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Metal additive manufacturing (AM) is increasingly being sought after in critical military, aerospace, and 

biomedical manufacturing applications for its capability to create near-net shaped parts while minimizing 

time and material cost. In order to fabricate critical parts with orientation dependent properties required 

by industries, a complete understanding of microstructural heterogeneities (MH) and the ability to control 

these MH using AM process parameters is needed. These knowledge gaps are a serious impediment to 

AM part qualification and industry adoption [1]. Additionally, the non-equilibrium process conditions 

during AM of parts have led to the development of new alloys suitable for AM processes [2]. Therefore, 

strategies to accelerate AM part qualification is a major challenge that faces the AM community. The 

reasons for these barriers to qualification of AM parts are 1) the lack of spatial understanding in the 

hierarchy of defects and MH found in AM parts, 2) the lack of data-driven approaches for discovering 

new materials/alloys suitable for AM and 3) the lack of standardized high-volume process-structure-

property (PSP) datasets for AM builds.  

Overcoming these barriers necessitates the aggregation of multi-format, multi-dimensional datasets (often 

spanning multiple terabytes) required to develop such standards. These datasets must contain 

experimental, computational, and empirically derived data about processing pedigree, microstructural 

features, and performance parameters of parts spanning multiple builds. Moreover, the data must be able 

to be accessed in such a way that the community can readily derive relationships in the PSP space. In 

recent years, these challenges have been addressed in several ways. The creation of the propnet Python 

module has been created to empirically derive secondary properties from datasets and is a way to increase 

the dimensionality and informational footprint of the data collected [3]. Another is the advent of quality 

standards for the management and stewardship of scientific data known as the FAIR guiding principles 

[4]. FAIR data stands for Findable, Accessible, Interoperable, and Reusable/Reproducible data. These 

principles dictate how metadata is to be represented within a federated system. HyperThought™ is 

designed with features to allow users to upload data to a secure location on the cloud and ensure that their 

data meets FAIR standards [5]. HyperThought™ is capable of accepting data from users via REST API, 

attaching relevant metadata tags to files uploaded, run community-created algorithms on files for 

processing, and most importantly, represent the overall structure of an industrial process or scientific study 

through its process-modeling sub-application, Workflow. HyperThought™ enables users to develop a 

persistent machine-representation of knowledge gained from their data collection efforts. 

This study will present a systematic workflow to collect multi-modal datasets, with secondary properties 

of the material system derived using propnet. The entire dataset with explained pedigree will then be 

uploaded onto HyperThought™. The data will be available for public access. This dataset will consist of 

spatially collected microstructural data obtained from an AM block using a high-throughput 

characterization methodology established in our previous work [6]. The extent of spatial variations in 

microstructure due to process conditions across the sample will then be related to the changes in local 

performance parameters within the sample. We envision that this could further stimulate a community-

wide effort to create a collection of datasets that can be used as a starting point for AM 
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inferential/predictive model building and benchmarking, as well as initial exploration of AM PSP 

relationships. 
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