Oscillation theorems for semilinear hyperbolic and ultrahyperbolic operators

Mamoru Narita

The oscillation property of the semilinear hyperbolic or ultrahyperbolic operator L defined by

$$L[u] \equiv \Delta_x u - \sum_{i,j=1}^m \frac{\partial}{\partial y_i} \left(a_{ij}(x, y) \frac{\partial u}{\partial y_j} \right) + f(x, y, u)$$

is studied. Sufficient conditions are provided for all solutions of $uL[u] \leq 0$ satisfying certain boundary conditions to be oscillatory. The basis of our results is the non-existence of positive solutions of the associated differential inequalities.

Oscillation criteria for linear hyperbolic differential equations have been obtained by Kahane [1], Kreith [2, 3], Pagan [7], Travis [8], and Young [9]. More recently, the author and Yoshida [5] established oscillation theorems for linear ultrahyperbolic operators. The purpose of this paper is to study the oscillation property of a class of nonlinear hyperbolic or ultrahyperbolic equations and inequalities. Use is made of some of the techniques and results developed by Naito and Yoshida [4] and Noussair and Swanson [6].

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$ denote points in \mathbb{R}^n and \mathbb{R}^m , respectively. Let H be an unbounded domain in \mathbb{R}^n defined by

Received 14 October 1977. The author would like to thank Professor T. Kusano for many helpful suggestions.

$$H = \{x = (x_1, \ldots, x_n) : 0 < x_i < \infty, i = 1, \ldots, n\},\$$

and let G be a bounded domain in R^m with piecewise smooth boundary. The partial differential operator to be considered in this paper is

$$L[u] \equiv \Delta_x u - \sum_{i,j=1}^m \frac{\partial}{\partial y_i} \left(a_{ij}(x, y) \frac{\partial u}{\partial y_j} \right) + f(x, y, u) ,$$

where Δ_x denotes the laplacian in \mathbb{R}^n ; that is, $\Delta_x = \frac{\partial^2}{\partial x_1^2} + \ldots + \frac{\partial^2}{\partial x_n^2}$.

The coefficients $a_{ij}(x, y)$ are real-valued functions of class $C^{1}(\overline{H \times G})$, (i, j = 1, ..., m), and $f(x, y, \xi)$ is a real-valued function of class $C^{0}(\overline{H \times G} \times R^{1})$. The matrix (a_{ij}) is assumed to be symmetric and positive definite in $H \times G$. The domain D_{L} of L is the set of all real-valued functions of class $C^{2}(H \times G) \cap C^{1}(\overline{H \times G})$.

For each $u \in D_{L}$ we define the function g(x) by

(1)
$$g(x) = \frac{1}{\kappa} \int_{G} u(x, y) dy , \quad \left(\kappa = \int_{G} dy\right)$$

LEMMA 1. Assume that:

- (i) $f(x, y, \xi) \ge p(x)\phi(\xi)$ for all $(x, y) \in H \times G$ and for all $\xi > 0$, where p is continuous and non-negative in H and ϕ is continuous, non-negative, and convex in $(0, \infty)$;
- (ii) $u(x, y) \in D_L$ is a positive solution of the inequality $L[u] \leq 0$ in $H \times G$ and satisfies the boundary condition u = 0 on $H \times \partial G$.

Then the function g(x) given by (1) satisfies the differential inequality (2) $\Delta_m g + p(x)\phi(g) \leq 0$, $x \in H$.

Proof. Since $\Delta_x g(x) = \frac{1}{\kappa} \int_G \Delta_x u dy$, it follows from Green's formula

that

$$\begin{split} \Delta_{x}g(x) &\leq \frac{1}{\kappa} \int_{G} \sum_{i,j=1}^{m} \frac{\partial}{\partial y_{i}} \left(a_{ij}(x, y) \frac{\partial u}{\partial y_{j}} \right) dy - \frac{1}{\kappa} \int_{G} f(x, y, u) dy \\ &= \frac{1}{\kappa} \int_{\partial G} \frac{\partial u}{\partial v} d\tau - \frac{1}{\kappa} \int_{G} f(x, y, u) dy \end{split},$$

where $\frac{\partial}{\partial v} = \sum_{i,j=1}^{m} a_{ij}(x, y)v_i \frac{\partial}{\partial y_j}$, $v = (v_1, \dots, v_m)$ being the unit exterior normal vector to ∂G , and τ denotes the measure on ∂G . In view of the fact that u > 0 in $H \times G$ and u = 0 on $H \times \partial G$, $\frac{\partial u}{\partial v}$ must be non-positive. Therefore, using hypothesis (*i*) and Jensen's inequality applied to $\phi(u)$ over G, we get

$$\Delta_{x}g(x) \leq -\frac{p(x)}{\kappa} \int_{G} \phi(u) dy$$
$$\leq -p(x)\phi \left[\frac{1}{\kappa} \int_{G} u(x, y) dy\right]$$

which is the desired inequality (2).

We shall use the notation

 $H_{r} = H \cap \{x \in R^{n} : |x| > r\}, r > 0.$

DEFINITION. A function $u(x, y) \in D_{L}$ which satisfies

(3) $uL[u] \leq 0$ in $H \times G$ and u = 0 on $H \times \partial G$ is said to be *oscillatory* in $H \times G$ if it has a zero in $H_r \times G$ for every r > 0.

PROPOSITION 1. Every solution of (3) is oscillatory in $H \times G$ if in addition to hypothesis (i) of Lemma 1 the following conditions are satisfied:

- (i) $f(x, y, -\xi) = -f(x, y, \xi)$ for all $(x, y) \in H \times G$ and for all $\xi > 0$;
- (ii) the differential inequality (2) has no solution which is positive in H_n for any r > 0.

Proof. Suppose to the contrary that there exists a solution u(x, y)

of (3) which has no zero in $H_{p'} \times G$ for some r' > 0. If u > 0 in $H_{p'} \times G$, then $L[u] \leq 0$ in $H_{p'} \times G$, and by Lemma 1, the function g(x) defined by (1) is a positive solution of (2) in $H_{p'}$, contradicting the hypothesis *(ii)*.

Likewise, u cannot be negative in H_{p} , $\times G$, or else -u would be a positive solution of (3).

In the case when n = 1, the operator L reduces to a hyperbolic operator and the inequality (2) becomes the ordinary differential inequality

(4)
$$\frac{d^2g}{dx^2} + p(x)\phi(g) \le 0 , x > 0 .$$

Sufficient conditions for the non-existence of eventually positive solutions of (4) have recently been established by Naito and Yoshida [4] and Noussair and Swanson [6]. Here we present an oscillation criterion for the semilinear hyperbolic operator L (n = 1) which follows from Proposition 1 combined with a result of [4, Theorem 2.1].

THEOREM 1. Assume that the following conditions are satisfied:

- (I) $f(x, y, \xi) \ge p(x)\phi(\xi)$ for all $(x, y) \in (0, \infty) \times G$ and for all $\xi > 0$, where p is continuous and non-negative in $(0, \infty)$ and ϕ is continuous, non-negative, and convex in $(0, \infty)$;
- (II) $f(x, y, -\xi) = -f(x, y, \xi)$ for all $(x, y) \in (0, \infty) \times G$ and for all $\xi > 0$;
- (III) there exist positive continuous functions ϕ_1 and ϕ_2 in (0, ∞) such that
 - (i) $\phi(\xi) \ge \phi_1(\xi)\phi_2(\xi)$ for all $\xi > 0$,
 - (ii) ϕ_1 is non-increasing and ϕ_2 is non-decreasing for all $\xi > 0$,

(iii)
$$\int_{\varepsilon}^{\infty} \frac{d\xi}{\phi_2(\xi)} < \infty$$
 for some $\varepsilon > 0$,

(iv)
$$\int_{\infty}^{\infty} \xi p(\xi) \phi_1(k\xi) d\xi = \infty$$
 for all $k > 0$.

Then every solution of (3) (n = 1) is oscillatory in $(0, \infty) \times G$. COROLLARY 1. Consider the semilinear hyperbolic equation

(5)
$$\frac{\partial^2 u}{\partial x^2} - \sum_{i=1}^m \frac{\partial^2 u}{\partial y_i^2} + c(x)u^{\gamma} = 0,$$

where c(x) is a non-negative continuous function in $(0, \infty)$ and $\gamma > 1$ is the quotient of odd integers. Every solution u of (5) satisfying the boundary condition u = 0 on $(0, \infty) \times \partial G$ is oscillatory in $(0, \infty) \times G$ if

$$\int^{\infty} x c(x) dx = \infty ,$$

Next we consider the case $n \ge 2$. Letting (r, θ) denote hyper-spherical coordinates for R^n , H can be rewritten as

$$H = \{(r, \theta) : 0 < r < \infty, \theta \in \Theta\}$$

where Θ is the domain defined by

$$\Theta = \{ \theta = (\theta_1, \ldots, \theta_{n-1}) : 0 < \theta_i < \pi/2, i = 1, \ldots, n-1 \} .$$

The following notation will be used:

$$S_{r} = \{x \in R^{r} : |x| = r\},$$

$$H(r) = H \cap S_{r},$$

$$H(s, t) = \{x \in H : s < |x| < t\}.$$

The measure on S_r and S_1 will be denoted by σ and ω , respectively. The unit exterior normal vector to ∂H will be denoted by η .

Associated with every function $u \in D_L$, we define a function h(r)in $(0, \infty)$ by the equation

(6)
$$h(r) = \frac{1}{\sigma_r} \int_{H(r)} g(x) d\sigma ,$$

where g(x) is the function given by (1) and σ_p denotes the area of

H(r) .

By employing the technique of Noussair and Swanson [6], we obtain the following principal tool.

LEMMA 2. Assume that the hypotheses (i) and (ii) of Lemma 1 hold and, moreover, that

(i) $p(x) \ge q(|x|)$ in H_{r_0} for some $r_0 > 0$, where q is continuous and non-negative in $[r_0, \infty)$;

(ii)
$$\frac{\partial g}{\partial \eta} \ge 0$$
 on ∂H_{p_0} , where g is given by (1).

Then the function $h(\mathbf{r})$ defined by (6) satisfies the ordinary differential inequality

(7)
$$\frac{d}{dr}\left(r^{n-1}\frac{dh}{dr}\right) + r^{n-1}q(r)\phi(h) \leq 0 , \quad r \geq r_0 .$$

Proof. Green's formula yields the integral identity

(8)
$$\int_{H(r_0,r)} \Delta_x g dx = \int_{H(r)} \frac{\partial g}{\partial r} d\sigma - r_0^{n-1} \int_{H(1)} \frac{\partial g}{\partial r} d\omega + \int_{r_0}^r d\rho \int_{\partial \Theta} \frac{\partial g}{\partial \eta} (\rho, \theta) d\mu$$

for any $r \ge r_0$, where μ denotes the measure on $\partial \Theta$. Since the following identities hold,

$$\frac{d}{dr} \left(\int_{H(r_0, r)} \Delta_x g dx \right) = \int_{H(r)} \Delta_x g d\sigma ,$$
$$\frac{d}{dr} \left(\int_{H(r)} \frac{\partial g}{\partial r} d\sigma \right) = \omega_1 \frac{d}{dr} \left(r^{n-1} \frac{dh}{dr} \right) ,$$

where ω_1 denotes the area of H(1), differentiating (8) with respect to r and using condition *(ii)*, we obtain

(9)
$$\int_{H(r)} \Delta_{x} g d\sigma \geq \omega_{1} \frac{d}{dr} \left(r^{n-1} \frac{dh}{dr} \right)$$

On the other hand, applying Jensen's inequality to $\phi(g)$ over H(r) and

using condition (i), we find

(10)
$$\omega_{l}r^{n-l}q(r)\phi(h) \leq \int_{H(r)} p\phi(g)d\sigma$$

The conclusion (7) now follows from Lemma 1, (9), and (10). This completes the proof.

PROPOSITION 2. Let the following conditions hold.

(i) $f(x, y, \xi) \ge q(|x|)\phi(\xi)$ in $H_{r_0} \times G \times (0, \infty)$ for some $r_0 > 0$, where q is continuous and non-negative in $[r_0, \infty)$ and ϕ is continuous, non-negative, and convex in $(0, \infty)$.

(ii) $f(x, y, -\xi) = -f(x, y, \xi)$ for all $(x, y) \in H_{r_0} \times G$ and for all $\xi > 0$.

(iii) The ordinary differential inequality (7) has no positive solution in $[r, \infty)$ for any $r \ge r_0$.

Then every solution u of (3) which satisfies

(11)
$$\frac{\partial u}{\partial \eta} - \lambda(x, y)u = 0$$

on $\partial H_r \times G$ is oscillatory in $H \times G$, where $\lambda(x, y)$ is a non-negative continuous function on $\partial H_{r_n} \times G$.

Proof. If u is a solution of (3) which satisfies (11) and is positive in $H_r \times G$ for some $r_1 \geq r_0$, then we find from (1) and (11) 1 that

$$\frac{\partial g}{\partial \eta} = \frac{1}{\kappa} \int_{G} \frac{\partial u}{\partial \eta} \, dy$$
$$= \frac{1}{\kappa} \int_{G} \lambda(x, y) \, u \, dy \ge 0$$

Define the function h(r) by (6). Then, proceeding as in the proof of Proposition 1 and using Lemma 2, we can show that h(r) is a positive solution of (7) in $[r_1, \infty)$. But this is a contradiction.

The above proposition together with the results of Naito and Yoshida [4, Theorems 2.1 and 2.4] yields the following oscillation criteria for the semilinear ultrahyperbolic operator L.

THEOREM 2. Let n = 2 and assume that:

- (i) the hypotheses (i) and (ii) of Proposition 2 are satisfied;
- (ii) there exist positive continuous functions φ₁ and φ₂ in
 (0,∞) such that (i), (ii), and (iii) of Theorem 1 (III)
 hold, and

$$\int_{0}^{\infty} \xi(\log \xi) q(\xi) \phi_{1}(k \log \xi) d\xi = \infty \quad \text{for all } k > 0 \; .$$

Then every solution of (3) satisfying (11) is oscillatory in $H \times G$. THEOREM 3. Let $n \ge 3$ and suppose that:

- (i) the hypotheses (i) and (ii) of Proposition 2 are satisfied;
- (ii) there exist positive continuous functions $\varphi_1,\,\varphi_2,\,\varphi_3$, and $\varphi_h\ \, in\ (0,\,\infty)\ \, such\ that$

 $\phi(\xi) \geq \phi_1(\xi)\phi_2(\xi) \quad for \ all \ \xi > 0 ,$

 φ_1 is non-increasing and φ_2 is non-decreasing for all $\xi>0$,

$$\phi_2(\xi\zeta) \geq \phi_3(\xi)\phi_4(\zeta) \quad for all \ \xi, \ \zeta \ such that \ 0 < \xi < 1/\zeta \ ,$$

$$\int_{\varepsilon}^{\infty} \frac{d\xi}{\phi_3(\xi)} < \infty \quad \text{for some } \varepsilon > 0,$$

$$\int_{0}^{\infty} \xi^{n-1} q(\xi) \phi_{\downarrow} \left(\frac{\xi^{2-n}}{n-2} \right) d\xi = \infty .$$

Then every solution of (3) satisfying (11) is oscillatory in $H \times G$. COROLLARY 2. Consider the semilinear ultrahyperbolic equation

(12)
$$\sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} - \sum_{j=1}^{m} \frac{\partial^2 u}{\partial y_j^2} + c(|x|)u^{\gamma} = 0,$$

where c is a non-negative continuous function in $(0, \infty)$ and $\gamma > 1$ is the quotient of odd integers. Every solution u of (12) satisfying (11)

and u = 0 on $H \times \partial G$ is oscillatory in $H \times G$ if

$$\int^{\infty} \psi_n(r)c(r)dr = \infty ,$$

where

$$\psi_n(r) = \begin{cases} r \log r & if \ n = 2, \\ \\ r^{n-1+\gamma(2-n)} & if \ n \ge 3. \end{cases}$$

References

- [1] Charles Kahane, "Oscillation theorems for solutions of hyperbolic equations", Proc. Amer. Math. Soc. 41 (1973), 183-188.
- [2] Kurt Kreith, "Sturmian theorems for hyperbolic equations", Proc. Amer. Math. Soc. 22 (1969), 277-281.
- [3] Kurt Kreith, "Sturmian theorems for characteristic initial value problems", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 47 (1969), 139-144.
- [4] Manabu Naito and Norio Yoshida, "Oscillation theorems for semilinear elliptic differential operators", submitted.
- [5] Mamoru Narita and Norio Yoshida, "Oscillation theorems for linear ultrahyperbolic operators", submitted.
- [6] E.S. Noussair and C.A. Swanson, "Oscillation theory for semilinear Schrödinger equations and inequalities", Proc. Roy. Soc. Edinburgh Sect. A 75 (1975-1976), 67-81.
- [7] Gordon Pagan, "Oscillation theorems for characteristic initial value problems for linear hyperbolic equations", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 55 (1973), 301-313.
- [8] C.C. Travis, "Comparison and oscillation theorems for hyperbolic equations", Utilitas Math. 6 (1974), 139-151.

[9] Eutiquio C. Young, "Comparison and oscillation theorems for singular hyperbolic equations", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975), 383-391.

Department of Mathematics, Faculty of Science, Hiroshima University, Hiroshima, Japan.

64