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Oscillation theorems for
semilinear hyperbolic and
ultrahyperbolic operators

Mamoru Narita

The oscillation property of the semilinear hyperbolic or ultra-

hyperbolic operator L defined by

y,

is studied. Sufficient conditions are provided for all solutions

of uL[u] - 0 satisfying certain boundary conditions to be

oscillatory. The basis of our results is the non-existence of

positive solutions of the associated differential inequalities.

Oscillation criteria for linear hyperbolic differential equations have

been obtained by Kahane [7], Kreith [2, 3 ] , Pagan [7], Travis [8], and

Young [9]. More recently, the author andYoshida [5] established

oscillation theorems for linear ultrahyperbolic operators. The purpose of

this paper is to study the oscillation property of a class of nonlinear

hyperbolic or ultrahyperbolic equations and inequalities. Use is made of

some of the techniques and results developed by Naito and Yoshida [4] and

Noussair and Swanson [6].

Let x = [x , ..., x ) and y = [y , ..., yjj denote points in if1

and H , respectively. Let H be an unbounded domain in It defined by
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56 Mamoru Na r i t a

H = [x = (x 1 , . . . , xn) : 0 < x^ < °°, i = 1, ..., n] ,

and l e t G be a bounded domain in FT with piecewise smooth boundary.

The pa r t i a l d i f fe ren t ia l operator to be considered in th is paper i s

g2 g2
where A denotes the laplacian in n ; that i s , A = —— + . . . + —— .

X * 3x2 3x2

1 n
The coefficients a. .(x, y) are real-valued functions of class C (H * G) ,

I'd

{i, j = 1, . . . , m) , and / ( x , y, £) is a real-valued function of class

C (# x G x i? ) . The matrix (a. .) is assumed to be symmetric and

posi t ive definite in H * G . The domain Dr of L i s the set of a l l
L

real-valued functions of class C (H x G) n C (H x Q) .

For each u € D. we define the function g{x) by

(1) g(x) = J J u(*. j/)4/ , [< = { 4/) •

LEMMA 1. Assume that:

(i) fix, y, K) 2 p(x)<()(C) for all (x, y) $ H * G and for all

C > 0 , where p is continuous and non-negative in H and

(j> is continuous, non-negative, and convex in (0, ») ;

(ii) u(x, y) € DL is a positive solution of the inequality

L[u] 5 0 in H x G and satisfies the boundary condition

u = 0 on H x 9G .

T?zew #ze function g{x) given by ( l ) satisfies the differential inequality

(2) A a + p(x)Q(g) 5 0 , x (. H .

Proof. Since A o(x) = — A udy , it follows from Green's formula
x" K jc x

that
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- * If{x-y-u)dy

8 m 3
where -r- = £ a,-,^*. 2/)y,- aT~ . V = (v , . . . , V ) being the unit

,̂,7=1 3
exterior normal vector to 8G , and T denotes the measure on 9G . In

view of the fact that u > 0 in H x G and M = 0 on H x dG , -£• must
dV

be non-positive. Therefore, using hypothesis (i) and Jensen's inequality

applied to ()>(M) over G , we get

5 -p(x)(j)|| j u(x, y)dyj ,
>G

which i s the des i red i n e q u a l i t y ( 2 ) .

We s h a l l use the no ta t ion

Hp = H n {x 6 Rn : \x\ > r} , r > 0 .

DEFINITION. A function u{x, y) € DT which sa t i s f ies

(3) uL[u] £ 0 in H x ff and u = 0 on H * dG

i s said to be osoillatovy in S " j if i t has a zero in #^ x G for every

r > 0 .

PROPOSITION 1. Every solution of (3) i s oscillatory in B x G i / in

addition to hypothesis (i) of Lemma 1 ifee following conditions are

satisfied:

(i) f[x, y, - O = -f(a;, t/, ^) for a^^ (x, z/) f ff x G and for

all C > 0 ;

(ii) the differential inequality (2) has no solution which is

positive in E for any r > 0 .

Proof. Suppose to the contrary that there exists a solution u(x, y)
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of (3) which has no zero in H , x G for some r' > 0 . I f u > 0 in
T

Hp, x G , then L[u] 5 0 in # , x G , and by Lemma 1, the function g(x)

defined by (l) is a positive solution of (2) in H , , contradicting the

hypothesis (ii).

Likewise, u cannot be negative in H , * G , or else -u would be a

positive solution of (3).

In the case when n = 1 , the operator L reduces to a hyperbolic

operator and the inequality (2) becomes the ordinary differential

inequality

f + p(x)Hg) s o , x > o .
dx2

Sufficient conditions for the non-existence of eventually positive
solutions of (U) have recently been established by Naito andYoshida [4]
and Noussair and Swanson [6] . Here we present an oscillation criterion for
the semilinear hyperbolic operator L (« = l) which follows from
Proposition 1 combined with a result of 14, Theorem 2.1].

THEOREM 1 . Assume that the following conditions are satisfied:

( I ) fix, y, C) 2 p(a;)*(C) for all (x, y) € ( 0 , ») x G and

for all £ > 0 , where p is continuous and non-negative

in (0, <*>) and ((> is continuous, non-negative, and

convex in (0 , «) ;

( I I ) f(x, y, -5) = -fix, y, 5) for all (x, y) € (0, - ) x G

and for all E, > 0 ;

( i l l ) there exist positive continuous functions 4^ and <)>2 in

(0, °°) such that

(i) <t>(0 > ^ U H ^ O for all I > 0 ,

(ii) ()>. is non-increasing and <C2 ^
s non-decreasing for

all C > 0 ,

-̂v < °° /or seme e > 0 t
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r
(iv) Cp(C)4>AkOdE, = °° / o r aZZ fe > 0 .

Ifren everjy solution of (3) (n = l ) is oscillatory in ( 0 , °°) x ff .

COROLLARY 1. Consider the semilinear hyperbolic equation

»2 m n2

where c (x ) i s a non-negative continuous function in ( 0 , ») and Y > 1

i s ine quotient of odd integers. Every solution u 0 / ( 5 ) satisfying the

boundary condition u = 0 on ( 0 , <») x 3G i s oscillatory in ( 0 , <=°) x ff

Next we consider the case n > 2 . Letting (r, 6) denote hyper-

spherical coordinates for R , H can be rewritten as

H = {(r, 6) : 0 < r < =°, 9 € 0} ,

where 0 is the domain defined by

0 = {8 = (61, ..., 9 ^ ] : 0 < 6i < v/2, i = 1, ..., n-l} .

The following notation will be used:

Sp = {x € if
1 : |x| = r} ,

fl(r) = E n Sp ,

H(8, t) = {x i H : 8 < \x\ < t) .

The measure on 5 and 5 will be denoted by a and w , respectively.

The unit exterior normal vector to W will be denoted by n .

Associated with every function u € DT , we define a function

in (O,00) by the equation

(6) fc(r) -:f- f

where g(x) is the function given by (l) and a denotes the area of
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B(r) .

By employing the technique of Noussair and Swanson [6 ] , we obtain the
following principal t oo l .

LEMMA 2. Assume that the hypotheses (i) and (ii) of Lemma 1 hold

and, moreover, that

(i) p(x) 2 <?(|x|) in Hp for some rQ > 0 , where q is

continuous and non-negative in [ r n , °°) ;

(ii) g^ > 0 on 3Hp , where g is given by ( l ) .

Then the function h(r) defined by (6) satisfies the ordinary differential

inequality

ii\ d [ n-1 dh] n-1 / » . . / , » _ . _
(7) -£ \r ^ j + T q(r)<f>(h) < 0 , r 5 rQ .

(8)

Proof. Green's formula yields the integral identi ty

n-1f A adx = f | f da - r "
h{ro,r) *? >H(r) 8 r

dp (P

for any r 2 r , where u denotes the measure on 90 . Since the

following identities hold,

({rQ,r) *" J h{r
d [\ A * ] f
dr x?1^0) = hgda

UH(r.,r) > >R

where U) denotes the area of #( l ) , differentiating (8) with respect to

r and using condition (ii) , we obtain

On the other hand, applying Jensen's inequality to $(g) over H(r) and
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using condition (i), we find

(10) ui-rn~1qM$lh) 2 I pt>{g)dy .
1 JHM

The conclusion (7) now follows from Lemma 1, (9), and (10). This completes

the proof.

PROPOSITION 2. Let the following conditions hold.

(i) f[x, y, C) 2 <?( |x|)<j>(£) in Hp x G X (0, °°) for some rQ > 0 ,

where q is continuous and non-negative in [rQ, <*>) and <(> is

continuous, non-negative, and convex in (0, °°) .

(ii) fix, y, -0 = -fix, y, 0 for all (x, y) € H x G and for
0

all £ > 0 .

(•£•£•£,' 2%e ordinary differential inequality (7) fazs >K> positive

solution in [r, °°) /o r awy r 2 r .

Then every solution u of (3) which satisfies

(11) f̂  - Mx, y)u = 0

on W x G is oscillatory in H * G , where Xix, y) is a non-negative
rO

continuous function on 3# * G .

Proof. If u i s a solution of (3) which sa t i s f ies ( l l ) and is

positive in H * G for some r 2 r , then we find from ( l ) and ( l l )

that

i I A(x, y)udy 2 0 .

Define the function hir) by (6) . Then, proceeding as in the proof of

Proposition 1 and using Lemma 2, we can show that h{r) i s a positive

solution of (7) in [r , °°) . But th is i s a contradiction.
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The above proposition together with the results of Naito and Yoshida
[4, Theorems 2.1 and 2.U] yields the following oscillation criteria for the
semilinear ultrahyperbolic operator L .

THEOREM 2. Let n = 2 and assume that:

(i) the hypotheses (i) and (ii) of Proposition 2 are satisfied;

(ii) there exist positive continuous functions <1>, and <f>2 in

(0, °°) such that (i), (ii), and (Hi) of Theorem 1 ( i l l )
hold, and

f £(log OtfUM^U log OdE, = » for all k > 0 .

every solution of (3) satisfying ( l l) i s oscillatory in H x C .

THEOREM 3. Let n > 3 and suppose that:

(i) the hypotheses (i) and (ii) of Proposition 2 are satisfied;

(ii) there exist positive continuous functions <)>,, <t>2, <t>_ , and

$, in (0, ») suefc

i is non-increasing and <\>2 is non-decreasing for all ? > 0 ,

> <t> (S)<K(£) for all 5, C 8uch that 0 < C < 1/Z ,

< <*> for some e > 0 ,

r
every solution of (3) satisfying ( l l) is oscillatory in H x G .

COROLLARY 2. Consider the semilinear ultrdliyperbolic equation

n -2 m .2
(12) Z ^ - I ^ - | + * ( | * | ) M

Y = 0 ,
i=l 9 ^ ,7=1 3^J

where c is a non-negative continuous function in (0, «>) and y > 1 i s

quotient of odd integers. Every solution u of (12) satisfying ( l l )
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and M = 0 on H x 9C is oscillatory in H * G if

tp (r)c(r)dr - » ,

where

r log r if n = 2 ,

n-HY(2-») i f M > 3 .
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