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ON THE PASS-EQUIVALENCE OF LINKS

YAN-LOI WONG

We give a simple geometric proof that the Jones polynomial at the value » of an
oriented link is invariant under pass-equivalence.

0. INTRODUCTION

The Arf invariant of a knot or more generally a proper oriented link was introduced
in [6]. It was shown by Murakami in [5] that the value Vt(i) of the Jones polynomial
at t is a suitable generalisation of the Arf invariant for an arbitrary oriented link L. In
fact Murakami computed that Vt(i) equals (—\/2)C (—1) ( if L is a proper
oriented link and equals zero if L is not proper, where c(L) denotes the number of
components of L. On the other hand, Kauffman introduced in [2] the concept of
pass-equivalence or equivalently F-equivalence of links. It was shown in [2] that any
oriented link is pass-equivalent to either the unlink, the unlink disjoint union a trefoil or
the unlink disjoint union a connected sum of Hopf links. This together with Murakami's
result implies the following:

THEOREM. Two oriented links L and V are pass-equivalent Hand only if Vi,(i) =
Vx,;(i), c(L) = c(L') and n(L) = n(L'), where n(L) is the number of components K
of L such that lk(K, L - K) is odd.

In this paper we shall give a direct geometric proof of the fact that Vx,(t) is invariant
under pass-equivalence and hence the above result and Murakami's result. All the links
considered are oriented.

1. PASS-EQUIVALENCE AND INEQUIVALENCE

A pass-move on a link diagram is a move of one of the following two forms:

or
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158 Y. Wong [2]

or

A F-move on a link diagram is a move of one of the above two forms:

DEFINITION 1.1: Two links are pass-equivalent (F-equivalence) if one can be ob-
tained from the other by a finite combination of pass-moves (F-moves) and ambient
isotopies.

We shall use ~ to denote pass-equivalence and = to denote the equivalence of
being ambient isotopic. Next we recall the following two results from [2] and [3].

PROPOSITION 1 .2 . Two links are pass-equivalent if and only if they are F-
equivaJent.

PROPOSITION 1 . 3 . Any link is pass-equivalent to one of the following three
forms:

o-o o-o
(a) (b)

o-o
(c)

wiiere in (a) the Art invariant is 0, in (b) the Arf invariant is 1 and in (c) the number
of components minus the number of unknots is even.

2. THE INVARIANT Vj,(t) OF A LINK L

Vz,(t) is the value of the Jones polynomial of L at i. It satisfies the following two
axioms:

(0 FunknotW = l |
(ii) VL+(I) + VL_(I) = -V2VLo(i), where L+, Lo are three links identical

except within a ball where they have a projection as follows:

In fact (i) and (ii) uniquely determine the numerical invariant V(i).
For any two links L\ and Li, lk{L\, L^) denotes the total linking number of L\

and Li. We say that a link L is proper if lk(K, L — K) is even for every component
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K m. L, otherwise it is said to be non-proper. For example the link in Proposition 1.2
(c) is non-proper. Next we recall the following result in [1].

JONES REVERSING RESULT: If V is obtained from L by reversing the orientation
of one component that has Unking number m with the remaining components of L,
then VL,(t) = t-3mVL(t).

Suppose £ is a non-proper link. Let K be a component of L such that
lk(K, L — K) — m is odd. Then by reversing the orientation of K, we have
VLi(i) — i~SmVi,(i) = ±»Vi(i). From axiom (ii), Vt(i) is always a real number. Hence

To prove the main theorem we need two lemmas which are also use in [4] to prove
Murakami's result.

LEMMA 2 . 1 . Let L be an oriented link and L' the link constructed by banding
together two distinct components of L. If L is proper, then V is proper and Vjr,/(t) =

PROOF: A calculation of linking numbers shows that if L is proper, then L' is
proper. By cutting the band within a 3-ball surrounding the band, we have the following
skein triple.

U

n
L- = L L+ Lo = V

Since L- is non-proper, VL_[i) - 0. Hence VL>(i) = -y/T/2VL(i). D

Similarly one can prove the next lemma.

LEMMA 2 . 2 . Let L, L' and L" be three oriented links identical except within

a ball where they have a projection as shown below:

x rV
where the two strings in L belong to the same component. Suppose L is proper. Then
precisely one of V and L" is proper. Furthermore if L* G {L1, L"} is proper, then

LEMMA 2 . 3 . ^ # T r e f o i i ( 0 = -VL(i).
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PROOF: KL # T r e f o i l ( t) = VTrefoil(i)FL(t) = -VL(i).

[4]

D

3. PROOF OF THE THEOREM

PROPOSITION 3 . 1 . If L and L' are T-equivalent, then VL{i) = VLi(i).

PROOF: It suffices to show that V(i) does not change with the two F-moves. For
this, we shall show that if L and V are links identical except within a ball where they
have a projection as shown below,

L,

V

then Vi,(t) = Vt'(*)- Notice that F-moves or pass-moves preserve properness. Therefore
in the case of non-proper links, VL(*) = VL'(*)- Hence we only need to consider proper
links. There are three cases.

CASE 1. (Jbi, Jfc2 and fcs belong to the same components of L.) We can represent a
F-move by a sequence of taking connected sums of the trefoils or the components of L.
By keeping track of the value Vi(t), we will show that Vt(i) = Vj,'(t). This is shown
as follows.

VL(i)

lemma. 2.3

lemma 2.3 lemma 2.1 Ct

"I [J

Here the three strings in the last diagram belong to a single component. By taking a
connected sum or a connected sum with a twist of the two lower strings, we get two
possibilities:

or 4 , rJ-
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But in the second case the hnking number of s and the rest of the other components
is odd so that it is not proper. By Lemma 2.2 the first hnk is proper and its value of
V(i) is equal to -</l]2VL(i). That is

I )

and its value of VL(I') equals — y/l/2Vi,(i).
Again we take a connected sum or a connected sum with a twist of the upper and

lower strings. We then have the cases:

Since the latter case gives a non-proper link, we perform the operation of taking a
connected sum with a twist to get V. By Lemma 2.2 Vj,i(i) =

CASE 2. (Only two of the strings belong to the same component.) By taking a con-
nected sum or a connected sum with a twist of the two strings, say k\ and hi of the
same component outside the ball, we get two links. By Lemma 2.2 precisely one of them,
is proper and for that one L*, Vj,»(i) equals — V^VL(I) . Inside the ball we still have
the same hnk diagram but the three strings now belong to different components of L*.
Hence we can apply the result of Case 1 to conclude that if L** is the link obtained by
performing a F-move on L* within the ball, then Vj,..(i) = Vi»(i) = — %/5Vi(t). Now
we take a connected sum of the knots fci and k% • We get a proper link which is V and
by Lemma 2.1, Vv{i) = -y/T]2VL..{i) = VL{t).

CASE 3. (All three strings belong to the same component.) We can apply the same
argument as in Case 2 to two of the strings and reduce this case to Case 2. This
completes the proof. U

PROOF OF THE THEOREM: (=>) That Vi,(i) = VLi(i) is proved in Proposition
3.1. Since pass-equivalence does not change the number of components K such that
lk{K, L - K) is odd, we have n( i ) = n(L'). Obviously c(L) = c(L').

(•<=) By Proposition 1.3, any hnk is pass-equivalent to one of the form (a), (b)
and (c) as shown in Proposition 1.3. If both L and V are not proper, then they Me
pass-equivalent to a hnk of the form (c). Since c(L) — c(L') and n(L) = n(L'), we
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must have L ~ L'. If L and V are both proper, then they are pass-equivalent to a
link of the form (a) and (b). By Proposition 3.1, we have

XL~{b).

Since Vx,(t) = Vi,i{i), we must have L and V both pass-equivalent to either the form
(a) or (b). Hence L ~ L'. This completes the proof of the theorem. D

COROLLARY . (Murakami [5]) For any oriented link L,

[ 0 if L is non-proper.
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