 

to transform the recurrence relation (6.7) to p(x, 0) = 0 and 

3 9 
t(\ - xt)-p(x, t) + [1 + br - tx(b + l)]p(x, t) = 1. 

dt 

Solving the above initial value problem we get 

oo 

(6.9) 2 fb"Sb
n{x)/{n + 1)! = Cxehtlx(\ - xt)bx~1~b 

n=0 

/ : 
bu/x/i „*.\b — bx — 1 X J0e~DU/x(l - xuf-nx ~'du, 

where we used (6.8). We now apply Darboux's method to (6.9). The result 
is 

sh(x) « *»+y- fa-2o,!) 
" b"T(b - bx~2)exp(-bx"2) 

X j ^ X
 e-

hu'\\ - xu)b-]-bx~2du. 

The integral on the right side is a Hadamard integral. The asymptotic 
formula for {Sb(x) } can be expressed in the form 

r* im ^ Ï ~ x"nb-bx-\n\) 
(6.10) s„(x)» — b"T(b - bx l)exp{-bx z) 

X fQ e-
bulx\\ - u)b-]-bx~2du. 

In the present case (5.4) becomes 

(6.11) a„k = b"~\n + b)/n\ « b"~]/(n - 1)!. 

Now apply (5.3), (6.6), (6.10) and (6.11) to obtain 

(6.12) X(x) = % ^ / Q
n e x p [ - Z , M ^ 2 ( , ) ] ( l - uri-bl7Hx)du, 

Tk(x) J u 

where xO*) is the associated continued fraction 
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(6.13) x(^) = J _ 1 x - t 

p(x) being the distribution function of our sieved polynomials. It is clear 
that the right side of (6.12) is single valued across the real axis, hence 
the singularities of the right side of (6.12) are either poles or essential 
singularities. This and the inversion formula (5.7) show that the measure 
dp of (6.13) is purely discrete. A series representation for xOO is 

(6.14) X(x) = bTk(x)Uk_,(x) exp[-bTk\x) ] 

x | b«[Tk(x)]-2" 

n=on\[(b + h)T\{x) - b] 

Let 

(6.15) xnJ > 0, Tk(xnj) = ±y/b/(b + n), 

Xn,\ > Xn,2 > > *„,*> « = 0, 1, . . . . 

Clearly the solutions of 

(n + b)T2
k(x) = b 

are ±xn -, j = 1,. . . k. The series representation (6.14) shows that x(*) 
has simple poles at x = ±xnj. Recall that 

(6.16) T'k(x) = kUk.x(x). 

The identity (6.16) enables us to express the residue of x(*) at xn- in the 
form 

(6.17) an(b; k) = Res(X(x); xnj) = Kb *"1 exp(-Z> - n). 
J 2k(n\) 

Observe that on(b; k) does not depend on j . 
Let us denote the sieved CKM polynomials of the first kind by 

{rn(x; b\ k) }, so that 

(6.18) r0(x; b\ k) = 1, rx(x\ b\ k) = x9 

2xrn(x\ b\ k) = rn + x(x\ b\ k) + rn-\{x\ b\ k) if k f n, 
(6.19) x(n + b)rnk(x\ b\ k) = brnk + x(x; b\ k) + nrtlk_](x; b; k), 

n > 0. 

Now (6.17) gives the orthogonality relation 

k oo r k 

(6.20) 2 ou(b; k)\ 2 r„(xuJ; b; k)rm(xuJ; b; k) 

+ r„(-x„j, b; k)rm(-xuj; b; k)J = \„8mn, 
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with 

(6.21) \ = \ , \ x = b Q , \ = [b(p,...bn_,V[dQdx...dn_2l n>\, 

and 

(6.22) bn = dn = ^ilk\n, bnk_l = b/(n + b), dnk„x = nl(n + b). 

We now state generating functions and explicit formulas for 
{rn(x\ b\ k) }. We first obtain the explicit representation from (6.5) 

x~n 

(6.23) Rb
n(x) = 1F0(-n, b + 1 - bx~2; - ; x2), 

n\ 
then substitute in (3.4) to obtain an explicit representation for rn(x; b\ k) 
as a combination of two 2^o's- Theorem 3.3, (6.5), and (6.11) give 

(6.24) f b"-^JL±Èl rnk(x; b-k)t" 
«=o n\ 

= (1 - t2)(\ - xt)hx~2~b~{ exp(t/x),x = Tk(y) 

and 

(6.25) 1 iV„(*; * *) = d - ^(l-2^(x) + ̂ ) 
«=o 1 — 2x/ 4- / 

X (1 - tkTk{x))~h~x+h/T2k{x) exp(tk/Tk(x)). 

7. Concluding remarks. A sequence {èn}T=\ is called a cAa/w sequence if 
there exists a sequence {TJ^J^IO

 s u c n t n a t 

£* = (1 ~ Vn-\)vn, n = 1,2,..., 

0 ^ TJ0 < 1, 0 < r]n < 1, n > 0. 

Chihara [7] uses the monic form of the three term recursion, 

p0(x) = l,px(x) = x - cx, 

Pn + \(X) = (X - Cn + \)Pn(X) ~ K + \Pn-\(x)> n > °-

The monic form of xRn(x) = i^i^_|_](.x) + DnRn^x(x) is 

*w + 1(x) = **„(*) - Dn(\ - Dn_x)Rn_x(x), 

so the class of random walk polynomials coincides with the class of 
symmetric orthogonal polynomials (i.e., cn = 0, n > 0) when {Aw + i}^Li is 
a chain sequence. For additional properties of this class of orthogonal 
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polynomials we refer the interested reader to [7]. Properties of the 

corresponding continued factions are in [18]. 

Finally one word about the characterization theorem of Section 4. We 

are saying that the type of explicit formula (2.3) holds only for sieved 

random walk polynomials of the second kind if Rn(x) is required to be 
orthogonal. We are not saying that this is the end of easy explicit 
formulas. As a matter of fact the symmetric sieved Pollaczek polynomials 
[9] satisfy (2.3) but the {Rn(x) } are no longer orthogonal. 
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