Oscillation theorems for semilinear hyperbolic and ultrahyperbolic operators

Mamoru Narita

The oscillation property of the semilinear hyperbolic or ultrahyperbolic operator L defined by

$$
L[u] \equiv \Delta_{x} u-\sum_{i, j=1}^{m} \frac{\partial}{\partial y_{i}}\left\{a_{i, j}(x, y) \frac{\partial u}{\partial y_{j}}\right\}+f(x, y, u)
$$

is studied. Sufficient conditions are provided for all solutions
of $u L[u] \leq 0$ satisfying certain boundary conditions to be oscillatory. The basis of our results is the non-existence of positive solutions of the associated differential inequalities.

Oscillation criteria for linear hyperbolic differential equations have been obtained by Kahane [1], Kreith [2, 3], Pagan [7], Travis [8], and Young [9]. More recently, the author and Yoshida [5] established oscillation theorems for linear ultrahyperbolic operators. The purpose of this paper is to study the oscillation property of a class of nonlinear hyperbolic or ultrahyperbolic equations and inequalities. Use is made of some of the techniques and results developed by Naito and Yoshida [4] and Noussair and Swanson [6].

$$
\text { Let } x=\left(x_{1}, \ldots, x_{n}\right) \text { and } y=\left(y_{1}, \ldots, y_{m}\right) \text { denote points in } R^{n}
$$

and R^{m}, respectively. Let H be an unbounded domain in R^{n} defined by

[^0]$$
H=\left\{x=\left(x_{1}, \ldots, x_{n}\right): 0<x_{i}<\infty, i=1, \ldots, n\right\}
$$
and let G be a bounded domain in R^{m} with piecewise smooth boundary. The partial differential operator to be considered in this paper is
$$
L[u] \equiv \Delta_{x} u-\sum_{i, j=1}^{m} \frac{\partial}{\partial y_{i}}\left(a_{i j}(x, y) \frac{\partial u}{\partial y_{j}}\right)+f(x, y, u)
$$
where Δ_{x} denotes the laplacian in R^{n}; that is, $\Delta_{x}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n}^{2}}$. The coefficients $a_{i, j}(x, y)$ are real-valued functions of class $C^{1}(\overline{H \times G})$, $(i, j=1, \ldots, m)$, and $f(x, y, \xi)$ is a real-valued function of class $C^{0}\left(\overline{H \times G} \times R^{1}\right)$. The matrix $\left(a_{i j}\right)$ is assumed to be symmetric and positive definite in $H \times G$. The domain D_{L} of L is the set of all real-valued functions of class $C^{2}(H \times G) \cap C^{1}(\overline{H \times G})$.

For each $u \in D_{L}$ we define the function $g(x)$ by

$$
\begin{equation*}
g(x)=\frac{1}{\kappa} \int_{G} u(x, y) d y, \quad\left(\kappa=\int_{G} d y\right) \tag{1}
\end{equation*}
$$

LEMMA 1. Assume that:
(i) $f(x, y, \xi) \geq p(x) \phi(\xi)$ for alz $(x, y) \in H \times G$ and for alZ $\xi>0$, where p is continuous and non-negative in H and ϕ is continuous, non-negative, and convex in $(0, \infty)$;
(ii) $u(x, y) \in D_{L}$ is a positive solution of the inequality $L[u] \leq 0$ in $H \times G$ and satisfies the boundary condition $u=0$ on $H \times \partial G$.

Then the function $g(x)$ given by (1) satisfies the differential inequality

$$
\begin{equation*}
\Delta_{x} g+p(x) \phi(g) \leq 0, \quad x \in H \tag{2}
\end{equation*}
$$

Proof. Since $\Delta_{x} g(x)=\frac{1}{\kappa} \int_{G} \Delta_{x} u d y$, it follows from Green's formula that

$$
\begin{aligned}
\Delta_{x} g(x) & \leq \frac{1}{\kappa} \int_{G} \sum_{i, j=1}^{m} \frac{\partial}{\partial y_{i}}\left(a_{i j}(x, y) \frac{\partial u}{\partial y_{j}}\right) d y-\frac{1}{\kappa} \int_{G} f(x, y, u) d y \\
& =\frac{1}{\kappa} \int_{\partial G} \frac{\partial u}{\partial v} d \tau-\frac{1}{\kappa} \int_{G} f(x, y, u) d y
\end{aligned}
$$

where $\frac{\partial}{\partial \nu}=\sum_{i, j=1}^{m} a_{i, j}(x, y) v_{i} \frac{\partial}{\partial y_{j}}, \quad v=\left(v_{1}, \ldots, v_{m}\right)$ being the unit exterior normal vector to ∂G, and τ denotes the measure on ∂G. In view of the fact that $u>0$ in $H \times G$ and $u=0$ on $H \times \partial G, \frac{\partial u}{\partial v}$ must be non-positive. Therefore, using hypothesis (i) and Jensen's inequality applied to $\phi(u)$ over G, we get

$$
\begin{aligned}
\Delta_{x} g(x) & \leq-\frac{p(x)}{\kappa} \int_{G} \phi(u) d y \\
& \leq-p(x) \phi\left[\frac{1}{\kappa} \int_{G} u(x, y) d y\right]
\end{aligned}
$$

which is the desired inequality (2).
We shall use the notation

$$
H_{r}=H \cap\left\{x \in R^{n}:|x|>r\right\}, r>0
$$

DEFINITION. A function $u(x, y) \in D_{L}$ which satisfies

$$
\begin{equation*}
u L[u] \leq 0 \quad \text { in } H \times G \text { and } u=0 \text { on } H \times \partial G \tag{3}
\end{equation*}
$$

is said to be oscillatory in $H \times G$ if it has a zero in $H_{r} \times G$ for every $r>0$.

PROPOSITION 1. Every solution of (3) is oscizlatory in $H \times G$ if in addition to hypothesis (i) of Lemma 1 the following conditions are satisfied:
(i) $f(x, y,-\xi)=-f(x, y, \xi)$ for all $(x, y) \in H \times G$ and for all $\xi>0$;
(ii) the differential inequality (2) has no solution which is positive in H_{r} for any $r>0$.

Proof. Suppose to the contrary that there exists a solution $u(x, y)$
of (3) which has no zero in $H_{r^{\prime}} \times G$ for some $r^{\prime}>0$. If $u>0$ in $H_{r}, \times G$, then $L[u] \leq 0$ in $H_{r^{\prime}} \times G$, and by Lemma 1 , the function $g(x)$ defined by (1) is a positive solution of (2) in H_{r}, contradicting the hypothesis (ii).

Likewise, u cannot be negative in $H_{r}, \times G$, or else $-u$ would be a positive solution of (3).

In the case when $n=1$, the operator L reduces to a hyperbolic operator and the inequality (2) becomes the ordinary differential inequality

$$
\begin{equation*}
\frac{d^{2} g}{d x^{2}}+p(x) \phi(g) \leq 0, \quad x>0 . \tag{4}
\end{equation*}
$$

Sufficient conditions for the non-existence of eventually positive solutions of (4) have recentiy been established by Naito and Yoshida [4] and Noussair and Swanson [6]. Here we present an oscillation criterion for the semilinear hyperbolic operator $L \quad(n=1)$ which follows from Proposition 1 combined with a result of [4, Theorem 2.1].

THEOREM 1. Assume that the following conditions are satisfied:
(I) $f(x, y, \xi) \geq p(x) \phi(\xi)$ for alt $(x, y) \in(0, \infty) \times G$ and for all $\xi>0$, where p is continuous and non-negative in $(0, \infty)$ and ϕ is continuous, non-negative, and convex in $(0, \infty)$;
(II) $f(x, y,-\xi)=-f(x, y, \xi)$ for alZ $(x, y) \in(0, \infty) \times G$ and for all $\xi>0$;
(III) there exist positive continuous functions ϕ_{1} and ϕ_{2} in $(0, \infty)$ such that
(i) $\phi(\xi) \geq \phi_{1}(\xi) \phi_{2}(\xi)$ for all $\xi>0$,
(ii) ϕ_{1} is nom-increasing and ϕ_{2} is non-decreasing for all $\xi>0$,
(iii) $\int_{\varepsilon}^{\infty} \frac{d \xi}{\phi_{2}(\xi)}<\infty$ for some $\varepsilon>0$,

$$
\text { (iv) } \int^{\infty} \xi p(\xi) \phi_{1}(k \xi) d \xi=\infty \text { for all } k>0
$$

Then every solution of (3) ($n=1$) is oscillatory in $(0, \infty) \times G$.
COROLLARY 1. Consider the semilinear hyperbolic equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\sum_{i=1}^{m} \frac{\partial^{2} u}{\partial y_{i}^{2}}+c(x) u^{\gamma}=0 \tag{5}
\end{equation*}
$$

where $c(x)$ is a non-negative continuous function in $(0, \infty)$ and $\gamma>1$ is the quotient of odd integers. Every solution u of (5) satisfying the boundary condition $u=0$ on $(0, \infty) \times \partial G$ is oscillatory in $(0, \infty) \times G$ if

$$
\int^{\infty} x c(x) d x=\infty .
$$

Next we consider the case $n \geq 2$. Letting (r, θ) denote hyperspherical coordinates for R^{n}, H can be rewritten as

$$
H=\{(r, \theta): 0<r<\infty, \theta \in \theta\},
$$

where θ is the domain defined by

$$
\theta=\left\{\theta=\left(\theta_{1}, \ldots, \theta_{n-1}\right): 0<\theta_{i}<\pi / 2, i=1, \ldots, n-1\right\} .
$$

The following notation will be used:

$$
\begin{aligned}
S_{r} & =\left\{x \in R^{n}:|x|=r\right\}, \\
H(r) & =H \cap S_{r}, \\
H(s, t) & =\{x \in H: s<|x|<t\} .
\end{aligned}
$$

The measure on S_{r} and S_{1} will be denoted by σ and ω, respectively. The unit exterior normal vector to ∂H will be denoted by η.

$$
\text { Associated with every function } u \in D_{L} \text {, we define a function } h(r)
$$

in $(0, \infty)$ by the equation

$$
\begin{equation*}
h(r)=\frac{1}{\sigma_{r}} \int_{H(r)} g(x) d \sigma, \tag{6}
\end{equation*}
$$

where $g(x)$ is the function given by (1) and σ_{r} denotes the area of
$H(r)$.
By employing the technique of Noussair and Swanson [6], we obtain the following principal tool.

LEMMA 2. Assume that the hypotheses (i) and ($i i$) of Lemma 1 hold and, moreover, that

> (i) $p(x) \geq q(|x|)$ in $H_{r_{0}}$ for some $r_{0}>0$, where q is continuous and non-negative in $\left[r_{0}, \infty\right)$;
(ii) $\frac{\partial g}{\partial n} \geq 0$ on $\quad \partial H_{r_{0}}$, where g is given by (1).

Then the function $h(r)$ defined by (6) satisfies the ordinary differential inequaiity

$$
\begin{equation*}
\frac{d}{d r}\left(r^{n-1} \frac{d h}{d r}\right)+r^{n-1} q(r) \phi(h) \leq 0, \quad r \geq r_{0} \tag{7}
\end{equation*}
$$

Proof Green's formula yields the integral identity
(8) $\int_{H\left(r_{0}, r\right)} \Delta_{x} g d x=\int_{H(r)} \frac{\partial g}{\partial r} d \sigma-r_{0}^{n-1} \int_{H(1)} \frac{\partial g}{\partial r} d \omega$

$$
+\int_{r_{0}}^{r} d \rho \int_{\partial \Theta} \frac{\partial g}{\partial \eta}(\rho, \theta) d \mu
$$

for any $r \geq r_{0}$, where μ denotes the measure on $\partial \theta$. Since the following identities hold,

$$
\begin{aligned}
& \frac{d}{d r}\left(\int_{H\left(r_{0}, r\right)} \Delta_{x} g d x\right)=\int_{H(r)} \Delta_{x} g d \sigma \\
& \frac{d}{d r}\left(\int_{H(r)} \frac{\partial g}{\partial r} d \sigma\right)=\omega_{1} \frac{d}{d r}\left\{r^{n-1} \frac{d h}{d r}\right\}^{2}
\end{aligned}
$$

where ω_{1} denotes the area of $H(1)$, differentiating (8) with respect to r and using condition (ii), we obtain

$$
\begin{equation*}
\int_{H(r)} \Delta_{x} g d \sigma \geq \omega_{1} \frac{d}{d r}\left(r^{n-1} \frac{d n}{d r}\right\} \tag{9}
\end{equation*}
$$

On the other hand, applying Jensen's inequality to $\phi(g)$ over $H(r)$ and
using condition (i), we find

$$
\begin{equation*}
\omega_{1} r^{n-1} q(r) \phi(h) \leq \int_{H(r)} p \phi(g) d \sigma . \tag{10}
\end{equation*}
$$

The conclusion (7) now follows from Lemma 1, (9), and (10). This completes the proof.

PROPOSITION 2. Let the following conditions hold.
(i) $f(x, y, \xi) \geq q(|x|) \phi(\xi)$ in $H_{r_{0}} \times G \times(0, \infty)$ for some $r_{0}>0$, where q is continuous and non-negative in $\left[r_{0}, \infty\right)$ and ϕ is continuous, non-negative, and convex in $(0, \infty)$.
(ii) $f(x, y,-\xi)=-f(x, y, \xi)$ for all $(x, y) \in H_{r_{0}} \times G$ and for $a l 2 \xi>0$.
(iii) The ordinary differential inequality (7) has no positive solution in $[r, \infty)$ for any $r \geq r_{0}$.

Then every solution u of (3) which satisfies

$$
\begin{equation*}
\frac{\partial u}{\partial n}-\lambda(x, y) u=0 \tag{11}
\end{equation*}
$$

on $\partial H_{r_{0}} \times G$ is oscillatory in $H \times G$, where $\lambda(x, y)$ is a non-negative continuous function on $\partial H_{r_{0}} \times G$.

Proof. If u is a solution of (3) which satisfies (11) and is positive in $H_{r_{1}} \times G$ for some $r_{1} \geq r_{0}$, then we find from (1) and (11) that

$$
\begin{aligned}
\frac{\partial g}{\partial n} & =\frac{1}{\kappa} \int_{G} \frac{\partial u}{\partial n} d y \\
& =\frac{1}{\kappa} \int_{G} \lambda(x, y) u d y \geq 0
\end{aligned}
$$

Define the function $h(r)$ by (6). Then, proceeding as in the proof of Proposition 1 and using Lemma 2, we can show that $h(r)$ is a positive solution of (7) in $\left[r_{1}, \infty\right)$. But this is a contradiction.

The above proposition together with the results of Naito and Yoshida [4, Theorems 2.1 and 2.4] yields the following oscillation criteria for the semilinear ultrahyperbolic operator L.

THEOREM 2. Let $n=2$ and assume that:
(i) the hypotheses (i) and (ii) of Proposition 2 are satisfied;
(ii) there exist positive continuous functions ϕ_{1} and ϕ_{2} in ($0, \infty$) such that (i), (ii), and (iii) of Theorem 1 (III) hold, and

$$
\int^{\infty} \xi(\log \xi) q(\xi) \phi_{1}(k \log \xi) d \xi=\infty \quad \text { for all } k>0 .
$$

Then every solution of (3) satisfying (11) is oscillatory in $H \times G$.
THEOREM 3. Let $n \geq 3$ and suppose that:
(i) the hypotheses (i) and (ii) of Proposition 2 are satisfied;
(ii) there exist positive continuous functions $\phi_{1}, \phi_{2}, \phi_{3}$, and
ϕ_{4} in $(0, \infty)$ such that
$\phi(\xi) \geq \phi_{1}(\xi) \phi_{2}(\xi)$ for all $\xi>0$,
ϕ_{1} is non-increasing and ϕ_{2} is non-decreasing for all $\xi>0$,
$\phi_{2}(\xi \zeta) \geq \phi_{3}(\xi) \phi_{4}(\zeta)$ for all ξ, ζ such that $0<\xi<1 / \zeta$,
$\int_{\varepsilon}^{\infty} \frac{d \xi}{\phi_{3}(\xi)}<\infty$ for some $\varepsilon>0$,
$\int^{\infty} \xi^{n-1} q(\xi) \phi_{4}\left(\frac{\xi^{2-n}}{n-2}\right) d \xi=\infty$.
Then every solution of (3) satisfying (11) is oscillatory in $H \times G$.
COROLLARY 2. Consider the semilinear ultrahyperbolic equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}-\sum_{j=1}^{m} \frac{\partial^{2} u}{\partial y_{j}^{2}}+c(|x|) u^{\gamma}=0 \tag{12}
\end{equation*}
$$

where c is a non-negative continuous function in $(0, \infty)$ and $\gamma>1$ is the quotient of odd integers. Every solution u of (12) satisfying (11)
and $u=0$ on $H \times \partial G$ is oscillatory in $H \times G$ if

$$
\int^{\infty} \psi_{n}(r) c(r) d r=\infty
$$

where

$$
\Psi_{n}(r)= \begin{cases}r \log r & \text { if } n=2, \\ r^{n-1+\gamma(2-n)} & \text { if } n \geq 3 .\end{cases}
$$

References

[1] Charles Kahane, "Oscillation theorems for solutions of hyperbolic equations", Proc. Amer. Math. Soc. 41 (1973), 183-188.
[2] Kurt Kreith, "Sturmian theorems for hyperbolic equations", Proc. Amer. Math. Soc. 22 (1969), 277-281.
[3] Kurt Kreith, "Sturmian theorems for characteristic initial value problems", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 47 (1969), 139-144.
[4] Manabu Naito and Norio Yoshida, "Oscillation theorems for semilinear elliptic differential operators", submitted.
[5] Mamoru Narita and Norio Yoshida, "Oscillation theorems for linear ultrahyperbolic operators", submitted.
[6] E.S. Noussair and C.A. Swanson, "Oscillation theory for semilinear Schrödinger equations and inequalities", Proc. Roy. Soc. Edinburgh Sect. A 75 (1975-1976), 67-81.
[7] Gordon Pagan, "Oscillation theorems for characteristic initial value problems for linear hyperbolic equations", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 55 (1973), 301-313.
[8] C.C. Travis, "Comparison and oscillation theorems for hyperbolic equations", Utilitas Math. 6 (1974), 139-151.
[9] Eutiquio C. Young, "Comparison and oscillation theorems for singular hyperbolic equations", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975), 383-391.

Department of Mathematics, Faculty of Science, Hiroshima University, Hiroshima, Japan.

[^0]: Received 14 October 1977. The author would like to thank Professor T. Kusano for many helpful suggestions.

